
Modern Decision Tree Optimization with Generalized

Optimal Sparse Decision Trees

Duke Course Notes
Cynthia Rudin

CART and C4.5 were built for computers of the 1980’s and 1990’s, which are
completely different than modern computers. We can do a lot more now, and we
do not need to rely on top-down greedy tree induction methods like CART and
C4.5.

I will be talking about the Generalized Optimal Sparse Decision Trees (GOSDT)
algorithm of Lin et al. [2020], McTavish et al. [2022]. These algorithms are the
current fastest algorithms for optimal and approximately optimal sparse decision
tree optimization at the time of this writing. GOSDT is pronounced “ghost.”
GOSDT uses dynamic programming with bounds that prevent it from explor-
ing the whole search space of possible trees. I’ll present a simplified version of
GOSDT here.

Before we start, I’ll point out that GOSDT is very powerful. Even for challenging
datasets like the FICO Explainable Machine Learning Challenge Data [FICO
et al., 2018], it yields single sparse trees about as accurate as boosted decision
trees. An example of such a tree on this dataset is below.

Formulation

GOSDT minimizes an objective function:

R(tree,X,Y) = ℓ(tree,X,Y)+λ·#leaves(tree) such that depth(tree) ≤ D, (1)

1



where loss is misclassification error:

ℓ(tree,X,Y) =
1

n

n!

i=1

yi ∕=ŷtreei
.

R has both a hard constraint and a soft constraint on sparsity. Either λ or D
will make the optimal tree sparse, but using D alone with λ = 0 won’t get to
the smallest tree. This is because the optimal sparse tree might look like this:

If you used λ = 0, the algorithm would have produced a complete tree of depth
D (which has 8 leaves) instead of this lovely sparse tree with only 5 leaves.

On the other hand, if you used λ > 0 alone (eliminating the constraint on D),
then computation is much more expensive. Why is that? Let’s consider how the
space of trees grows for a specific number of features. I did some combinatorics
to calculate the number of possible trees for number of features p = 20:

The number of trees with depth ≤ 3 is 9.4×108

≤ 4 is 9.2×1028

≤ 5 is “Inf”.

Even if the optimal tree has depth 3, since you don’t know this in advance, you
might need to search depths 4, 5, and 6 to prove your depth 3 tree is optimal.
On the other hand if you had set D = 4, you would never need to search depth
5 trees at all.

That’s why it’s useful to have both the soft constraint using λ (to ensure a sparse
tree), and the hard constraint using D (which saves computation if we can choose
D correctly).

2



Binarization Preprocessing

We need to do some preprocessing to binarize the data. Essentially, we will enu-
merate the possible splits of a decision tree as binary features.

Our training set is {(xorig
i , yi)}ni=1. We transform each continuous feature into a

collection of binary features. Say that xcts has realized values in the dataset of
3.2, 4.1, 6.8, 7.0, and 8.4. In other words, there exist datapoints in our dataset
where xcts attains each of these values. Now we find the midpoints between any
two of these values and create an indicator variable.

So we create variables: xcts≤3.65, xcts≤5.45, xcts≤6.9, xcts≤7.7, etc. We replace xcts
with these binary variables and use the binarized data as our data matrix X.

That process does create a lot of binary variables, so an alternative is to run an
algorithm like random forests or boosted decision trees, and only use splits that
were used in these algorithms. For instance, it is possible that random forest
never split on “age<25.” In that case, we can omit the age<25 variable from our
preprocessed set of variables.

The Key Ingredients for GOSDT

GOSDT uses dynamic programming. In dynamic programming, we solve sub-
problems, and those give us the solution to the overall problem. For decision
trees, we need to find the optimal root split. But you don’t know what the
optimal split for the root is until you find the optimal splits for the nodes just
beneath it. And you don’t know the optimal splits for those until you do the
ones beneath them! Luckily, this doesn’t go on forever, because you can often
prove that the optimal solution is a leaf node when you have only a few data
points.

