
Intro to Neural Networks
Cynthia Rudin

Duke Machine Learning

• 1011 neurons in a brain, 1014 synapses (connections).

• Signals are electrical potential spikes that travel
through the network.

Neurons

(Credit: Adapted from Russell and Norvig)

McCulloch-Pitts “Neuron”

wj ,meoj
j
∑

o1
o2

w1,me
w2,me

Input
function

φ wj ,meoj
j
∑⎛

⎝⎜
⎞

⎠⎟

∑ ome
φ

ome =

wme,27
wme,29

Activation
Function

Output

“me”

McCulloch-Pitts “Neuron”

o1
o2

w1,me
w2,me

Input
function

∑ ome
wme,27
wme,29

Step
Function

φ wj ,meoj
j
∑⎛

⎝⎜
⎞

⎠⎟
ome =

Activation
Function

Output

McCulloch-Pitts “Neuron”
w1 = 1

w2 = 1

w0 = 1.5o0 = −1

o1 o2 output

o1 = ?

o2 = ?

Step
Function

00

1

McCulloch-Pitts “Neuron”
w1 = 1

w2 = 1

w0 = 1.5o0 = −1 Step
Function

o1 o2 output
0 0

o1 = ?

o2 = ?

0+0-1.5 = -1.5

0

1

0

McCulloch-Pitts “Neuron”
w1 = 1

w2 = 1

w0 = 1.5o0 = −1 Step
Function

o1 o2 output
0 0 0

o1 = ?

o2 = ?

0+0-1.5 = -1.5

0

1

0

McCulloch-Pitts “Neuron”
w1 = 1

w2 = 1

w0 = 1.5o0 = −1 Step
Function

o1 o2 output
0 0 0
1 0 0

o1 = ?

o2 = ?

1+0-1.5 = -0.5

0

1

0

McCulloch-Pitts “Neuron”
w1 = 1

w2 = 1

w0 = 1.5o0 = −1 Step
Function

o1 o2 output
0 0 0
1 0 0
0 1 0

o1 = ?

o2 = ?

0+1-1.5 = -0.5

0

1

0

McCulloch-Pitts “Neuron”
w1 = 1

w2 = 1

w0 = 1.5o0 = −1 Step
Function

o1 o2 output
0 0 0
1 0 0
0 1 0
1 1

o1 = ?

o2 = ?

1+1-1.5 = 0.5

0

1

0

McCulloch-Pitts “Neuron”
w1 = 1

w2 = 1

w0 = 1.5o0 = −1 Step
Function

o1 o2 output
0 0 0
1 0 0
0 1 0
1 1 1

o1 = ?

o2 = ?

0

1

0

1+1-1.5 = 0.5

McCulloch-Pitts “Neuron”
w1 = 1

w2 = 1

w0 = 1.5o0 = −1 Step
Function

o1 o2 output
0 0 0
1 0 0
0 1 0
1 1 1

o1 = ?

o2 = ?

0

1

0
This neuron computes

the function “and.”

There are “or” and “not” neurons too.

McCulloch-Pitts “Neuron”

φ wj ,meaj
j
∑⎛

⎝⎜
⎞

⎠⎟

φ

Activation
Function

= 1/ (1+ e− x)

“Sigmoid”

Single Layer

o99

o98 w98,100
o100∑

w99,100

E = 1
2
(y − o100)

2

“neuron 100”

Error on one
observation

Single Layer

o99

o98 w98,100
o100∑

w99,100

E = 1
2
(y − o100)

2

• In a brain, the synapses strengthen and weaken in order to learn.
• Say the same thing happens here.
• How should we set the weights in order to learn (reduce the error)?
• Minimize E with respect to the weights.

Error on one
observation

Backpropagation

• An algorithm that trains the weights of a neural network

• Requires us to propagate information backwards through the network, then
forwards, then backwards, then forwards, etc.

• Propagate backwards = chain rule from calculus.

Backpropagation
Cynthia Rudin

Duke Machine Learning

Backpropagation

• An algorithm that trains the weights of a neural network

• Requires us to propagate information backwards through the network, then
forwards, then backwards, then forwards, etc.

• Propagate backwards = chain rule from calculus.

