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Random forests / decision forests

• Complex and powerful prediction tool
• Black-box
• Uses a simple but powerful idea: if you average many different yet 

accurate models, it reduces variance.

(Ho Tin-kam, 1995)
(Leo Breiman, 2001)



Bagging (Bootstrap Aggregating)

• Sample n points from the training set with replacement, 
grow a tree from them.
• Average the trees together to get the final prediction



• Example: Will the customer wait for a table at a 
restaurant?
• OthOptions: Other options, True if there are restaurants nearby.
• Weekend: This is true if it is Friday, Saturday or Sunday.
• Area: Does it have a bar or other nice waiting area to wait in?
• Plans: Does the customer have plans just after dinner?
• Price: This is either $, $$, $$$, or $$$$
• Precip: Is it raining or snowing?
• Genre: French, Mexican, Thai, or Pizza
• Wait: Wait time estimate: 0-5 min, 5-15 min, 15+
• Crowded: Whether there are other customers (no, some, or full)

Credit: Adapted from Russell and Norvig
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Decision Forests
For t=1 to T:
• Draw a bootstrap sample of size n from the training data.
• Grow a tree (treet) using this splitting and stopping procedure:

• For this split, choose m features at random (out of p) 
• Evaluate the splitting criteria on all of them
• Split on the best feature
• If the node has less than nmin then stop splitting.

Output all the trees.
To predict on a new observation x, use the majority vote of the trees on x.



Decision Forests

Comparison with decision trees:
• Bootstrap resamples
• Splitting considers only m possible (randomly chosen) 

features
• No pruning
• Majority vote of several trees is used to make 

predictions

Make trees diverse, which 
reduces variance

Make trees fit more tightly, reduces bias



Variable Importance / Model Reliance

• How much does a model f rely on a variable?

Model Reliance(f, j) 
= Error(f, datascramble j) – Error(f, data) 
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Decision Forests: Measuring Variable Importance

• Let us measure the “importance” of variable j.
• Take the data not used to construct treet. Call it “out-of-

bag”, OOBt.
• Compute errort of model treet on data OOBt.
• Now randomly permute only the jth feature values. 
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• Let us measure the “importance” of variable j.
• Take the data not used to construct treet. Call it “out-of-

bag”, OOBt.
• Compute errort of model treet on data OOBt.
• Now randomly permute only the jth feature values. Call 

this OOBt,permuted. 
• Compute errort,permuted, using model treet on data 

OOBt,permuted. 
• The “raw importance” of variable j is then the average 

over trees of the difference: 1
T

errort , permuted - errort( )
trees t
∑
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• General notion of importance of a variable for a model.
• Specialized version for decision forests, where it is 

computed on out-of-bootstrap sample. 

Decision Forests: Measuring Variable Importance



Decision Forests for Regression
For t=1 to T:
• Draw a bootstrap sample of size n from the training data.
• Grow a tree (treet) using this splitting and stopping procedure:

• For this split, choose m features at random (out of p) 
• Evaluate the splitting criteria on all of them
• Split on the best feature
• If the node has less than nmin then stop splitting.

Output all the trees.
To predict on a new observation x, use the average vote of the trees on x.



Decision Forests
Advantages
• Complex and powerful prediction tool, highly nonlinear
• Has notion of variable importance

Disadvantages
• Black-box
• Tends to overfit unless tuned carefully (not always intuitive 

with the R package)
• Slow


