
Perceptron and Winnow

Cynthia Rudin

1 Perceptron

The Perceptron algorithm (Block, 1962; Novikoff, 1964) is quite an old algorithm.
There are three reasons to teach it to you: (1) it works really well, and people still
use it (2) it’s really fun to study, and (3) you would be an embarrassment to the
machine learning world if you didn’t know it, and I don’t plan to let that happen!

The Perceptron and Winnow algorithms are online learning algorithms, which
means they receive observations one at a time, and adjust the decision boundary
as they see each point, if desired. For now, let us assume that the data are
separable (which means there’s a separating hyperplane).

The basic idea of the Perceptron and Winnow algorithms is very simple: at
each iteration, if the observation given to the algorithm is correctly classified, do
nothing. If the observation is incorrectly classified, move the decision boundary
towards that point.

Notation recap: Let {(xi, yi)}ni=1, where xi ∈ Rp, yi ∈ {+1,−1}, be our dataset
for binary classification. Since we are doing online learning, we see only one data
point at a time. We might cycle around the points more than once. The order
in which the points are seen will affect how fast we converge in practice.

Our linear model can be written as fw,b (x) = w · x + b, where b ∈ R is the
intercept term. We can always augment the data by appending 1 at the end of
the feature vector: !xi ← [xi, 1]. If we write !w = [w, b], the linear model can
be written as f!w(!x) = !w · !x. Thus without loss of generality, we will drop the
intercept term b and consider only linear models fw(x) = w · x. As a binary
classification task, the prediction of the model is ŷ = sign(fw(x)). Recall that
the margins are “signed distances” from data points to the decision hyperplane.
Using the linear model fw(x) = w · x, the margin for point (xi, yi) is yiw · xi.

1

Perceptron Algorithm

The Perceptron algorithm iteratively updates the weight as follows:

• Initialize w ← 0 (all-zero vector).

• Repeat until no points are wrongly classified:

– if xi is correctly classified, i.e., yiw · xi > 0, then do nothing;

– if xi is wrongly classified, i.e., yiw · xi < 0, then move w towards xi:
w ← w + yixi;

Why is this step helpful? Let’s look at how the margin of point i changes when
we make this adjustment. As you will see, it improves.

Figure 1: The decision boundary moves closer to the (misclassified) point i at iteration t + 1.
The margin of i improves during this process.

Let us say that at iteration t, the Perceptron finds that the point which it is
given (point i) is misclassified. In that case, it will update the weight vector as
follows:

wt+1 = wt + yixi. (1)

2

Here is what happens to the margin of point i after this update:

(margin of i at t+ 1) = yi(wt+1xi) = yi ((wt + yixi) · xi)

= yi(wt · xi) + yi(yixi · xi) (Note: yi · yi = 1)

= yi(wt · xi) + ‖xi‖2

= (margin of i at t) + (positive),

which means that the margin at t+1 is a strict improvement over the margin at
time t. The margin at t was negative (because point i was misclassified), so it
would be good if this improvement made the margin positive. If it did not, then
perhaps the margin will become positive at the next time we see the same point.

Perceptron Convergence Bound

We will show that the Perceptron algorithm converges to a separable solution
at a fast rate. The convergence rate depends on “how separable” the dataset is,
which we now define.

Assume {xi, yi} are separable by linear functions, so that there exists a separator
w such that ‖w‖2 = 1 and yi(w · xi) ≥ δ for all i. (That is, w is a “good”
separator.)

Figure 2: A good separator. We assume such a separator exists for this proof.

Assume the data are normalized, so maxi ‖xi‖2 = 1 (if the data are not normal-
ized, you can normalize them before running Perceptron).

3

Theorem. The Perceptron algorithm makes at most 1
δ2 mistakes.

Proof. Define w∗ to be a “good separator,” so that yi(w
∗ · xi) ≥ δ for all i and

‖w∗‖2 = 1.

An important note on indexing in what follows is that we only really want to
count iterations for which a mistake is made. So t will be an index just on
iterations for which there is a mistake. (If at any point, Perceptron encoun-
ters a point that is already correctly classified, nothing happens anyway, so this
is in some sense equivalent to assuming that at each iteration a mistake is made.)