Single Layer
o99

o98 w98,100
o100net100

w99,100

E = 1
2
(y − o100)

2

Error on one
observation

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

φ(net100)

φ(z) = 1
1+ e− z

φ '(z) = dφ(z)
dz

= φ(z)(1−φ(z))

Single Layer

o98 w98,100
o100net100

w99,100

E = 1
2
(y − o100)

2

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

φ(net100)

o99

Error on one
observation

Single Layer

E = 1
2
(y − o100)

2

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

−(y − o100)

dE
do100

= − 1
2
2(y − o100)

Error on one
observation

Single Layer

E = 1
2
(y − o100)

2

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

−(y − o100)

Error on one
observation

Single Layer

o98 w98,100
o100net100

w99,100

E = 1
2
(y − o100)

2

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

φ(net100)

−(y − o100)

o99

Error on one
observation

Single Layer

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

−(y − o100)

o100φ(net100)

do100

d net100

= dφ(net100)
d net100

= φ '(net100) = φ(net100)(1−φ(net100)) = o100 (1− o100)

Single Layer

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

−(y − o100)

o100φ(net100)

o100 (1− o100)

do100

d net100

= dφ(net100)
d net100

= φ '(net100) = φ(net100)(1−φ(net100)) = o100 (1− o100)

Single Layer

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

−(y − o100) o100 (1− o100)

Single Layer
o99

o98 w98,100
o100net100

w99,100

E = 1
2
(y − o100)

2

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

φ(net100)

−(y − o100) o100 (1− o100)

Error on one
observation

o98 w98,100 net100

w99,100

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

−(y − o100) o100 (1− o100)

d net100

dw99,100
=
d (w99,100o99 +w98,100o98 +w97,100o97 + ...)

dw99,100
= o99

o99

o99

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

−(y − o100) o100 (1− o100)

o99

= (−(y − o100))o100 (1− o100) o99

dE
dw99,100

= dE
do100

do100

d net100

d net100

dw99,100

δ100

We will need this later – it depends only on node 100

Backpropagation

• Go one layer deeper.

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100

E = 1
2
(y − o100)

2

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98

o98
w98,100 net100

∑

net98

w87,98
o87

φ(net98)

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98

d net98

dw87,98
=
d (w87,98o87 +w86,98o86 +w85,98o85 + ...)

dw87,98
= o87

net98

w87,98
o87

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98 o87

o100
o98
w98,100 net100

∑

net98

w87,98
o87

φ(net98)

E = 1
2
(y − o100)

2

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98

o98
net98 φ(net98)

o87

do98

d net98

= dφ(net98)
d net98

= φ '(net98) = φ(net98)(1−φ(net98)) = o98 (1− o98)

o100

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98

o98
w98,100 net100

∑

net98

w87,98
o87

φ(net98)

o87

o98 (1− o98)

E = 1
2
(y − o100)

2

o100

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98

o98
w98,100 net100

∑

o87

o98 (1− o98)

E = 1
2
(y − o100)

2

o100

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98

o98
w98,100 net100

∑

o87

o98 (1− o98)

dE
do98

= dE
dnet100

dnet100
do98

δ100
E = 1

2
(y − o100)

2

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98 o87

o98 (1− o98)

dE
do98

= dE
dnet100

dnet100
do98

dnet100
do98

=
d(w99,100o99 +w98,100o98 + ...)

do98
= w98,100

δ100

o100

dE
dw87,98

= dE
do98

do98

d net98

d net98

dw87,98

o98
w98,100 net100

∑

net98

w87,98
o87

φ(net98)

o87

o98 (1− o98)δ100w98,100

E = 1
2
(y − o100)

2

o100

dE
dw87,98

= δ100w98,100o98 (1− o98)o87

o98
w98,100 net100

∑

net98

w87,98
o87

φ(net98)

E = 1
2
(y − o100)

2

Backpropagation

• Go even one layer deeper.
• Third time is a charm.

o100

E = 1
2
(y − o100)

2

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

∑

∑

∑

90’s

o87

∑

net87

w72,87
o72

φ(net87)

o86
80’s

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

net87

w72,87
o72

o72

o100

E = 1
2
(y − o100)

2

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

∑

∑

∑

90’s

o87

∑

net87

w72,87
o72

φ(net87)

o86
80’s

o72

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

o87net87 φ(net87)

o72

do87

d net87

= dφ(net87)
d net87

= φ '(net87) = φ(net87)(1−φ(net87)) = o87 (1− o87)

o100

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

∑

∑

∑

90’s

o87

∑

net87

w72,87
o72

φ(net87)

o86
80’s

o72

o87 (1− o87) E = 1
2
(y − o100)

2

o100

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

∑

∑

∑

90’s

o87

o72

o87 (1− o87) E = 1
2
(y − o100)

2

o100

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

∑

∑

∑

90’s

o87

o72

o87 (1− o87) E = 1
2
(y − o100)

2

o100

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

∑

∑

∑

o87

o72

o87 (1− o87)

dE
do87

= dE
d net99

d net99

do87
+ dE
d net98

d net98

do87
+ dE
d net97

d net97

do87
+ ...