3



Raw Ingredient 1: Represent each subproblem by its data, as a bit-vector

Each subproblem is indexed by a bit-vector describing the data we need to use
for the subproblem. The master problem is:

s = [1, 1, 1, 1, 1, ..., 1] ← master problem involving all data

This is a bit-vector of size n, and each element is 1 because it is involved in
the master problem at the root of the tree. When we solve the master problem,
we are done with GOSDT. Here is another subproblem. Perhaps it arose from
splitting the master problem on a variable, which produces two subproblems,
and this is the data from one of them.

s = [0, 1, 1, 0, 1, 0, 1, 1, ..., ] ← problem using data points 2, 3, 5, 7, 8,...

Choosing to index subproblems by their bit-vector representations has a lot of
advantages: bit-vector comparisons are really fast. This allows us to quickly
see if two subproblems are identical. The bit-vector representation also helps us
because it gives a unique way to identify a subproblem that doesn’t depend on
how we arrived at it. We can easily arrive at the same subproblem in different
ways. For instance, a subproblem could have arisen by splitting on the tenth
feature and then the twelfth, but it could also have arisen by splitting by the
twelfth feature and then the tenth. Or, if the tenth and eleventh features are
similar, it’s possible that splitting on the tenth feature instead of the eleventh
feature somewhere in the tree could yield the same subproblem. With the bit-
vector indexing, if you solve the subproblem once, you can use its solution every
time you see that subproblem again.

Raw Ingredient 2: Priority Queue

This orders the subproblems.

Q = [101101111000101...], [10010100100100100..], [..], [...]...

The algorithm will handle problems according to their priority in the queue.

Raw Ingredient 3: Dependency Graph

The dependency graph G stores all the subproblems, their relationships (e.g.,
parent-child relationships), and lower and upper bounds on the objective for

4



that subproblem. Below is a dependency graph for a small problem that we’ll
work out later.

At the top is the master problem [1,1,1,1,1,1] containing all 6 data points (it’s a
small data set). There are only two features, which are both indicator variables.
One is the indicator that f1<0.6 and the other is the indicator for whether f2<0.3.
There are three possibilities for the top of the tree: turn the whole tree into a
leaf (on the left), split at f1<0.6 (center), or split at f2<0.3 (right). Let’s say we
traverse the graph along the option for f1<0.6, where we hit a white circle, which
is the actual root node in the tree where we make that split. Going to the left,
where f1<0.6, we have two options for splitting: turning into a leaf (continuing
to the left), or splitting on f2<0.3 (continuing to the right). If we split on f2<0.3
we get to a white node for that split, and then that split leads to two leaves.

The data in a child subproblem is a strict subset of the data from any of its
parent or ancestor problems. (You can see that by comparing the bit vectors.)
You can also see a case where a child has two parents, which is the subproblem
involving only the first three data points: [1,1,1,0,0,0]. The upper bounds and
lower bounds for each subproblem are marked by p.ub and p.lb, but don’t pay
attention to their values quite yet. A subproblem (or the master problem) is
solved when its upper and lower bounds are equal.

We can extract trees from the dependency graph once we’ve finished building it.

5



Below, we place three red circles on the graph showing the leaves of a tree. The
tree is on the right. Its splits are the two white circles leading to the three red
circles.

When the master problem is completed, its upper and lower bounds will be the
same, and at that point, we can read off the optimal tree from the graph. Let us
pretend that the upper and lower bound are both 3λ for the master problem in
the graph when solved. Now, we look at the upper/lower bounds for the children
(all upper and lower bounds will all be the same after GOSDT’s computation is
complete). We know that the optimal solution gives bound 3λ, so we need to
find children that give us this value. For the option of splitting on f1 < 0.6, we
add up the 2λ from the left subproblem and the λ from the right subproblem
and get 3λ, so we know that there is an optimal tree with f1 < 0.6 as the top
split. Interestingly, if we instead consider the root split on f2 < 0.3, the left
subproblem gives λ and the right will give 2λ, so there is also an optimal tree
with this root split. In other words, the optimal sparse tree is not unique! In
fact, we could have a root split with f2 < 0.3, that has a split on f1 < 0.6 below
it, in addition to the tree in the figure above; they are both optimal.

