
Random Forests / Decision Forests

Duke Course Notes
Cynthia Rudin

The idea of averaging the votes of lots of diverse decision trees is very powerful.
The first work I know of on this is by Tin Kam Ho (1995), though Leo Breiman
(2001)’s work is often cited. It is a simple and elegant idea: if you average many
different yet accurate (perhaps even overfitted) models, it reduces the variance
in predictions.

Random forests are considered black box models because we usually average
together a lot of trees, though one could argue that if you average only a few
shallow trees, this could be interpretable to humans.

An analogy I find helpful is when you might need surgery, you might ask for a
second opinion. If the second doctor had the same training as the first doctor
and has seen exactly the same set of patients, you might be concerned that the
second opinion is not giving you any more information than the first opinion.
But if the second doctor is actually different, you might trust the combination
of them more.

Let us describe the simpler idea of bagging. Random forests forces more diversity
among trees than bagging.

Bagging and boosting are ensemble techniques, where an ensemble of models
votes on the prediction.

Bagging (Boostrap Aggregating)
Draw n points from the training set with replacement, and grow a tree from them.
Repeat several times. If doing regression, average the trees together to get the
final prediction. If doing classification, take the majority vote among the trees
to get the prediction.

Let’s say we created 3 trees with our 3 bootstrap samples using the restaurant
data from the decision tree lecture.

1



Now we have a new observation, where the customer is at the Blue Corn Cafe,
which is $$, the restaurant is full, they were given a 5-15 minute wait time, they
have no plans, and there are other options nearby. Following the three separate
trees gives two “yes” predictions and one “no” prediction. The ensemble predicts
the majority vote, which is “yes” the customer will wait for a table.

Random forests is similar to bagging, except that it encourages more diverse
trees by only allowing each split to use a set of randomly-chosen features.

2



Random Forests (also called Decision Forests)

The number of trees to use in the forest T (which you would choose to be an
odd number so you can calculate a majority), and the parameters m and nmin,
are user-chosen parameters. You might also put a limit on the depth of the trees
if desired. The main difference from bagging is that we are only allowed to split
on m randomly-chosen features for each split.

– For t=1 to T :

— Draw a bootstrap sample of size n from the training data.

— Grow a tree (tree t) using this splitting and stopping procedure:

∗ For this split, choose m features at random (out of p total)

∗ Evaluate the splitting criteria on all of them, and split on the best
feature

∗ If any node we create has less than nmin points, then do not allow
more splitting on it.

– Output all the trees.

To predict on a new observation x, use the majority vote (or average) of the trees
on x.

This procedure forces diversity among the trees, since we are unlikely to be able
to repeatedly construct the same tree. This diversity helps to reduce the variance
in predictions and helps prevent overfitting. For instance, let’s say you created
100 overfitted trees on the same dataset using this procedure and take the ma-
jority vote to make a prediction. You could imagine that if you took 200 trees
instead, the prediction would be about the same as if you took 100 trees. But if
you had only taken 1 overfitted tree, it might not produce the same result as the
ensemble. In that sense, the predictions from the ensemble have lower variance
than for a single tree.

Since the decision trees are deep, we are using a complex class of models with
low bias; deep trees can fit essentially any data set. Thus, the ensemble has both
low bias and low variance. We could contrast that with individual sparse trees,

3



which have high bias and low variance.

What’s nice about random forests is that even if each of the trees overfits the
data, the combination of them is unlikely to. It’s almost as if we’re averaging
out the quirks that each split of the dataset possesses. It’s really a wonderful
idea to combine a lot of overfitted models to create something that is powerful
and doesn’t overfit!

There are some disadvantages of random forests though. 1) They are generally
complicated (black box). 2) Producing them is slow. At each node you need to
evaluate m different possible splits, and you need to repeat the whole process for
T trees. At least you can parallelize it and have multiple processors creating tree.

4


