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• 1011 neurons in a brain, 1014 synapses (connections). 

• Signals are electrical potential spikes that travel 
through the network.

Neurons

(Credit: Adapted from Russell and Norvig)
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This neuron computes 

the function “and.”

There are “or” and “not” neurons too.
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• In a brain, the synapses strengthen and weaken in order to learn.
• Say the same thing happens here.
• How should we set the weights in order to learn (reduce the error)?
• Minimize E with respect to the weights.

Error on one 
observation



Backpropagation

• An algorithm that trains the weights of a neural network

• Requires us to propagate information backwards through the network, then 
forwards, then backwards, then forwards, etc.

• Propagate backwards = chain rule from calculus.
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Backpropagation

• An algorithm that trains the weights of a neural network

• Requires us to propagate information backwards through the network, then 
forwards, then backwards, then forwards, etc.

• Propagate backwards = chain rule from calculus.
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Backpropagation

• Go one layer deeper.
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Backpropagation

• Go even one layer deeper.
• Third time is a charm.
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Backpropagation
• Now we know how to compute              for all

• Let’s do gradient descent. 

• α is between 0 and 1. Called the “learning rate”.

• Now we know how to propagate errors back through the network.

• Remember how to go forward?
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Backpropagation

• Repeat going backwards (to calculate the gradients), adjusting the 
weights, and going forwards (to calculate the errors) over and over 
in order to learn.
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Convergence Problems

• NN’s have problems with convergence due to 
vanishing/exploding gradients and saddle points.

• Vanishing gradients come from the flat part of the 
activation function.

• Exploding gradients happen when we realize that 
our gradient has vanished and so increase the 
learning rate and take huge step sizes to 
compensate (but then mess everything up!)

• Stick to 10-5 to 10-3 learning rate perhaps?
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Convergence Problems
• With the sigmoid activation, the derivatives of the input 
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Convergence Problems

σ (x) = 1
1+ e− x

Sigmoid

• Bottom line – most people do not use sigmoid-like activation 
functions, even though this is more biologically relevant.

1

0



Convergence Problems

σ (x) = 1
1+ e− x

tanh(x)

Sigmoid

Hyperbolic tangent

• Bottom line – most people do not use sigmoid-like activation 
functions, even though this is more biologically relevant.

1

-1



Convergence Problems

Rectified Linear Unit (ReLU)

max(0, x)

Leaky ReLU

max(0.1x, x)

Removes vanishing gradients 
when nodes are “activated,”
meaning x>0.

Removes vanishing gradients, but 
prefers that non-activated nodes be as 
“non-activated” as possible
(doesn’t make much sense)

(Krizhevsky et al., 2012) (Mass et al., 2013; He et al., 2015)



Convergence Problems

Rudin and Carlson. The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at 
Data Analysis. INFORMS TutORial, 2019.



Convergence Problems

Adding momentum to gradients
- adjust gradient to make current gradient similar to previous gradients



• Initialization of the networks weights is really important. I have no 
idea how to do it.

Convergence Problems

Loss

Time

Due to bad initialization?



• Batch Normalization (Ioffe and Szegedy, 2015) is a step that:
– Normalizes the outputs oi of several nodes (a “mini-batch”) in the same layer. 

(As usual, subtract the mean of the oi’s divide by their standard deviation).
– Includes the mean and standard deviation as separate parameters to be 

learned.
– Usually the normalization is before the nonlinear activation function.
– This adds regularization and helps to prevent flat gradients in the network but 

sometimes it messes things up.

Convergence Problems



Early stopping via validation set

Training Loss Keeps Improving

Best Validation (and Generalization) 

Rudin and Carlson. The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at 
Data Analysis. INFORMS TutORial, 2019.