99

98

97

E = 1
2
(y − o100)

2

o100

dE
dw72,87

= dE
do87

do87

d net87

d net87

dw72,87

∑

∑

∑

o87

o72

o87 (1− o87)

99

98

97

E = 1
2
(y − o100)

2

dE
do87

= dE
d net99

d net99

do87
+ dE
d net98

d net98

do87
+ dE
d net97

d net97

do87
+ ...

= δ 99w87,99 +δ 98w87,98 +δ 97w87,97 + ...= δ 87w87,ℓ

ℓ∈L
∑ =

dE
dwa,b

= dE
dob

dob
d netb

d netb
dwa,b

= dE
dob

dob
d netb

oa

netb

wa,b

oa

dE
dwa,b

= dE
dob

dob
d netb

d netb
dwa,b

= dE
dob

ob (1− ob)oa

obnetb φ(netb)

dE
dwa,b

= dE
dob

dob
d netb

d netb
dwa,b

= δ ℓwb,ℓ

ℓ∈L
∑⎛⎝⎜

⎞
⎠⎟
ob (1− ob)oa

∑

∑

∑

’s

ob

 ℓ

The are downstream. We must have already
computed all the ‘s ahead of us to compute this. δ ℓ

 ℓ 's

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

Backpropagation
• Now we know how to compute for all

• Let’s do gradient descent.

• α is between 0 and 1. Called the “learning rate”.

• Now we know how to propagate errors back through the network.

• Remember how to go forward?

dE
dwa,b

wa,b's.

wa,b←⎯⎯ wa,b −α
dE
dwa,b

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

o100
∑

∑

∑

∑

∑

∑

∑

∑

∑

o1

Backpropagation

• Repeat going backwards (to calculate the gradients), adjusting the
weights, and going forwards (to calculate the errors) over and over
in order to learn.

Cross-Entropy is Logistic Loss
Cynthia Rudin

Duke Machine Learning

Convergence Problems in Neural Networks
Cynthia Rudin

Duke Machine Learning

Convergence Problems

• NN’s have problems with convergence due to
vanishing/exploding gradients and saddle points.

• Vanishing gradients come from the flat part of the
activation function.

• Exploding gradients happen when we realize that
our gradient has vanished and so increase the
learning rate and take huge step sizes to
compensate (but then mess everything up!)

• Stick to 10-5 to 10-3 learning rate perhaps?

dE
dwa,b

= dE
dob

dob
d netb

d netb
dwa,b

= δ ℓwb,ℓ

ℓ∈L
∑⎛⎝⎜

⎞
⎠⎟
ob (1− ob)oa

∑

∑

∑

ob

’s ℓ

Convergence Problems
• With the sigmoid activation, the derivatives of the input

weights for each node are always either all positive or all
negative. This is a limitation.

positive, since all outputs of
sigmoid are between 0 and 1.

does not
depend on a

netb

wa,b
oa

 wb,ℓ

Convergence Problems

σ (x) = 1
1+ e− x

Sigmoid

• Bottom line – most people do not use sigmoid-like activation
functions, even though this is more biologically relevant.

1

0

Convergence Problems

σ (x) = 1
1+ e− x

tanh(x)

Sigmoid

Hyperbolic tangent

• Bottom line – most people do not use sigmoid-like activation
functions, even though this is more biologically relevant.

1

-1

Convergence Problems

Rectified Linear Unit (ReLU)

max(0, x)

Leaky ReLU

max(0.1x, x)

Removes vanishing gradients
when nodes are “activated,”
meaning x>0.

Removes vanishing gradients, but
prefers that non-activated nodes be as
“non-activated” as possible
(doesn’t make much sense)

(Krizhevsky et al., 2012) (Mass et al., 2013; He et al., 2015)

Convergence Problems

Rudin and Carlson. The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at
Data Analysis. INFORMS TutORial, 2019.

Convergence Problems

Adding momentum to gradients
- adjust gradient to make current gradient similar to previous gradients

• Initialization of the networks weights is really important. I have no
idea how to do it.

Convergence Problems

Loss

Time

Due to bad initialization?

• Batch Normalization (Ioffe and Szegedy, 2015) is a step that:
– Normalizes the outputs oi of several nodes (a “mini-batch”) in the same layer.

(As usual, subtract the mean of the oi’s divide by their standard deviation).
– Includes the mean and standard deviation as separate parameters to be

learned.
– Usually the normalization is before the nonlinear activation function.
– This adds regularization and helps to prevent flat gradients in the network but

sometimes it messes things up.

