Intro to Neural Networks
Cynthia Rudin

Duke Machine Learning



Neurons

* 10'! neurons in a brain, 10'* synapses (connections).

* Signals are electrical potential spikes that travel
through the network.

(Credit: Adapted from Russell and Norvig)
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McCulloch-Pitts “Neuron”
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In a brain, the synapses strengthen and weaken in order to learn.
Say the same thing happens here.

How should we set the weights in order to learn (reduce the error)?
Minimize E with respect to the weights.



Backpropagation

* An algorithm that trains the weights of a neural network

* Requires us to propagate information backwards through the network, then
forwards, then backwards, then forwards, etc.

* Propagate backwards = chain rule from calculus.
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Backpropagation

* An algorithm that trains the weights of a neural network

* Requires us to propagate information backwards through the network, then
forwards, then backwards, then forwards, etc.

* Propagate backwards = chain rule from calculus.
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Backpropagation

* Go one layer deeper.
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Backpropagation

* Go even one layer deeper.

e Third time 1s a charm.
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Backpropagation

Now we know how to compute ddE forall w,,'s.
Wa b
Let’s do gradient descent.
dE

Wa,b %Wa,b —
dw

a 1s between 0 and 1. Called the “learning rate”.

Now we know how to propagate errors back through the network.

Remember how to go forward?















Backpropagation

* Repeat going backwards (to calculate the gradients), adjusting the
weights, and going forwards (to calculate the errors) over and over
in order to learn.
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Convergence Problems

* NN'’s have problems with convergence due to
vanishing/exploding gradients and saddle points.

* Vanishing gradients come from the flat part of the
activation function.

* Exploding gradients happen when we realize that
our gradient has vanished and so increase the
learning rate and take huge step sizes to
compensate (but then mess everything up!)

« Stick to 10~ to 10-3 learning rate perhaps?
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Convergence Problems

* With the sigmoid activation, the derivatives of the input
weights for each node are always either all positive or all

negative. This is a limitation. .
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does not positive, since all outputs of
depend on a sigmoid are between 0 and 1.




Convergence Problems

* Bottom line — most people do not use sigmoid-like activation
functions, even though this is more biologically relevant.

Sigmoid O(x)= —
1+e




Convergence Problems

Bottom line — most people do not use sigmoid-like activation
functions, even though this is more biologically relevant.

Sigmoid O(x)= —
l1+e™

Hyperbolic tangent tanh(x) 11




Convergence Problems

Rectified Linear Unit (ReLU)

max(0,x)

Removes vanishing gradients
when nodes are ““activated,”
meaning x>0.

(Krizhevsky et al., 2012)

Leaky ReLU
max(0.1x,x)

Removes vanishing gradients, but
prefers that non-activated nodes be as
“non-activated” as possible

(doesn’t make much sense)

(Mass et al., 2013; He et al., 2015)



Convergence Problems
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Rudin and Carlson. The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at
Data Analysis. INFORMS TutORial, 2019.



Convergence Problems

Adding momentum to gradients
- adjust gradient to make current gradient similar to previous gradients



Convergence Problems

 Initialization of the networks weights is really important. I have no

idea how to do it. Due to bad initialization?

Loss
N

> Time



Convergence Problems

* Batch Normalization (Ioffe and Szegedy, 2015) is a step that:

— Normalizes the outputs o, of several nodes (a “mini-batch”) in the same layer.
(As usual, subtract the mean of the o0,’s divide by their standard deviation).

— Includes the mean and standard deviation as separate parameters to be
learned.

— Usually the normalization is before the nonlinear activation function.

— This adds regularization and helps to prevent flat gradients in the network but
sometimes it messes things up.



Early stopping via validation set

- Training
Validation

Best Validation (and Generalization)

Average Loss

/ Iterations
Training Loss Keeps Improving

Rudin and Carlson. The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at
Data Analysis. INFORMS TutORial, 2019.



