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The misclassification error doesn’t provide as much detail as we might want
about our classifiers. Receiver Operating Characteristic (ROC) Curves provide
much more detail. Let us build up to their definition. There are two types of
ROC curves. One is a property of a model, the other is a property of an algo-
rithm. Before I explain ROC curves, I need to tell you about typical evaluation
functions for machine learning that trade off false positives with false negatives.

Confusion Matrices
Let’s take a binary classifier, which predicts either ŷ = −1 or ŷ = 1. (Typically
hat notation indicates predictions, such as ŷ.) Its confusion matrix consists of
four numbers in a table. The definition is on the left below, and I put an example
from a dataset on the right.

y = +1 y = −1

ŷ = 1 TP FP (Type I error)

ŷ = −1 FN (Type II error) TN

y = +1 y = −1

ŷ = 1 723 15

ŷ = −1 72 409

Here, TP is the number of true positives (where y = 1 and ŷ = 1) and TN is
the number of true negatives (y = −1 and ŷ = −1). False positives (FPs) occur
when the classifier says that the point is positive but it’s not (y = −1 and ŷ = 1).
False negatives (FNs) occur when the classifier says that the point is negative
but it’s not (y = 1 and ŷ = −1). (The numbers in the table are just counts from
a dataset.) The confusion matrix often has normalized values but I personally
prefer to look at the counts themselves.

Sometimes it is more important to reduce false positives than false negatives or
vice versa, depending on the specifics of the problem. For instance, FP might be
more important than FN.
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There are lots of evaluation measures for classifiers that use various parts of the
confusion matrix.

• The misclassification error is FP+FN
n = 1

n

!n
i=1 1[yi ∕=ŷi].

• True Positive Rate (TPR) = Sensitivity = Recall = TP
#Positives . In the context

of information retrieval, where we want to retrieve relevant documents to a
search query, the “recall” is the fraction of relevant documents our algorithm
returned. My pneumonic device is that “recall” is the fraction of relevant
documents our algorithm correctly recalled.

• True Negative Rate (TNR) = Specificity = TN
#Negatives . This is analogous to

recall but for negative points.

• False positive rate (FPR) = FP
#Negatives . The fraction of negatives we thought

were positive.

• Precision = TP
#Predicted Positive . Precision is really useful for search engines. If

the first page of search returns has 10 search results, the precision is how
many of these 10 are relevant to the search query.

• F1-score is the harmonic balance between precision and recall.

F1 = 2
Precision× Recall

Precision+Recall
.

The confusion matrix is only defined for binary classifiers. If you have a real-
valued predictive model f , it doesn’t correspond to a confusion matrix until you
define a threshold θ, where if f(x) > θ, we predict positive, and otherwise nega-
tive. But where might you place this threshold? You could place it at f(x) = 0
for a trained classifier, but since we do not always value false positives the same
as false negatives, this might not be a good choice.

ROC curves (as discussed next) would place the threshold in every possible po-
sition.

ROC Curves for Functions
ROC Curves are an excellent way to evaluate real-valued classifiers. I use ROC
curves as a basic tool. (I would say that ROC curves and histograms are my
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data science bread and butter).

ROC curves started to be used during World War II for analyzing radar signals.
After Pearl Harbor in 1941, the U.S. wanted to detect Japanese aircraft from
their radar signals. They measured the ability of radar receiver operators to
detect the Japanese planes using these curves, which they called the Receiver
Operating Characteristics. If they set the dial one way on the receiver, they got
many true positives, which are Japanese planes that were detected. But they
also got a lot of false positives, which were just bogus signals that were labeled
as Japanese planes. (This is a very high TPR and high FPR.) If they turned
the dial the other way, the detector would hardly ever predict positive (low FPR
but low TPR). To compare receivers, it is useful to look at the TPR and FPR
for each possible setting on the dial. We would like a high TPR for each possible
value of the FPR.

To create an ROC curve for a real valued function, think about the knob on the
receiver as being a threshold on the function. We compute the TPR and FPR
for each possible value of the threshold. Let us use an example.

f(x) 15 12 10 8 6 2 -1 -3 -14 -20

y – + + – + – – – + –

Let’s put the thresholds everywhere between each pair of points and at the ex-
tremes. It doesn’t matter exactly where we put the thresholds between each pair
of points, since it doesn’t affect TPR and FPR. Possible thresholds are: 16, 13.5,
11, 9, 7, 4, etc. At each of these values, we compute TPR and FPR. The de-
nominators are the number of positives (which is 4) and the number of negatives
(which is 6). For instance, if the threshold is at 9, then for f(x) > 9, there are
two positives (at 10 and 12) and a negative (at 15). That’s two true positives
and one false positive. So the TPR is 2/4 and the FPR is 1/6 for a threshold of
9. Here’s the full table.

threshold 16 13 11 9 7 4 0 -2 -9 -16 -21

TPR 0/4 0/4 1/4 2/4 2/4 3/4 3/4 3/4 3/4 4/4 4/4
FPR 0/6 1/6 1/6 1/6 2/6 2/6 3/6 4/6 5/6 5/6 6/6

The ROC curve is the scatter plot of these points.
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There is an intuitive way to think of the ROC plot. Put the labels y in order
of f(x). We did that earlier, but I’ll put it here too: – + + – + – – – + –. To
construct the ROC curve, go from left to right, starting with the bottom left cor-
ner of the ROC curve. Go one unit to the right when you encounter a negative
example, go up when you encounter a positive. Here, we go right, up up, right,
up, right, right right, up, right. That’s the full ROC curve.