After T mistakes are made, we will show that w(T+1) is “close to” w∗. In par-
ticular, we will show that:

δ
√
T

1©
≤ w∗ ·wT+1

‖w∗‖2‖wT+1‖2

2©
≤ 1,

where we need to show 1©, and 2© is true because the dot product between two
normalized vectors (the cosine) is always ≤ 1. Once we have shown 1©, the rest
is easy, because we will have δ

√
T ≤ 1, thus

√
T ≤ 1/δ and thus T ≤ 1/δ2. This

means that we can never have an iteration T more than 1/δ2. So, there can be
no more than 1/δ2 mistakes, which is what we wanted to prove. So let’s do it!
We just need to show 1©.

Step 1: Let w1 = 0 be the initialization. Let i be the point on which the t-th
mistake of the Perceptron algorithm is made. We have:

w∗ ·wt+1 −w∗ ·wt = w∗ · (wt+1 −wt)

= w∗ · yixi from the update rule (1)

≥ δ from the assumption that w∗ is a good separator.

Now let us consider iteration T + 1. Then we have

w∗ ·wT+1 = (w∗ ·wT+1)− (w∗ ·w1) (since w1 = 0)

=
T"

t=1

[(w∗ ·wt+1)− (w∗ ·wt)] ≥ T δ (from the step just above).

4

Step 2: For iteration t, let us say that point it is chosen. Then,

‖wt+1‖22 = ‖wt + yitxit‖22
= ‖wt‖22 + 2yit(wt · xit) + y2it‖xit‖22
≤ ‖wt‖22 + 1,

where the last inequality uses that point it was misclassified at iteration t, so
margin yit(wt · xit) ≤ 0. The last inequality also uses that y2it = 1, and also
‖xit‖22 ≤ 1 because of the normalization we did to the data. Thus, we have
shown that

‖wt+1‖ ≤ ‖wt‖22 + 1.

Summing this from 1 to T gives

‖wT+1‖22 ≤ T, or ‖wT+1‖2 ≤
√
T .

Step 3: We combine Steps 1 and 2 to get

w∗ ·wT+1

‖w∗‖2‖wT+1‖2
≥ T δ√

T
=

√
T δ,

which is equation 1© that we were trying to prove. As we showed at the beginning
of the proof, combining this with the fact that the left side is ≤ 1, this means

T ≤ 1

δ2
.

We are done with the proof.

So, we have shown that when the data are seen one at a time, and there is a
separable classifier with margin δ, Perceptron cannot make too many mistakes
before it finds a separating hyperplane. There’s a few things that are important
in practice though. The order in which the points are viewed determines how
fast the Perceptron can get to a separating hyperplane – if the Perceptron sees
the points closest to the final decision boundary first, this may make it converge
more quickly. Also, the bound does not consider the number of correctly classified
points it will see before it finds that hyperplane. If the Perceptron sees quite a
lot of correctly classified points before it sees the few points it needs to finalize its
decision boundary, it can take a longer time in practice. The theory above just
provides a bound on the total number of mistakes Perceptron will make before it
finds a separating hyperplane, so it doesn’t consider these extra practical aspects
of convergence. It’s a very nice guarantee though!

5

2 Winnow

Winnow (Littlestone and Warmuth, 1994) also learns a linear classifier. The
difference is that Winnow uses an exponential weight update. Start with dataset
{(xi, yi)}ni=1. Again we will be learning linear weights w so that we will classify
x according to the sign of w · x, where w ∈ Rp.

The high level idea of Winnow is that we will reward feature j’s weight wj if fea-
ture j would correctly classify data point i if it is used on its own as a classifier.
In other words, if for point xi, we find that xij agrees with the label yi, then we
will increase wj. The weights are renormalized after each update, so that they
are a discrete probability distribution, with wj ≥ 0 for all j, and

#
iwj = 1.

Specifically, Winnow executes the following procedure: Let wt be the weight
vector at t:

• Input: learning rate η.

• Initialize w1 ←
$
1
p ,

1
p , · · · ,

1
p

%
.

• For t = 1, 2, · · · , do

– Try to locate a misclassified data point (xi, yi), i.e., yiw · xi < 0.

– If no such data point exists, terminate and output wt.