Convergence Problems Summary

* There are lots of convergence problems

 vanishing gradients
— Adjust the learning rate
— Change the activation function (tanh, ReLLU, leaky ReLLU, etc.)
— Use Batch Norm
— Add Momentum

* bad minima
— Initialization (somehow...)

* overfitting
— Stop early using validation set



Convergence Problems Summary

When training a NN, you “become” part of the algorithm
because you control its convergence so heavily.
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Convolutional NN’s

* Convolve means to slide the filter over all spatial
locations and sum up the filter weights times the inputs.




Convolutional NN’s

* Convolve means to slide the filter over all spatial
locations and sum up the filter weights times the inputs.

* An edge filter will detect edges.




Convolutional NN’s

* Convolve means to slide the filter over all spatial
locations and sum up the filter weights times the input.

4

» Stride of 5 means we step by 5’s

-‘uvhen we convolve.

The thickness 1s the number of filters

The following layer is smaller by a factor of 5.



Convolutional NN’s

e\

Fully Connected

Image Maps

Input

7

Convolutions .
Subsampling

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Image from LeCun et al 1998, reproduced in color from Li, Johnson, Yeung, 2017



Convolutional NN’s

* Max pooling means to convolve with a max function.

* Intuitively keeps track of whether an earlier filter has detected something.

2 4 2 x 2 max pool filter and stride 2

1 8 > 3
4 4 6 |7
7 6

O\w‘l\)r—*
—_— O N DN




Zero-padding

* Add zeros around the image so that the dimensions work out.



* AlexNet (Krizhevsky et al. 2012)

Probabilities

n
Input
224 image 384 384 256 1000

Max Max

pooling pooling

Stride
224\ Wl 54

3

AlexNet won the ImageNet Large Scale Visual Recognition Challenge in 2012. It achieved a
top-5 error of 15.3%, more than 10.8 percentage points ahead of the runner up.

Image source: unknown



* AlexNet (Krizhevsky et al. 2012)
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*ReLU was applied to every output of convolutional and fully connected layers



GPU 2

Layer 1 AlexNet filters (Krizhevsky et al. 2012)



from layer 1

from layer 2
from layer 5

Source: Zeiler and Fergus, 2013



Convolutional NN’s

“Features?”

Input

p(x)

Output
I~

— -

P X

Convolutions Fully Connected
bubsampm g

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Image from LeCun et al 1998, reproduced also from Li, Johnson, Yeung, 2017



Autoencoders

Bottleneck




There has been much work since AlexNet.

Next: Improving performance of CNNs for computer vision.
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Data Augmentation
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Chinese Lantern Festival, Cary NC, 2017



Data Augmentation

- include artificial data, such as horizontal flips, rotations,
resized, cropped training 1images, change contrast and
brightness, distortion, etc.

Chinese Lantern Festival, Cary NC, 2017



Data Augmentation

- include artificial data, such as horizontal flips, rotations,
resized, cropped training 1images, change contrast and
brightness, distortion, etc.

Chinese Lantern Festival, Cary NC, 2017



Residual Nets (He et al., 2016)

|

weight layer
l RelLU

weight layer

l ReLLU
H(x)

We hopetetit H(x).

Slides recreated from Kaiming He’s tutorial
http://kaiminghe.com/icml16tutorial/icml12016 tutorial deep residual networks kaiminghe.pdf



Residual Nets

iﬁ identity

weight layer
l RelLU

weight layer

l
®

l ReLU
H(x)=F(x)+x

http://kaiminghe.com/icml16tutorial/icml12016 tutorial deep residual networks kaiminghe.pdf

We hopetetit H(x).

We hope to fit F(x).
We are now learning a
residual of 1dentity.



Residual Nets

* By adding x, the derivative of the error with respect to x
increases by 1. Thus, less vanishing derivatives.