Convergence Problems Summary
• There are lots of convergence problems
• vanishing gradients
– Adjust the learning rate
– Change the activation function (tanh, ReLU, leaky ReLU, etc.)
– Use Batch Norm
– Add Momentum

• bad minima
– Initialization (somehow…)

• overfitting
– Stop early using validation set



Convergence Problems Summary

When training a NN, you “become” part of the algorithm 
because you control its convergence so heavily.
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Convolutional NN’s
• Convolve means to slide the filter over all spatial 

locations and sum up the filter weights times the inputs.



Convolutional NN’s
• Convolve means to slide the filter over all spatial 

locations and sum up the filter weights times the inputs.

• An edge filter will detect edges. -1 -1  1  1
-1 -1  1  1
-1 -1  1  1



Convolutional NN’s

• Stride of 5 means we step by 5’s 
when we convolve.

The following layer is smaller by a factor of 5.

• Convolve means to slide the filter over all spatial 
locations and sum up the filter weights times the input.

The thickness is the number of filters



Convolutional NN’s

Image from LeCun et al 1998, reproduced in color from Li, Johnson, Yeung, 2017



Convolutional NN’s

• Max pooling means to convolve with a max function.
• Intuitively keeps track of whether an earlier filter has detected something.

1 2    2    4 
2 5    1    8 
3 0    4    4
6    1    7    6

2 x 2 max pool filter and stride 2 

5 8
6   7



Zero-padding

• Add zeros around the image so that the dimensions work out. 



• AlexNet (Krizhevsky et al. 2012) 

Probabilities

AlexNet won the ImageNet Large Scale Visual Recognition Challenge in 2012. It achieved a 
top-5 error of 15.3%, more than 10.8 percentage points ahead of the runner up.

Image source: unknown



• AlexNet (Krizhevsky et al. 2012) 
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Layer 1 AlexNet filters (Krizhevsky et al. 2012) 

GPU 1

GPU 2



Source: Zeiler and Fergus, 2013

from layer 1

from layer 2
from layer 5



Convolutional NN’s

Image from LeCun et al 1998, reproduced also from Li, Johnson, Yeung, 2017

“Features?”

𝜙(𝑥)



Autoencoders

Encoder

x
z x’

Decoder

Bottleneck

“Latent vectors”



There has been much work since AlexNet.
Next: Improving performance of CNNs for computer vision.
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Data Augmentation

Chinese Lantern Festival, Cary NC, 2017



Data Augmentation
- include artificial data, such as horizontal flips, rotations, 
resized, cropped training images, change contrast and 
brightness, distortion, etc. 

Chinese Lantern Festival, Cary NC, 2017



Data Augmentation
- include artificial data, such as horizontal flips, rotations, 
resized, cropped training images, change contrast and 
brightness, distortion, etc. 

Chinese Lantern Festival, Cary NC, 2017



Residual Nets (He et al., 2016)

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

weight layer

weight layer
ReLU

x

ReLU
H(x)

any two 
stacked 
layers

We hope to fit H(x).

Slides recreated from Kaiming He’s tutorial



Residual Nets

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

weight layer

weight layer
ReLU

x

ReLU
H(x)=F(x)+x

any two 
stacked 
layers

We hope to fit F(x). 
We are now learning a 
residual of identity.

+

identity

We hope to fit H(x).



Residual Nets

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

H(x)=F(x)+x

• By adding x, the derivative of the error with respect to x 
increases by 1. Thus, less vanishing derivatives.

• Allowed networks to go much deeper than before. 
“From 10 to 1000 layers”



Residual Nets

He et al. Deep Residual Learning for Image Recognition, arXiV2015 



Dropout (Srivastava et al., JMLR 2014)
• Forces signal to be “carried” throughout the network

• In each forward pass, for each neuron, with probability p, set 
all of its output weights to 0. 

• p is a hyperparameter, usually p = 0.5.

• During testing, use all nodes.

Image from Srivastava et al JMLR 2014)



Dropout (Srivastava et al., JMLR 2014) 

Image from Srivastava et al JMLR 2014)

• As if we are training exponentially many “sub” models. 
Similar idea to bagging (averaging many separately 
trained models together).

• Creates a redundant encoding.