Initialization

Here is the initialization for GOSDT:

1: Q = ∅ ⊲ empty priority queue
2: G = ∅ ⊲ empty dependency graph
3: s0 = [1, 1, 1, 1..., 1] ⊲ master problem, a bit vector of n ones

6



4: p0 = FindOrCreateNode(G,s0) ⊲ place the master problem into depen-
dency graph

Before continuing onto the GOSDT algorithm, we must explain the subroutine
FindOrCreateNode.

subroutine FindOrCreateNode

The subroutine FindOrCreateNode(G,s) checks to determine whether subprob-
lem s is already in G, and if not, it places s into G and initializes its upper and
lower bounds. I’ll place it below, and explain it afterwards.

1: function FindOrCreateNode(G,s)
2: if G.find(s) == NULL then ⊲ Here, we used bit-vector comparisons to

see whether s is identical to a subproblem already in G, and if it’s not,
we proceed.

3: p.id ← s ⊲ identify problem p by bit-vector s
4: p.lb = 0+2λ ⊲ maybe I could get to 0 loss if I make some splits
5: p.ub = 1

n (# minority labels in s) + λ ⊲ objective if it was a leaf
6: if p.ub−p.lb≤ 0 then ⊲ in this case, trivial tree is optimal tree
7: p.lb ← p.ub ⊲ make it a leaf
8: G.insert(p) ⊲ insert p into G

return Find G.find(s) ⊲ return a pointer to location of s in G

The “G.find(s)” step means that we compare s to every subproblem in G using
bit-vector comparisons. The bit-vector representation of the subproblems is the
key to making this step very computationally fast. If s is already in G, we just
return its location in G. if s is not in G, We need to calculate its bounds and
insert it, and return its location. There are three interesting parts we have not
explained yet:

Lower Bound p.lb: The lower bound sets the loss to 0, on the possibility that
if we keep splitting, the loss of the subproblem might eventually become 0. We’ll
keep at least 2λ for our regularization term since we have at least 2 leaves for
this subproblem.

Upper Bound p.ub: The upper bound we give when we create the node is just
the value of the objective if we had made the subproblem into a leaf. If we did
that, the number of points we would classify incorrectly is the minority label.

7



Let’s say we have 23 points in the leaf, with 12 positive and 11 negative points.
In that case, the majority vote is positive, and the number of minority points is
11. We’ll misclassify 11 points, and the loss is 11/n, where n is (still) the number
of points in the dataset. The regularization term is λ times 1.

The “if” Condition: The condition p.ub−p.lb≤ 0 arises from the following
theorem. We use notation Xs,·,Ys to indicate that we use only the observations
with value 1 in bitvector s (i.e., the points in the subproblem).

Theorem 1 If p.ub−p.lb≤ 0, then

R(trivial tree,Xs,·,Ys) ≤ R(any child tree,Xs,·,Ys).

In other words, if the upper bound and lower bound differ by less than 0, the
trivial tree (that is just a leaf) is just as good as any child tree. In that case,
there’s no point splitting, because it’s not going to reduce the objective. Here is
the proof:

Proof. Any child tree must have at least 2 leaves from splitting a node. In the
best case it will have 0 misclassification error.

R(any child tree,Xs,·,Ys) ≥ ℓ(any child tree,Xs,·,Ys) + 2λ ≥ 0 + 2λ. (2)

A trivial tree (with 1 leaf) obeys:

R(trivial tree,Xs,·,Ys) =
1

n
(#minority labels) + λ = p.ub,

where this is the definition of p.ub, which comes from the earlier steps in Find-
OrCreateNode before the “if” condition. Thus,

p.ub− p.lb =
1

n
(#minority labels) + λ− 2λ

=
1

n
(#minority labels)− λ

≤ 0 (this uses p.ub-p.lb ≤ 0 by assumption).