Convergence Problems

Early stopping via validation set

Training Loss Keeps Improving

Best Validation (and Generalization)

Rudin and Carlson. The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at
Data Analysis. INFORMS TutORial, 2019.

Convergence Problems Summary
• There are lots of convergence problems
• vanishing gradients
– Adjust the learning rate
– Change the activation function (tanh, ReLU, leaky ReLU, etc.)
– Use Batch Norm
– Add Momentum

• bad minima
– Initialization (somehow…)

• overfitting
– Stop early using validation set

Convergence Problems Summary

When training a NN, you “become” part of the algorithm
because you control its convergence so heavily.

Convolutional neural networks and the
intuition behind their architectures

Cynthia Rudin
Duke Machine Learning

Convolutional NN’s
• Convolve means to slide the filter over all spatial

locations and sum up the filter weights times the inputs.

Convolutional NN’s
• Convolve means to slide the filter over all spatial

locations and sum up the filter weights times the inputs.

• An edge filter will detect edges. -1 -1 1 1
-1 -1 1 1
-1 -1 1 1

Convolutional NN’s

• Stride of 5 means we step by 5’s
when we convolve.

The following layer is smaller by a factor of 5.

• Convolve means to slide the filter over all spatial
locations and sum up the filter weights times the input.

The thickness is the number of filters

Convolutional NN’s

Image from LeCun et al 1998, reproduced in color from Li, Johnson, Yeung, 2017

Convolutional NN’s

• Max pooling means to convolve with a max function.
• Intuitively keeps track of whether an earlier filter has detected something.

1 2 2 4
2 5 1 8
3 0 4 4
6 1 7 6

2 x 2 max pool filter and stride 2

5 8
6 7

Zero-padding

• Add zeros around the image so that the dimensions work out.

• AlexNet (Krizhevsky et al. 2012)

Probabilities

AlexNet won the ImageNet Large Scale Visual Recognition Challenge in 2012. It achieved a
top-5 error of 15.3%, more than 10.8 percentage points ahead of the runner up.

Image source: unknown

• AlexNet (Krizhevsky et al. 2012)

Co
nv

ol
ut

io
n 1

Ba
tch

 N
or

m
ali

za
tio

n
M

ax
 P

oo
lin

g

GPU 1

GPU 2

Co
nv

ol
ut

io
n 2

Ba
tch

 N
or

m
ali

za
tio

n
M

ax
 P

oo
lin

g

Co
nv

ol
ut

io
n 3

Co
nv

ol
ut

io
n 4

Co
nv

ol
ut

io
n 5

M
ax

 P
oo

lin
g

Fu
lly

 C
on

ne
cte

d
Fu

lly
 C

on
ne

cte
d

*ReLU was applied to every output of convolutional and fully connected layers

Fu
lly

 C
on

ne
cte

d

softmax over
1000 classes

Layer 1 AlexNet filters (Krizhevsky et al. 2012)

GPU 1

GPU 2

Source: Zeiler and Fergus, 2013

from layer 1

from layer 2
from layer 5

Convolutional NN’s

Image from LeCun et al 1998, reproduced also from Li, Johnson, Yeung, 2017

“Features?”

𝜙(𝑥)

Autoencoders

Encoder

x
z x’

Decoder

Bottleneck

“Latent vectors”

There has been much work since AlexNet.
Next: Improving performance of CNNs for computer vision.

Improving Performance of Neural Networks
Cynthia Rudin

Duke Machine Learning

Data Augmentation

Chinese Lantern Festival, Cary NC, 2017

Data Augmentation
- include artificial data, such as horizontal flips, rotations,
resized, cropped training images, change contrast and
brightness, distortion, etc.

Chinese Lantern Festival, Cary NC, 2017

Data Augmentation
- include artificial data, such as horizontal flips, rotations,
resized, cropped training images, change contrast and
brightness, distortion, etc.

Chinese Lantern Festival, Cary NC, 2017

Residual Nets (He et al., 2016)

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

weight layer

weight layer
ReLU

x

ReLU
H(x)

any two
stacked
layers

We hope to fit H(x).

Slides recreated from Kaiming He’s tutorial

Residual Nets

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

weight layer

weight layer
ReLU

x

ReLU
H(x)=F(x)+x

any two
stacked
layers

We hope to fit F(x).
We are now learning a
residual of identity.

+

identity

We hope to fit H(x).

Residual Nets

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

H(x)=F(x)+x

• By adding x, the derivative of the error with respect to x
increases by 1. Thus, less vanishing derivatives.