– Otherwise, for all j = 1, 2, · · · , p,

wt+1,j = wtj
exp (ηyixij)

Zt
where Zt :=

p"

j′=1

wtj′ exp (ηyixij′) .

Thus, for features j where yi agrees with xij, the weight on feature j increases.
And otherwise, the weight decreases. That is,
If sign(xij) = yi then wt+1,j ∝ wtje

η · (+)ve (reward features that agree with label)
If sign(xij) ∕= yi then wt+1,j ∝ wtje

η · (-)ve (punish features that disagree with
label).

6

Winnow Convergence Bound

Assume we normalized the data, this time so that maxi ‖xi‖∞ = 1.

Similar to the case for Perceptron, we assume that there is a separating hyper-
plane w∗, such that yi(w

∗ · xi) ≥ δ ∀i, and w∗
j ≥ 0 ∀j, and ‖w∗‖1 = 1.

Theorem. The Winnow algorithm makes at most

T ≤ log p

ηδ + log 2
eη+e−η

mistakes.

In particular, if we choose

η =
1

2
log

1 + δ

1− δ
,

(which is the choice that minimizes the bound), then Winnow converges in 2 log p
δ2

steps.

Proof. The proof idea again is to show that wt gets closer to w∗ at each iteration
in terms of KL divergence. In case you are not familiar with KL divergence, it
is a distance measure between probability distributions. Here, since the wt are
normalized and nonnegative, they act as a discrete probability distribution. KL
divergence between distributions a and b is:

KL(a‖b) =
"

j

aj log

&
aj
bj

'
.

Why is it a “distance”? If a = b, then log
(
aj
bj

)
= 0 so KL(a‖b) =0. It turns

out that KL(a‖b) ≥ 0. (However, it is not symmetric, which is interesting.)

Step 1: Let w∗ be our separating hyperplane where ‖w∗‖1 = 1 and w∗
j ≥ 0.

Define

Φt := KL (w∗‖wt) =
"

j

w∗
j log

&
w∗

j

wtj

'
.

7

We have

Φt − Φt+1 =

p"

j=1

w∗
j log

w∗
j

wtj
−

p"

j=1

w∗
j log

w∗
j

wt+1,j

=

p"

j=1

w∗
j log

wt+1,j

wtj

=

p"

j=1

w∗
j log

exp (ηyixij)

Zt
(Winnow update rule)

=

p"

j=1

w∗
jηyixij −

p"

j=1

w∗
j logZt

=

p"

j=1

w∗
jηyixij − logZt (because

"

j

w∗
j = 1)

= ηyiw
∗ · xi − logZt

≥ ηδ − logZt (margins of w∗ are at least δ).

Summing from t = 1 to T gives

Φ1 − ΦT+1 ≥ Tηδ − T logZt,

which, since ΦT+1 ≥ 0 because it is a KL divergence, gives

Tηδ − T logZt ≤ Φ1 − ΦT+1 ≤ Φ1

= KL (w∗‖w1) =

p"

j=1

w∗
j log

w∗
j

w1j

=

p"

j=1

w∗
j log(pw

∗
j) (because w1j = 1/p)

≤
p"

j=1

w∗
j log p (because w∗

j ≤ 1)

≤ log p (because
"

j

w∗
j = 1).

Rearranging terms gives

T ≤ log p

ηδ − logZt
.

8

Step 2: Next we bound Zt.

By convexity of the function e−x, and the fact that 1+A
2 + 1−A

2 = 1 so the length-2
vector [1+A

2 , 1−A
2] is a probability distribution for A ∈ [−1, 1], we can use Jensen’s

inequality in the form eEz ≤ E(ez). (This is the same thing as using an upper
bound for the exponential by a line between the points −1 and 1.) We have, for
any A ∈ [−1, 1]:

exp (ηA) = exp

&
η

&
1 + A

2

'
+ (−η)

&
1− A

2

''

≤
&
1 + A

2

'
eη +

&
1− A

2

'
e−η.

We will use this bound by letting A = yixij. (Its value is between -1 and 1
because ‖xi‖∞ ≤ 1.)