Thus,

R(trivial tree,Xs,·,Ys) =
1

n
(#minority labels) + λ ≤ λ+ λ = 2λ

≤ R(any child tree,Xs,·,Ys) (from (2)).

8



Thus, the trivial tree is as good or better than any of its children. □

The theorem reveals that if the condition p.ub−p.lb≤ 0 holds, then an optimal
solution to the subproblem is a tree that is just a leaf (a trivial tree). When that
happens, the lower bound and upper bound are just the objective for the trivial
1-leaf tree.

Next, I’ll present a shortened version of GOSDT’s main while loop.

The Main While Loop (Short Version)

1: while p0.lb ∕= p0.ub do ⊲ master problem not solved
2: s ← Q.pop ⊲ index of problem to work on, pop it from the queue
3: p ← G.find(s) ⊲ find it in G
4: if p.ub=p.lb then then continue (problem solved)
5: ⊲ go back to top of while loop and choose the next subproblem ⊳
6: Loop over j. For each j, split on feature j to form 2 subproblems, get

their lb and ub, and put both of them in G if they aren’t there already.
7: Update bounds for p and its parents
8: ⊲ Check again if we’re done: ⊳
9: if p.lb=p.ub then problem solved, continue ⊲ go back to top of while loop

10: Loop over j again. For each j split on j to form 2 subproblems again,
evaluate bounds for all the children and enqueue only the viable ones.

11: return Find G.find(s) ⊲ Return a pointer to location of s in G

The main while loop first gets a subproblem p from the front of the priority queue
Q. If it’s already solved, we don’t need to do anything else so we just go back
and get another subproblem. If it’s not already solved, we split it into 2 child
problems in all possible ways, and add all of the newly created subproblems to
G. We also calculate their lower and upper bounds.

We use these bounds from the child problems to update the bounds for p and pass
those bounds up to its parents. To update the lower bound for p, we calculate
the following, where pjl and pjr are the left and right subproblems after we split
problem p on feature j:

argminj pjl .lb + pjr.lb

The j with the lowest value of this lower bound is the one we are most curious

9



about, because this subproblem could potentially lead to a low loss. Similarly,
we want to choose the best upper bound, which is the split that would give us
the lowest known value of the loss:

argminj pjl .ub + pjr.ub.

(It is possible that just keeping p as a leaf gives the lowest lower bound, in which
case we leave it as a leaf.)

If we do make an update to either the lower or upper bounds, we need to pass
that information upwards through the graph, to p’s ancestors, to get us closer to
solving the master problem. We put the parents of p in the front of the priority
queue so their bounds get updated first – hopefully, that way, we will discover
less child problems to explore.

Then, we loop again over j and get all of the child subproblems, but this time we
evaluate whether to put them into the queue. There are two reasons we might
not enqueue them. First, if the subproblem is already solved (i.e., p.lb=p.ub) we
do not need to enqueue it. To enqueue it, the lower bound should be strictly less
than the upper bound. Second, if the sum of lower bounds from the subproblem’s
two children is higher than the subproblem’s upper bound, our subproblem can’t
be in any optimal solution to the problem. In that case, we proved that we are
better off with what we had before trying to make that split.

Let’s give the pseudocode for the main while loop with a bit more detail.