If there are ties in score, you would go diagonally.

Viewing the ROC curve this way, you can see that the left part of the curve
corresponds to the larger values of f(x) and the right part of the curve to the
smaller values of f(x).

A perfect ROC curve looks like this, where the positives are all ranked higher
than the negatives.
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The worst ROC curve is when f(x) is as bad as a random guess, and the true
false positive rate and false positive rate go up at the same time.

If you have a curve that is below the diagonal line for random guessing, you
probably should negate f(x) and re-plot it. That way its curve will be above the
random line.

Area Under the ROC Curve (AUC or AUROC)

The AUC is one of the main evaluation metrics for classification. The worst
AUC is 0.5 (like random guessing) and the best is 1.0 (ranking all positives have
a higher score than all negatives).

ROC Curves and Ranking
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There is a strong connection between ROC curves and ranking. Why is that?
Because the area under the curve is a rank statistic.

Each small block under the ROC curve corresponds to a pair of points, one
positive and one negative.

The block is only under the curve because the positive in the pair is ranked
higher than the negative, according to the scores from f(x). The count of these
blocks is the area under the curve. We could write it as:

1

(#positives)(#negatives)

"

i positive

"

k negative

1[f(xi)>f(xk)]

which is the fraction of positive-negative pairs where the positive ranks higher.
(This is what I mean when I say AUC is a rank statistic.) Interestingly, if you
look closely, you’ll realize that this is also 1 minus the misranking error used in
a special supervised ranking problem, when the data are positives and negatives
and we create positive-negative pairs as training data. This is called supervised
bipartite ranking. In other words:

1

(#positives)(#negatives)

"

i positive

"

knegative

1[f(xi)>f(xk)]

= 1− 1

(#positives)(#negatives)

"

ipositive

"

knegative

1[f(xi)≤f(xk)].

Thus, if you minimize the misranking error when solving a supervised ranking
problem, you are actually optimizing the AUC. That is, AUC maximization is
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equivalent to supervised ranking.

Imbalanced Data

Often we have very few examples of one class, and many of the other. For
instance, if we are predicting rare events, such as heart attacks or manhole fires,
we might have a lot of examples of the normal class and few of the abnormal
class. Think of a small number of positives swimming in a sea of negatives. In
the picture below, the positives are red and the negatives are black.

If 99% percent of your data is one label, and the other 1% is the other label,
then it is easy to get a classifier with 99% accuracy. Just predict all the points
to be the majority class. It’s not a meaningful classifier, but it is accurate.

You can see immediately that accuracy is not an appropriate performance mea-
sure. Perhaps we would prefer a classifier like this one:
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This classifier views each positive as worth much more than each negative. Let’s
say that each positive is worth Cimbalanced times as much as each negative. To
get a classifier like this, we might minimize a loss function where each positive
is worth Cimbalanced times as much as each negative.

1

n

#

$Cimbalanced

"

i:yi=1

ℓ(yi, f(xi)) +
"

k:yk=−1

ℓ(yk, f(xk))

%

&+ Regularization(f).

Using a loss function like this is the easiest way I know of to handle imbalanced
data. There are other ways to handle imbalanced data, for instance, there are
methods that create extra fake positive examples, and other methods that re-
duce the size of the negative class so that the classes are more balanced, but I
think the weighting method is the simplest. The choice of weight depends on
the problem, and how much value your domain expert places on predicting a
positive example correctly compared to a negative one.

If the data are imbalanced, since accuracy is not a meaningful performance mea-
sure, we would want to look at the full confusion matrix instead when evaluating
performance.

ROC Curves for Algorithms

Earlier, we produced ROC curves for single classifiers. Now we will produce
ROC curves for algorithms. The algorithm will be run repeatedly, each time
producing one point on an ROC curve, and the algorithm will be optimized only
for a single point on the curve. It is possible that when we optimize for one point

8



on the curve at a time, that we will construct a better ROC curve than if we use
the same model to produce all of the points like we did earlier.

The idea of weighting data that we used for imbalanced classification will be
helpful here. We will sweep the imbalanced parameter over its full range and get
many different classifiers. For each one, we compute the TPR and FPR, which
is a point on our new ROC curve. We start with a very small value of Cimbalanced

so that the positives are essentially ignored, and we predict all negatives.

As we increase Cimbalanced, we produce a lot of classifiers, each one contributing
a point to the ROC curve.

And, as I said earlier, since each point of the curve is optimized separately, the
ROC curve for an algorithm is usually better than the ROC curve for a single
classifier.
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