* Allowed networks to go much deeper than before.
“From 10 to 1000 layers”

H(x)=F(x)+x

http://kaiminghe.com/icml16tutorial/icml12016 tutorial deep residual networks kaiminghe.pdf



34-layer plain 34-layer residual

Residual Nets il
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He et al. Deep Residual Learning for Image Recognition, arXiV2015



Dropout (Srivastava et al., JMLR 2014)

Forces signal to be “carried” throughout the network

In each forward pass, for each neuron, with probability p, set
all of its output weights to 0.

p is a hyperparameter, usually p =0.5.

During testing, use all nodes.

(a) Standard Neural Net (b) After applying dropout.
Image from Srivastava et al JIMLR 2014)



Dropout (Srivastava et al., JMLR 2014)

* As if we are training exponentially many “sub” models.
Similar idea to bagging (averaging many separately
trained models together).

* Creates a redundant encoding.

(a) Standard Neural Net (b) After applying dropout.
Image from Srivastava et al JIMLR 2014)



Dropout (Srivastava et al., JMLR 2014)

* As if we are training exponentially many “sub” models.
Similar idea to bagging (averaging many separately
trained models together).

* Creates a redundant encoding.

— has hat with a ball on top
—_— juggles - X\)

S
—_—

. —_
. oversized shoes / clown score
—— lots of makeup

—— bright colors




“Transfer” Learning

* Using information about the solution to one problem to help
solve another.

* Use the early layers from a pretrained model in another network.
Retrain only the weights from the last few layers.

Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

VGG

Karen Simonyan* & Andrew Zisserman*
Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk



A Big Bag of Tricks

* Dropout

« Batch Normalization

Data Augmentation

Residual Networks
* Activation Functions (ReLLU, Leaky ReLLU)

Initialization

Transfer Learning



Other ways to improve neural networks

* Change the dataset. U

X ey X

3 an

se fine-grained labels

s

Is there a fence in this picture?

* Understand the model so you know what’s wrong with it.
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CNNSs can use the wrong information
(confounding)



CNNs can use the wrong information
(confounding)

Source: Wikimedia commons, West German soldiers in 1983

Ok, well, that was a bad dataset...



CNNSs can use the wrong information
(confounding)

np]| | Digital Medicine

NPJ Digit Med. 2019; 2: 31. PMCID: PMC6550136
Published online 2019 Apr 30. doi: 10.1038/s41746-019-0105-1 PMID: 31304378

Deep learning predicts hip fracture using confounding patient and
healthcare variables

Marcus A. Badqelev,1’2’3 John R. Zech.4 Luke Oakden-Ravner.5 Benjamin S. Glicksberq,6 Manway Liu,1
William Gale,” Michael V. McConnell, 8 Bethany Percha,? Thomas M. Snyder," and Joel T. Dudle){m'3

» Author information > Article notes » Copyright and License information Disclaimer

Solution to this? Interpretability? Heavy testing? Massive data augmentation?



Deep fakes are dangerous



Deep fakes are dangerous

UW NEWS

July 11, 2017

Lip-syncing Obama: New tools turn audio clips
into realistic video

Jennifer Langston

UW News

SCIENTIFIC /7
sa RN RN RERNBNRRRBRERERRRRR RN m tatestissues AMERICAN ‘4 EE so

CORONAVIRUS THE SCIENCES MIND HEALTH TECH SUSTAINABILITY VIDEO PODCASTS OPINION PUBLICATION

ating 175 Years of Discovery Learn More

POLICY & ETHICS | OFPIN
SisasNesNNnNNNNNNNNNNNNNNNNNRNRRNRBNRRNBNONRBRNRD !

University of Washington researchers have developed new algorithms that solve a thorny Deepfakes and the New AI"

challenge in the field of computer vision: turning audio clips into a realistic, lip-synced video

SHUE o SRS s Generated Fake Media Creation-
Detection Arms Race

Manipulated videos are getting more sophisticated all the time—but so are the techniques that
can identify them



Deep fakes are dangerous

www.forbes.com/sites/jessedamiani/2019/09/03/a-voice-deepfake-w

A Voice Deepfake Was
Used To Scam A CEO
Out Of $243,000

9 eeeeeeeeeeee
Consumer Tect

It’s the first noted instance of an artificial
intelligence-generated voice deepfake
used in a scam.