10



The Main While Loop (Regular Version)

1: while p0.lb ∕= p0.ub do ⊲ master problem not solved
2: s ← Q.pop ⊲ index of problem to work on
3: p ← G.find(s) ⊲ find it in G
4: if p.ub=p.lb then continue ⊲ problem solved, go back to while loop and

choose next subproblem
5: (lb

′
,ub

′
) ← (∞,∞) ⊲ loose starting bounds

6: for j=1,. . .# features do ⊲ create left and right subproblems for each j
7: sl, sr ← split s on feature j ⊲ left and right subproblems
8: pjl ← FindOrCreateNode(G,sl) ⊲ Put them in G
9: pjr ← FindOrCreateNode(G,sr)

10: ⊲ calculate bound for j by adding up its left and right child pairs.
Among all j, find lowest lower bound and the lowest upper bound. ⊳

11: lb
′ ← min(lb

′
, pjl .lb + pjr.lb)

12: ub
′ ← min(ub

′
, pjl .ub + pjr.ub)

13:
14: ⊲ Update bounds for p and its parents ⊳
15: if p.lb ∕=lb

′
or p.ub ∕= ub

′
then p.ub = min(p.ub, ub

′
), p.lb = min(p.ub,

max(p.lb, lb
′
)) ⊲ if bounds change, update them

16: ⊲ tell my parents I got updated, parents go to the front of the queue ⊳
17: for pπ ∈ G.parent do Q.push(pπ.id, priority=1)
18: ⊲ check again if we’re done: ⊳
19: if p.lb=p.ub then then problem solved, continue ⊲ back to while loop
20: for j=1 to # features do ⊲ enqueue viable children
21: sl, sr ← split s on feature j ⊲ left and right subproblems
22: pjl ← FindOrCreateNode(G,sl) ⊲ get them from G
23: pjr ← FindOrCreateNode(G,sr)
24: ⊲ now calculate bounds ⊳
25: lbsum ← pjl .lb + pjr.lb
26: ubsum ← pju.ub + pjr.ub
27: if lbsum < ubsum and lbsum ≤ p.ub then ⊲ child problem is viable
28: Q.push(sl,priority)=0 ⊲ back of the queue for children
29: Q.push(sr,priority)=0
30: return G ⊲ return G, from which we can easily extract the optimal tree

When the while loop terminates, it’s because we have solved the master problem.
Now we can extract the optimal tree from G by seeing which split leads to the

11



upper (and lower) bounds that we recorded for the optimal solution (I gave an
example earlier where there were two optimal solutions).

Walkthrough

On a set of slides by Chudi Zhong, there is a walkthrough of GOSDT for the
very simple n=6 dataset.

Speeding Up Computation

There are several important techniques that GOSDT uses to reduce computation
time. If you don’t use these techniques, GOSDT could run slowly. Remember,
the problem of finding an optimal sparse decision tree is known to be NP-hard.

Using regularization: You might have noticed that the FindOrCreateNode(G, s)
subroutine uses a 2λ term, where λ is the regularization parameter. Specifically,
GOSDT doesn’t even create a node if the lower bound is within 2λ of the upper
bound. In other words, if λ is large, we’ll create much fewer nodes. This is
because the large regularization provably excludes trees with small leaves from
being the optimal solution, so GOSDT won’t create small leaves at all. One
must thus never reduce λ to a small number, because it will lead to overfitted
trees with small leaves and slow computation time. (Of course, if you make λ
too large, you’ll just get a leaf as your optimal tree.)

Using a reference model to speed up computation: Another very useful
way to reduct computation is to use a reference model to approximate the lower
bounds in the algorithm. Here, instead of computing the lower bounds as we did
in the Main While Loop, we use a black box algorithm like AdaBoost or random
forest to produce the bounds. For instance, for a subproblem, let’s say the lower
bound from our current computation is 3/n and AdaBoost’s accuracy on that
subproblem is 20/n; that is, the black box missed 20 points rather than 3. In
that case, we say that it’s unlikely that our single tree will be better than the
black box, so it’s fairly safe to assume that the best single tree will miss at least
20 of these points. So now, our lower bound has gone from 3 to 20. Then, as
long as the upper bound can get down to 20, we can stop trying to make that
part of the tree more accurate and thus converge faster. In this case, we lose the
guarantee of optimality, but we have performance at least as good at that of the

12



black box.