Using the definition of Zt,

Zt =

p"

j=1

wtj exp (ηyixij)

≤
p"

j=1

wtj

&&
1 + yixij

2

'
eη +

&
1− yixij

2

'
e−η

'

=

p"

j=1

wtj

&
1

2
eη +

yixij
2

eη +
1

2
e−η − yixij

2
e−η

'

=
eη + e−η

2

p"

j=1

wtj +
eη − e−η

2

p"

j=1

wtjyixij

=
eη + e−η

2
+

eη − e−η

2
yiwt · xi

≤ eη + e−η

2
,

where the last line uses that (xi, yi) is misclassified at time t: yiwt · xi ≤ 0, and
that eη−e−η

2 is positive for positive η.

9

Step 3: Plugging the above bound on Zt from Step 2 back into Step 1 gives:

T ≤ log p

ηδ + log 2
eη+e−η

, (2)

which is the statement of the theorem.

In order to get the best possible bound (the lowest value of the bound), we would
choose η to minimize the bound. To do this, we would set the derivative of the
bound to 0 with respect to η and set it to 0. We would get the η from the
theorem, namely: η = 1

2 log
1+δ
1−δ . Plugging this into the theorem’s bound, we

would get

T ≤ 2 log p

δ2
.

Showing this requires some work simplifying. In particular, we need to sim-
plify ηδ + log 2

eη+e−η . First, simplifying the denominator in the log, we get

eη + e−η =
*
1+δ
1−δ

+1/2
+

*
1−δ
1+δ

+1/2
and putting both fractions over a common de-

nominator, this term becomes 2
[(1+δ)(1−δ)]1/2

. With this, ηδ + log 2
eη+e−η becomes

δ 12 log
1+δ
1−δ+log 2

2/[(1+δ)(1−δ)]1/2
which simplifies to log

*
1+δ
1−δ

+δ/2
+log[(1+δ)(1−δ)]1/2,

which simplifies to 1
2 log[(1 + δ)(1+δ)(1− δ)(1−δ)]. As it turns out, this quantity is

≥ 1
2δ

2. Thus, the right side of (2) ≤ log p
1
2δ

2 .

We are done with the proof.

After this number of iterations, we will not be able to find any points that are
misclassified, and there will be no more updates, as we have proven.

Moment of Truth

In fact, Perceptron and Winnow represent two different types of machine learn-
ing algorithmic paradigms. Let us compare them:

10

Perceptron Winnow

Bound T ≤ 1/δ2 T ≤ 2 log p
δ2 (log p isn’t very important)

updates additive multiplicative
wt+1 = wt + ... wt+1 = wt × ...

normalization ‖xi‖2 ≤ 1 ∀i ‖xi‖∞ ≤ 1 ∀i
reference normaliz. ‖w∗‖2 = 1 ‖w∗‖1 ≤ 1

Similar algorithms SVM AdaBoost

The log p term isn’t very important because log grows very slowly in p, whereas
1/δ2 grows quickly as δ gets smaller.

The last line in the table is really a revelation: while the online learning algo-
rithms Perceptron and Winnow are so similar as algorithms – and even their
convergence proofs and rates are so similar – they actually represent two dif-
ferent mainstreams of machine learning thought: the SVM-like thought-process
and the boosting thought-process. Everything involving SVM is ℓ2. This is why
SVM analysis can use kernels and Hilbert spaces. For the exponential weights
algorithms (Winnow and AdaBoost), they use multiplicative weights and renor-
malization at each iteration. Their normalization uses the ℓ1 norm for the w
vectors and the dual norm, ℓ∞, for the normalization of the xi’s. The margins of
SVM are ℓ2 margins, while margins in boosting are ℓ1 margins. Perceptron and
Winnow, as we have given them, stop once the data are separable, so they do
not consider margins, but there are variations of them that do consider margins.
So, in many ways, we can think of additive algorithms as in the same family as
SVM, and multiplicative weights algorithms as in the same family as AdaBoost.

Acknowledgements

Thank you to scribe Tianyu Wang.

References

Block, H.-D. (1962). The perceptron: A model for brain functioning. i. Reviews
of Modern Physics, 34(1):123.

Littlestone, N. and Warmuth, M. K. (1994). The weighted majority algorithm.
Information and computation, 108(2):212–261.

11

Novikoff, A. B. (1964). On convergence proofs for perceptrons. Technical report.

12