GANS — Generative Adversarial Networks

*  GANS are actor-critic models
* They produce realistic-looking images/data
* Used commonly for Al artwork / deep fakes

random numbers __ Generator_’ ﬂ N «— Real world
N(0,1) network h ‘ A Wg‘

Discriminator
Generated images ~ network Real images

If the generator creates images that the discriminator can’t tell apart, it’s good.
(The “arms race” is between the generators and the discriminators.)

(Goodfellow et al 2014)



GANS — Generative Adversarial Networks

From Goodfellow et al 2014:

D and G play the following two-player minimax game with value function V (G, D):

minmax V (D, G) = Egppu(@)10g D(x)] + E,p, () llog(1 — D(G(2)))].

G D t t

I Discriminator maximizes Discriminator minimizes
likelihood of real data likelihood of generated data.

1

Generator maximizes
likelihood of generated data




GANS — Generative Adversarial Networks

From Goodfellow et al 2014:

D and G play the following two-player minimax game with value function V (G, D):

mm maXV D,G) = Egrppu(a) 108 D()] + E, )y () log(1 — D(G(2)))].

1 L}

I Discriminator maximizes Discriminator minimizes
likelihood of real data likelihood of generated data.
Generator aims to make discriminator not work well. t

Generator maximizes
likelihood of generated data



GANS — Generative Adversarial Networks

From Goodfellow et al 2014:

D and G play the following two-player minimax game with value function V (G, D):

minmax V (D, G) = By (w108 D()] + By (2 log(1 = D(G(2)))]

max E.,. (o) log(DX D(G(2)))].

Gradient ascent steps on discriminator
Gradient descent steps on generator
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| ' Is artificial intelligence set to
ST become art’s next medium?

Al artwork sells for $432,500 — nearly 45 times its high

GANSs are totally useful for artwork! _
estimate — as Christie's becomes the first auction house to offer

a work of art created by an algorithm



Figure adapted from L. Gatys et al. "A Neural Algorithm of Artistic Style" (2015) by Google Al Blog

GAN:Ss are totally useful for artwork!


https://arxiv.org/abs/1508.06576

PSR

Input Image

Il

Menon et al. PULSE: Self-Supervised Photo
Upsampling via Latent Space Exploration of
Generative Models, CVPR 2020

Tero Karras et al. A style-based generator architecture
for generative adversarial networks. CVPR, 2019.

Original Result

200 200

400 400
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A twitter user’s result from the PULSE algorithm, which uses StyleGAN

GAN:Ss are totally useful for artwork!



[Input Tmage

PULSE shows us that there 1s often no
hope of identifying someone in a grainy
security video.

There could be many high res images
corresponding to one low res image.

Menon et al. PULSE: Self-Supervised Photo
Upsampling via Latent Space Exploration of
Generative Models, CVPR 2020

Tero Karras et al. A style-based generator architecture
for generative adversarial networks. CVPR, 2019.

GANS are totally useful for artwork!



Neural networks can be brittle

* Adversarial attacks show that changing a single
pixel in an 1mage can change the predicted class
in modern ML systems.

* It is easy to fool a computer vision system.

9 SPEED
LIMIT

45

Eykholt et al., 2018 Robust Physical-World Attacks on Deep Learning Models,

Need better data augmentation...




The model will not always be used in the
way it is intended

@NEWS VIDEO LIVE SHOWS 2020 ELECTIONS CORONAVIRUS

Black man wrongfully arrested because
of incorrect facial recognition

Robert Williams spent nearly 30 hours in a detention center.




So...

* Much care 1s needed in many applications of neural networks.
— medical image processing (confounding)
— automated driving systems (not robust, not perfect)
— facial recognition (not perfect, watch for bias)
— deep fakes (easily fraudulent)

* Neural networks are great for artwork.