• Allowed networks to go much deeper than before.
“From 10 to 1000 layers”

Residual Nets

He et al. Deep Residual Learning for Image Recognition, arXiV2015

Dropout (Srivastava et al., JMLR 2014)
• Forces signal to be “carried” throughout the network

• In each forward pass, for each neuron, with probability p, set
all of its output weights to 0.

• p is a hyperparameter, usually p = 0.5.

• During testing, use all nodes.

Image from Srivastava et al JMLR 2014)

Dropout (Srivastava et al., JMLR 2014)

Image from Srivastava et al JMLR 2014)

• As if we are training exponentially many “sub” models.
Similar idea to bagging (averaging many separately
trained models together).

• Creates a redundant encoding.

Dropout (Srivastava et al., JMLR 2014)
• As if we are training exponentially many “sub” models.

Similar idea to bagging (averaging many separately
trained models together).

• Creates a redundant encoding.

has hat with a ball on top

juggles

oversized shoes

lots of makeup

bright colors

x

x

clown score

“Transfer” Learning

• Using information about the solution to one problem to help
solve another.

• Use the early layers from a pretrained model in another network.
Retrain only the weights from the last few layers.

VGG

A Big Bag of Tricks

• Dropout
• Batch Normalization
• Data Augmentation
• Residual Networks
• Activation Functions (ReLU, Leaky ReLU)
• Initialization
• Transfer Learning
• :

Other ways to improve neural networks

• Change the dataset. Use fine-grained labels

• Understand the model so you know what’s wrong with it.

Is there a fence in this picture?

Warnings about Neural Networks
for Computer Vision

Cynthia Rudin
Duke Machine Learning

CNNs can use the wrong information
(confounding)

CNNs can use the wrong information
(confounding)

Source: Wikimedia commons, West German soldiers in 1983

Ok, well, that was a bad dataset…

CNNs can use the wrong information
(confounding)

Solution to this? Interpretability? Heavy testing? Massive data augmentation?

Deep fakes are dangerous

Deep fakes are dangerous

Deep fakes are dangerous

GANS – Generative Adversarial Networks

If the generator creates images that the discriminator can’t tell apart, it’s good.
(The “arms race” is between the generators and the discriminators.)

• GANS are actor-critic models
• They produce realistic-looking images/data
• Used commonly for AI artwork / deep fakes

random numbers
N(0,1)

Generator
network

Real world

Generated images Real images
Discriminator

network

(Goodfellow et al 2014)

GANS – Generative Adversarial Networks

From Goodfellow et al 2014:

Discriminator maximizes
likelihood of real data

Discriminator minimizes
likelihood of generated data.

Generator maximizes
likelihood of generated data

GANS – Generative Adversarial Networks

From Goodfellow et al 2014:

Generator aims to make discriminator not work well.

Discriminator maximizes
likelihood of real data

Discriminator minimizes
likelihood of generated data.

Generator maximizes
likelihood of generated data

GANS – Generative Adversarial Networks

From Goodfellow et al 2014:

Gradient ascent steps on discriminator
Gradient descent steps on generator

max
!

GANs are totally useful for artwork!

Figure adapted from L. Gatys et al. "A Neural Algorithm of Artistic Style" (2015) by Google AI Blog

GANs are totally useful for artwork!

https://arxiv.org/abs/1508.06576

Menon et al. PULSE: Self-Supervised Photo
Upsampling via Latent Space Exploration of
Generative Models, CVPR 2020

Tero Karras et al. A style-based generator architecture
for generative adversarial networks. CVPR, 2019.

A twitter user’s result from the PULSE algorithm, which uses StyleGAN

GANs are totally useful for artwork!

Menon et al. PULSE: Self-Supervised Photo
Upsampling via Latent Space Exploration of
Generative Models, CVPR 2020

Tero Karras et al. A style-based generator architecture
for generative adversarial networks. CVPR, 2019.

GANs are totally useful for artwork!

PULSE shows us that there is often no
hope of identifying someone in a grainy
security video.

There could be many high res images
corresponding to one low res image.

Neural networks can be brittle

• Adversarial attacks show that changing a single
pixel in an image can change the predicted class
in modern ML systems.

• It is easy to fool a computer vision system.

Eykholt et al., 2018 Robust Physical-World Attacks on Deep Learning Models,

=?
Need better data augmentation…

The model will not always be used in the
way it is intended

So…

• Much care is needed in many applications of neural networks.
– medical image processing
– automated driving systems
– facial recognition
– deep fakes

• Neural networks are great for artwork.

(confounding)
(not robust, not perfect)

(not perfect, watch for bias)
(easily fraudulent)