Hard constraints for easing computation: Let us discuss how to handle the
hard constraint that the depth ≤ D; this is slightly complicated because a sub-
problem that is encountered at one depth is no longer the same as a subproblem
encountered close to D. However, using a well-chosen value for D can be very
helpful: if D is as large as, or larger than, the depth of the optimal solution, we
do not need to search deeper depths. If we choose D too small, unfortunately
we will miss the optimal solution and need to make D larger and try again. In
practice, we rarely require depth more than 5, which we have found to be a
generally good choice.

Scaling and binary preprocessing: I described two options earlier for binary
preprocessing of continuous variables. If we use the first option (all possible
splits), the problem will be computationally expensive, but GOSDT will provide
the optimal solution. The second option (using only the splits from random
forest or boosted decision trees) will be less expensive, and generally achieves
excellent performance. GOSDT scales more slowly with the number of features
than the number of observations, so using only the splits from random forest or
boosted decision trees really helps.

Some perspective

As you can tell, modern decision tree optimization is almost nothing like greedy
tree induction of early algorithms like CART or C4.5. This set of notes aims
to give you the perspective of how the field has changed. I wanted to leave you
with a few last notes on modern decision trees.

Other loss functions: GOSDT does generalize to any loss function that in-
creases in the number of false positives and increases in the number of false
negatives. So it is possible to weight the false negatives higher than the false
positives if desired.

Performance: GOSDT tends to produce solutions that are better than C4.5
and CART, and is more reliable. While sometimes CART’s solutions are as
good as GOSDT’s, we won’t know in advance when this will happen. GOSDT

13



is particularly useful when the user wants to optimize a custom loss function,
since CART’s splitting criteria is not tuned for that loss function. Of course,
GOSDT doesn’t have splitting criteria, instead it will use dynamic programming
as described above.

Theorems to reduce the search space: Note that GOSDT has a number
of additional theorems that reduce the size of the search space (that I did not
discuss because of length).

GOSDT Extension: A 2022 extension to GOSDT is called TreeFARMS (Trees
FAst RashoMon Sets) [Xin et al., 2022]. TreeFARMS uses GOSDT’s dependency
graph and implementation to store all the trees that are optimal or close to
optimal, and provides all of them to the user, rather than just providing a single
tree. The reason for doing this is that if the user doesn’t like the tree that an
algorithm like CART, C4.5, or GOSDT produces, there’s usually not much one
can do about it. So, TreeFARMS allows the users to look through all the trees
that are about equally good. There is a user interface called TimberTrek [Wang
et al., 2022] that allows users to explore the set of all close-to-optimal sparse
decision trees.

References

FICO, Google, Imperial College London, MIT, University of Oxford, UC Irvine,
and UC Berkeley. Explainable Machine Learning Challenge. https://

community.fico.com/s/explainable-machine-learning-challenge, 2018.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Gener-
alized and scalable optimal sparse decision trees. In International Conference
on Machine Learning (ICML), 2020.

Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques
Chen, Cynthia Rudin, and Margo Seltzer. Fast sparse decision tree optimiza-
tion via reference ensembles. In Proceedings of AAAI Conference on Artificial
Intelligence, 2022.

Zijie J. Wang, Chudi Zhong, Rui Xin, Takuya Takagi, Zhi Chen, Duen Horng
Chau, Cynthia Rudin, and Margo Seltzer. TimberTrek: Exploring and cu-

14

https://community.fico.com/s/explainable-machine-learning-challenge


rating trustworthy decision trees with interactive visualization. In 2022 IEEE
Visualization Conference (VIS), 2022.

Rui Xin, Chudi Zhong, Zhi Chen, Takuya Takagi, Margo Seltzer, and Cynthia
Rudin. Exploring the whole rashomon set of sparse decision trees. In Neural
Information Processing Systems (NeurIPS), 2022.

15