Dropout (Srivastava et al., JMLR 2014)
• As if we are training exponentially many “sub” models. 

Similar idea to bagging (averaging many separately 
trained models together).

• Creates a redundant encoding.

has hat with a ball on top

juggles

oversized shoes

lots of makeup

bright colors

x

x

clown score



“Transfer” Learning

• Using information about the solution to one problem to help 
solve another.

• Use the early layers from a pretrained model in another network. 
Retrain only the weights from the last few layers.

VGG



A Big Bag of Tricks

• Dropout
• Batch Normalization
• Data Augmentation
• Residual Networks
• Activation Functions (ReLU, Leaky ReLU)
• Initialization
• Transfer Learning
• :



Other ways to improve neural networks

• Change the dataset. Use fine-grained labels

• Understand the model so you know what’s wrong with it. 

Is there a fence in this picture?





Warnings about Neural Networks
for Computer Vision

Cynthia Rudin
Duke Machine Learning



CNNs can use the wrong information
(confounding)



CNNs can use the wrong information
(confounding)

Source: Wikimedia commons, West German soldiers in 1983

Ok, well, that was a bad dataset…



CNNs can use the wrong information
(confounding)

Solution to this? Interpretability? Heavy testing? Massive data augmentation?



Deep fakes are dangerous



Deep fakes are dangerous



Deep fakes are dangerous



GANS – Generative Adversarial Networks

If the generator creates images that the discriminator can’t tell apart, it’s good.
(The “arms race” is between the generators and the discriminators.)

• GANS are actor-critic models
• They produce realistic-looking images/data
• Used commonly for AI artwork / deep fakes

random numbers
N(0,1)

Generator
network

Real world

Generated images Real images
Discriminator

network

(Goodfellow et al 2014)



GANS – Generative Adversarial Networks

From Goodfellow et al 2014:

Discriminator maximizes
likelihood of real data

Discriminator minimizes
likelihood of generated data.

Generator maximizes
likelihood of generated data



GANS – Generative Adversarial Networks

From Goodfellow et al 2014:

Generator aims to make discriminator not work well.

Discriminator maximizes
likelihood of real data

Discriminator minimizes
likelihood of generated data.

Generator maximizes
likelihood of generated data



GANS – Generative Adversarial Networks

From Goodfellow et al 2014:

Gradient ascent steps on discriminator
Gradient descent steps on generator

max
!



GANs are totally useful for artwork!



Figure adapted from L. Gatys et al. "A Neural Algorithm of Artistic Style" (2015) by Google AI Blog

GANs are totally useful for artwork!

https://arxiv.org/abs/1508.06576


Menon et al. PULSE: Self-Supervised Photo 
Upsampling via Latent Space Exploration of 
Generative Models, CVPR 2020

Tero Karras et al. A style-based generator architecture 
for generative adversarial networks. CVPR, 2019.

A twitter user’s result from the PULSE algorithm, which uses StyleGAN

GANs are totally useful for artwork!



Menon et al. PULSE: Self-Supervised Photo 
Upsampling via Latent Space Exploration of 
Generative Models, CVPR 2020

Tero Karras et al. A style-based generator architecture 
for generative adversarial networks. CVPR, 2019.

GANs are totally useful for artwork!

PULSE shows us that there is often no 
hope of identifying someone in a grainy 
security video. 

There could be many high res images 
corresponding to one low res image.



Neural networks can be brittle

• Adversarial attacks show that changing a single 
pixel in an image can change the predicted class 
in modern ML systems.

• It is easy to fool a computer vision system.

Eykholt et al., 2018 Robust Physical-World Attacks on Deep Learning Models,

=?
Need better data augmentation…



The model will not always be used in the 
way it is intended



So…

• Much care is needed in many applications of neural networks.
– medical image processing
– automated driving systems 
– facial recognition
– deep fakes

• Neural networks are great for artwork.

(confounding)
(not robust, not perfect)

(not perfect, watch for bias)
(easily fraudulent)


