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Multi-armed bandit

one-armed bandits
“multi-armed” bandit

Exploration vs exploitation



Multi-armed bandit

Applications:

• Ad serving
• Arms – possible ads
• Reward – a click

• Website optimization
• Arms – possible website options
• Reward – user engagement

• Clinical Trials
• Arms: possible medications
• Reward: health outcomes
(Alternative to massive AB testing)

• Responsible for the demise of 
democracy?



The Upper Confidence Bound Algorithm



Starting phase – initialize all the arms

The Upper Confidence Bound Algorithm
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From now on: Choose the arm with the highest upper confidence bound
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The 𝜀-greedy algorithm



Starting phase – initialize all the arms

𝜀-greedy



𝜀-greedy
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Randomly choose arms for a while (only exploration)

𝜀-greedy
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𝜀-greedy
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𝜀-greedy
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𝜀-greedy
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With probability 𝜀! , play an arm uniformly at random. 
(I’ll give you the formula for 𝜀! later. Think of it as constant/t.)

Otherwise, play the arm you think is the best.



𝜀-greedy
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𝜀! = .85
roll 1, explore
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𝜀-greedy
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𝜀! = .80
roll 1, explore
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𝜀-greedy
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𝜀! = .75
roll 1, explore
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𝜀-greedy
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𝜀! = .70
roll 0, exploit!
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𝜀-greedy
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𝜀! = .62
roll 1, explore
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After a while…

𝜀-greedy



𝜀-greedy
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roll 0, exploit!



𝜀-greedy
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𝜀-greedy formal statement

t
1 𝜀!



UCB formal statement

Number of times arm j was 
played up to time t-1



Multi-armed bandit

Applications:

• Ad serving
• Arms – possible ads
• Reward – a click

• Website optimization
• Arms – possible website options
• Reward – user engagement

• Clinical Trials
• Arms: possible medications
• Reward: health outcomes
(Alternative to massive AB testing)

• Responsible for the demise of 
democracy?
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= Estimate of mean
reward for our strategy It

= expected reward for arm j

=  raw regret for playing our strategy I instead
of always playing the best arm “*”.

= regret for playing our strategy, using arms’ 
mean rewards.

Number of times arm j was played up to time t-1



expected regret for playing our strategy 

= regret for playing our strategy, using arms’ 
mean rewards.

We want to bound the expected regret of our strategy



𝜀-greedy formal statement



Regret bound for 𝜀-greedy 



Regret bound for 𝜀-greedy 

where

Expected regret
Starting phase 
regret bound

Regret for arm j

probability to choose j 
when exploring

Prob to exploit

bound on Prob you think j 
is the best when it’s not!

probability to explore



Regret bound for 𝜀-greedy 

where

Expected regret
Logarithmic in number of rounds, n



Probability of exploration

1

t

𝜀!

pure exploration
pure exploitation



UCB formal statement

Number of times arm j was 
played up to time t-1

No parameters!



Regret bound for UCB



Regret bound for UCB

Logarithmic in number of rounds, n



Notes

• Both algorithms have regret that increases only logarithmically in the 
number of rounds. Proofs are in the notes.
• There are theorems that do not involve       ‘s. (One is in the notes.)
• Both algorithms are about equally good in practice. 
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Context

age
number of FaceBook friends
estimated IQ
1if introvert

1if likes jazz

1if it is between 12am and 6am

1if browsing dating sites

user_in_context = 

arms
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Context

Arms





Lots of bandits

• Sleeping bandits
• Mortal bandits
• Bandits where the mean rewards are nonstationary
• Bandits with arms that lock for a while
• Bandits with delayed rewards
:


