
Support Vector Machines

Duke Course Notes
Cynthia Rudin

Let’s start with some intuition about margins.

The margin of an observation xi = “distance” from observation to decision boundary

= yif(xi)

The margin is positive if the observation is on the correct side of the decision
boundary, otherwise it’s negative.

Here’s the intuition for SVM’s:

• We want all observations to have large margins, want them to be as far from
decision boundary as possible.

• That way, the decision boundary is more “stable,” we are confident in all
decisions.

Most other algorithms (logistic regression, decision trees, perceptron) don’t gen-
erally produce large margins. (AdaBoost generally produces large margins.)

1

SVM’s maximize the distance from the decision boundary to the nearest training
observation – they maximize the minimum margin.

As in logistic regression and AdaBoost, function f is linear,

f(x) =

p!

j=1

λjx·j + λ0.

Note that the intercept term can get swept into x by adding a 1 as the last
component of each x. Then f(x) would be just λTx but for this lecture we’ll
keep the intercept term separately because SVM handles that term differently
than if you put the intercept as a separate feature. We classify x using sign(f(x)).

If xi has a large margin, we are confident that we classified it correctly. So we’re
essentially suggesting to use the margin yif(xi) to measure the confidence in our
prediction.

But there is a problem with using yif(xi) to measure confidence in prediction.
There is some arbitrariness about it.

If we multiply f by 2, the decision boundary doesn’t change but we become
twice as confident! We can make f(x) arbitrarily large if we can scale λ and λ0

2

arbitrarily. So we force f to have norm 1 so that doesn’t happen.

I’m going to tip the previous picture a different way. The axes in the above
picture represent features (maybe the first component of x and the second).
There’s a third important direction, which is out of the page, f(x), but you can
only see marked the decision boundary where f(x) = 0. Remember that f is
positive where the positive points are and negative where the negative points are.
In the pictures below, the horizontal axis is along feature space and the vertical
axis is function values f(x). In the first picture you can see that the functional
margin yif(xi) for the positive example on the left is 1, which is yif(xi).

Now double f(x), and yif(xi) is 2, but the decision boundary didn’t change.
The absolute slope is higher though.

In this case yif(xi) doesn’t tell us anything about how far the point is from the
decision boundary. We could fix this in a couple ways. One way is to fix the
absolute slope to be 1 all the time and just measure the distance to the nearest
point. Then we maximize the distance to the nearest point to maximize a geo-
metric margin that is meaningful.

Another way is to just force the nearest point to have functional margin yif(xi)
equal to 1. What happens then? Let’s say the nearest point is very close to

3

the decision boundary. Then in order to force yif(xi) to be 1, then the absolute
slope of f would need to be very large!

Now what do we tell an algorithm in order to keep the decision boundary away
from the nearest training examples? You could ask the algorithm to choose f
with a small absolute slope. It would then prefer the picture below to the one
above.

What would the algorithm do if we told it to have all of its functional margins
yif(xi) ≥ 1, and asked it to have the lowest absolute slope? The picture below
shows gray arrows where the functional margins yif(xi) are at least 1. When
tell it to minimize the slope, it ends up maximizing the distance to the nearest
points.

4

We just showed that if you fix the absolute slope, you can maximize the geo-
metric margin – this gives the same answer as if you restrict all the functional
margins to be above one and minimize the slope.

So there is a tradeoff between the margin and the slope.

I say often that the margin is the same as the distance to the decision boundary,
but I never really proved that. Let’s do it.

Geometric perspective: The “functional margin” yif(xi) is the same as the
geometric margin, which is the distance from observation i to the decision bound-
ary.

Let’s show this.

I set the intercept to zero for this picture (so the decision boundary passes
through the origin):

5

The decision boundary are x’s where λTx = 0. That means the unit vector for
λ must be perpendicular to those x’s that lie on the decision boundary.

Now that you have the intuition, we’ll put the intercept back, and we have to
translate the decision boundary, so it’s really the set of x’s where λTx+ λ0 = 0.

The margin of observation i is denoted γi:

B is the point on the decision boundary closest to the positive observation xi.
B is

B = xi − γi
λ

‖λ‖2
since we moved −γi units along the unit vector to get from the observation to
B.

6

Since B lies on the decision boundary, it obeys λTx + λ0 = 0, where x is B. (I
wrote the intercept there explicitly). So,

λT

"
xi − γi

λ

‖λ‖2

#
+ λ0 = 0

λTxi − γi
‖λ‖22
‖λ‖2

+ λ0 = 0

Simplifying,

γi =
λTxi + λ0

‖λ‖2
=: f̃(xi) (this is the normalized version of f)

= yif̃(xi) since yi = 1.

Note that here we normalized so we wouldn’t have the arbitrariness in the mean-
ing of the margin.

If the observation is negative, the same calculation works, with a few sign flips
(we’d need to move γi units rather than −γi units).

So the “geometric” margin from the picture is the same as the “functional”
margin yif̃(xi).

Maximize the minimum margin

Support vector machines maximize the minimum margin. They would like to
have all observations being far from the decision boundary. So they’ll choose f
this way:

max
f

max
γ

γ s.t. yif(xi) ≥ γ i = 1 . . . n

max
γ,λ,λ0

γ s.t. yi
λTxi + λ0

‖λ‖2
≥ γ i = 1 . . . n

max
γ,λ,λ0

γ s.t. yi(λ
Txi + λ0) ≥ γ‖λ‖2 i = 1 . . . n.

For any λ and λ0 that satisfy this, any positively scaled multiple satisfies them
too, so we can arbitrarily set ‖λ‖2 = 1/γ so that the right side is 1.

7

Now when we maximize γ, we’re maximizing γ = 1/‖λ‖2. So we have

max
λ,λ0

1

‖λ‖2
s.t. yi(λ

Txi + λ0) ≥ 1 i = 1 . . . n.

Equivalently,

min
λ,λ0

1

2
‖λ‖22 s.t. yi(λ

Txi + λ0)− 1 ≥ 0 i = 1 . . . n (1)

(the 1/2 and square are just for convenience) which is the same as:

min
λ,λ0

1

2
‖λ‖22 s.t. − yi(λ

Txi + λ0) + 1 ≤ 0 i = 1 . . . n

leading to the Lagrangian

L ([λ,λ0],α) =
1

2

p!

j=1

λ2
j +

n!

i=1

αi

$
−yi(λ

Txi + λ0) + 1
%

Writing the KKT conditions, starting with Lagrangian stationarity, where we
need to find the gradient with respect to λ and the derivative with respect to λ0:

∇λL ([λ,λ0],α) = λ−
n!

i=1

αiyixi = 0 =⇒ λ =
n!

i=1

αiyixi.

∂

∂λ0
L ([λ,λ0],α) = −

n!

i=1

αiyi = 0 =⇒
n!

i=1

αiyi = 0.

αi ≥ 0 ∀i (dual feasibility)

αi

$
−yi(λ

Txi + λ0) + 1
%
= 0 ∀i (complementary slackness)

−yi(λ
Txi + λ0) + 1 ≤ 0. (primal feasibility)

Using the KKT conditions, we can simplify the Lagrangian in order to get a nice

8

expression for the dual objective.

L ([λ,λ0],α) =
1

2
‖λ‖22 + λT

n!

i=1

(−αiyixi) +
n!

i=1

(−αiyiλ0) +
n!

i=1

αi

(We just expanded terms. Now we’ll plug in the first KKT condition.)

=
1

2
‖λ‖22 − ‖λ‖22 − λ0

n!

i=1

(αiyi) +
n!

i=1

αi

(Plug in the second KKT condition.)

= −1

2

p!

j=1

λ2
j + 0 +

n!

i=1

αi. (2)

Again using the first KKT condition, we can rewrite the first term.

−1

2

p!

j=1

λ2
j = −1

2

p!

j=1

&
n!

i=1

αiyixij

'2

= −1

2

p!

j=1

n!

i=1

n!

k=1

αiαkyiykxijxkj

= −1

2

n!

i=1

n!

k=1

αiαkyiykx
T
i xk.

Plugging back into the Lagrangian (2), which now only depends on α, and
putting in the second and third KKT conditions gives us the dual problem;

max
α

L (α)

where

L (α) =
n!

i=1

αi −
1

2

!

i,k

αiαkyiykx
T
i xk s.t.

(
αi ≥ 0 i = 1 . . . n)n

i=1 αiyi = 0
(3)

We’ll use the last two KKT conditions in what follows, for instance to get con-
ditions on λ0, but what we’ve already done is enough to define the dual problem
for α.

We can solve this dual problem. Either (i) we’d use a generic quadratic pro-
gramming solver, or (ii) use another algorithm, like SMO, which I will discuss

9

later. For now, assume we solved it. So we have α∗
1, . . . ,α

∗
n. We can use the

solution of the dual problem to get the solution of the primal problem. We can
plug α∗ into the first KKT condition to get

λ∗ =
n!

i=1

α∗
i yixi. (4)

We still need to get λ∗
0, but we can see something cool in the process.

Support Vectors

Look at the complementary slackness KKT condition and the primal and dual
feasibility conditions:

α∗
i

$
−yi(λ

∗Txi + λ∗
0) + 1

%
= 0 ⇒

*
++,

++-

α∗
i > 0 ⇒ yi(λ

∗Txi + λ∗
0) = 1

α∗
i < 0 (Can’t happen)

−yi(λ
∗Txi + λ∗

0) + 1 < 0 ⇒ α∗
i = 0

−yi(λ
∗Txi + λ∗

0) + 1 > 0 (Can’t happen)

Define the optimal (scaled) scoring function: f ∗(xi) = λ∗Txi + λ∗
0, then

(
α∗
i > 0 ⇒ yif

∗(xi) = scaled margini = 1
1 < yif

∗(xi) ⇒ α∗
i = 0

The observations in the first category, for which the scaled margin is 1 and the
constraints are active are called support vectors. They are the closest to the
decision boundary.

10

Finish What We Were Doing Earlier

To get λ∗
0, use the complementarity condition for any of the support vectors (in

other words, use the fact that the unnormalized margin of the support vectors
is one):

1 = yi(λ
∗Txi + λ∗

0).

If you take a positive support vector, yi = 1, then

λ∗
0 = 1− λ∗Txi.

Written another way, since the support vectors have the smallest margins,

λ∗
0 = 1− min

i:yi=1
λ∗Txi.

So that’s the solution! Just to recap, to get the scoring function f ∗ for SVM,
you’d compute α∗ from the dual problem (3), plug it into (4) to get λ∗, plug that
into the equation above to get λ∗

0, and that’s the solution to the primal problem,
and the coefficients for f ∗.

11

Because of the form of the solution:

λ∗ =
n!

i=1

α∗
i yixi.

it is possible that λ∗ is very fast to calculate. If there are only a few support
vectors relative to the amount of data, then we can calculate and store the solu-
tion by storing only the support vectors and their α∗

i ’s.

The Nonseparable Case

If there is no separating hyperplane,

there is no feasible solution to the problem we wrote above. Most real problems
are nonseparable.

Let us fix our SVM so it can accommodate the nonseparable case. The new for-
mulation will penalize mistakes the farther they are from the decision boundary.
So we are allowed to make mistakes now, but we pay a price.

12

Let us change our primal problem (1) to this new primal problem:

min
λ,λ0,ξ

1

2
‖λ‖22 + C

n!

i=1

ξi s.t.

(
yi(λ

Txi + λ0) ≥ 1− ξi
ξi ≥ 0

(5)

So the constraints allow some slack of size ξi, but we pay a price for it in the
objective. That is, if yif(xi) ≥ 1 then ξi gets set to 0, penalty is 0. Otherwise,
if yif(xi) = 1− ξi, we pay price ξi.

Parameter C trades off between the twin goals of making the ‖λ‖22 small (making
what-was-the-minimum-margin 1/‖λ‖22 large) and ensuring that most observa-
tions have margin at least 1/‖λ‖22. If you would choose to make the margins large
at the expense of not all points being correctly classified, it tends to make the
decision boundary smoother. These images below use kernels, which I haven’t
introduced yet, but hopefully you can get the idea. The kernels map the points
to a higher dimensional space and separate them by a hyperplane there, and then
I’m mapping the decision boundary back down to the original space (where the
decision boundary is nonlinear). The figure on the left has essentially no regu-
larization. It correctly classifies all the points. The figure on the right misses a
couple of the blue points in exchange for slightly larger margins on many of the
magenta points.

13

If you make C very large then it is the same as the separable case. Set C
large. Then assuming there is a separable solution, we would have all the points
classified with a small but positive margin (which is the picture above on the
left). If we decrease C, then we would tradeoff between the two (picture above
on the right).

Going on a Little Tangent

Rewrite the penalty another way:
If yif(xi) ≥ 1, zero penalty. Else, pay price ξi = 1− yif(xi)

Third time’s the charm:
Pay price ξi = ⌊1− yif(xi)⌋+
where this notation ⌊z⌋+ means take the maximum of z and 0.

Equation (5) becomes:

min
λ,λ0

1

2
‖λ‖22 + C

n!

i=1

⌊1− yif(xi)⌋+

Does that look familiar? It should!

14

The Dual for the Nonseparable Case

Form the Lagrangian of (5):

L(λ,λ0, ξ,α, r) =
1

2
‖λ‖22 + C

n!

i=1

ξi −
n!

i=1

αi

$
yi(λ

Txi + λ0)− 1 + ξi
%
−

n!

i=1

riξi

where αi’s and ri’s are Lagrange multipliers (constrained to be ≥ 0).
The dual turns out to be (after some work)

max
α

n!

i=1

αi −
1

2

n!

i,k=1

αiαkyiykx
T
i xk s.t.

(
0 ≤ αi ≤ C i = 1 . . . n)n

i=1 αiyi = 0
(6)

So the only difference from the original problem’s Lagrangian (3) is that 0 ≤ αi

was changed to 0 ≤ αi ≤ C. Neat! And, the ri’s went away because the KKT
conditions says they are C − αi, as we will see next.

To get the dual, again we write the KKT conditions, starting with Lagrangian
stationarity:

∇λL ([λ,λ0, ξ],α, r) = λ−
n!

i=1

αiyixi = 0 =⇒ λ =
n!

i=1

αiyixi.

∂

∂λ0
L ([λ,λ0, ξ],α, r) = −

n!

i=1

αiyi = 0 =⇒
n!

i=1

αiyi = 0

∇ξL ([λ,λ0, ξ],α, r) = C −α− r = 0 =⇒ r = C −α

αi ≥ 0 ∀i (dual feasibility)

ri ≥ 0 ∀i (dual feasibility)

αi

$
−yi(λ

Txi + λ0) + 1− ξi
%
= 0 ∀i (complementary slackness)

riξi = 0 ∀i (complementary slackness)

−yi(λ
Txi + λ0) + 1 ≤ 0. (primal feasibility)

−ξi ≤ 0. (primal feasibility)

Combining ri ≥ 0 with ri = C −αi, we get that C −αi ≥ 0, that is, αi ≤ C. We

15

can also simplify the Lagrangian:

L(λ,λ0, ξ,α, r)

=
1

2
‖λ‖22 + C

n!

i=1

ξi −
n!

i=1

αi

$
yi(λ

Txi + λ0)− 1 + ξi
%
−

n!

i=1

riξi

=
1

2
‖λ‖22 −

n!

i=1

αi

$
yi(λ

Txi + λ0)− 1
%
+ C

n!

i=1

ξi −
n!

i=1

αiξi −
n!

i=1

riξi

=
1

2
‖λ‖22 −

n!

i=1

αi

$
yi(λ

Txi + λ0)− 1
%
.

where in the last line we again used ri = C − αi. Now using the Lagrangian
stationarity condition

)n
i=1 αiyi = 0, we can remove the λ0 term in the expression

above. And, as in the separable case, the ‖λ‖22 term combines with the first term
in the sum. The result is:

L(λ,λ0, ξ,α, r) =
n!

i=1

αi −
1

2

n!

i,k=1

αiαkyiykx
T
i xk.

Since the Lagrangian no longer depends on other variables, we can omit the con-
straints for those other variables and we are done.

The complementary slackness conditions reveal that:

αi > 0 =⇒ 1− ξi − yi(λ
Txi + λ0) = 0

ri > 0 =⇒ C > αi =⇒ ξi = 0,

which means that if 0 < αi < C then 1− yi(λ
Txi + λ0) = 0.

The interesting points have αi > 0 (the others are correctly classified with large
margins and don’t participate in the solution). There are then three kinds of
interesting points: (1) support vectors with 0 < αi < C (which are correctly
classified and with a margin of 1, where ξi = 0), (2) points where αi = C and
0 < ξi < 1 (which are correctly classified but have a margin smaller than 1), and
(3) misclassified points, with ξi ≥ 1. To get λ we need only sum over the points
with nonzero αi’s, so λ =

)
i:αi>0 αiyixi. To get λ0, it is easiest to use a positive

support vector in the first category, where complementary slackness tells us that
λ0 = 1− λTxi.

16

Solving the dual problem with SMO

SMO (Sequential Minimal Optimization) is a type of coordinate ascent algo-
rithm, but adapted to SVM so that the solution always stays within the feasible
region.

Start with (6). Let’s say you want to hold α2, . . . ,αn fixed and take a coordinate
step in the first direction. That is, change α1 to maximize the objective in (6).
Can we make any progress? Can we get a better feasible solution by doing this?

Turns out, no. Look at the constraint in (6),
)n

i=1 αiyi = 0. This means:

α1y1 = −
n!

i=2

αiyi, or multiplying by y1,

α1 = −y1

n!

i=2

αiyi.

So, since α2, . . . ,αn are fixed, α1 is also fixed.

So, if we want to update any of the αi’s, we need to update at least 2 of them
simultaneously to keep the solution feasible (i.e., to keep the constraints satis-
fied).

Start with a feasible vector α. Let’s update α1 and α2, holding α3, . . . ,αn fixed.
What values of α1 and α2 are we allowed to choose?

Again, the constraint is: α1y1 + α2y2 = −
)n

i=3 αiyi =: ζ (fixed constant).
We are only allowed to choose α1,α2 on the line, so when we pick α2, we get α1

automatically, from this:

α1 =
1

y1
(ζ − α2y2)

= y1(ζ − α2y2) (y1 = 1/y1 since y1 ∈ {+1,−1}).

Also, the other constraints in (6) say 0 ≤ α1,α2 ≤ C. So, α2 needs to be within
[L,H] on the figure (in order for α1 to stay within [0, C]), where we will always
have 0 ≤ L,H ≤ C. To do the coordinate ascent step, we will optimize the
objective over α2, keeping it within [L,H]. Intuitively, (6) becomes:

17

max
α2∈[L,H]

.

/α1 + α2 + constants − 1

2

!

i,k

αiαkyiykx
T
i xk

0

1 where α1 = y1(ζ − α2y2).

(7)
The objective is quadratic in α2. This means we can just set its derivative to 0
to optimize it and get α2 for the next iteration of SMO. If the optimal value is
outside of [L,H], just choose α2 to be either L or H for the next iteration.

For instance, if this is a plot of (7)’s objective (sometimes it doesn’t look like
this, sometimes it’s upside-down), then we’ll choose :

Note: there are heuristics to choose the order of αi’s chosen to update.

18

An Interesting Exercise

Let us solve the 1d separable case manually. Let us put positives on the left,
and negatives on the right. We will call a the position of the rightmost positive
point. We will call b the position of the leftmost negative point.
We know the solution will have at most 2 support vectors at a and b because
they are the closest to the decision boundary. They can be the only possible
points with a margin of 1. Every other point must have margin more than 1.
We call α1 the dual variable for the point at a and α2 the dual variable for the
point at b.
The dual objective is:

α1 + α2 −
1

2
[α2

1a
2 + α2

2b
2 − 2α1α2ab].

From the constraints for the dual problem, I know that α1 − α2 = 0 so α1 =
α2 := α (we will call it α). The dual objective simplifies to:

2α− 1

2
[α2(a2 + b2 − 2ab)].

Take the derivative of the dual objective and set it to 0:

0 = 2− 1

2
[2a][a2 + b2 − 2ab] =⇒ α =

2

(a− b)2
.

Thus, plugging into the formulas for the primal solution:

λ∗ = αa− αb =
2(a− b)

(a− b)2
=

2

a− b

λ∗
0 = 1− 2

a− b
a.

Now, let us solve for the decision boundary, which is the x for which f(x) = 0.

0 = f(x) = λ∗x+ λ0 =
2

a− b
x+ 1− 2a

a− b
2a

a− b
− 1 =

2

a− b
x

x =
2a− a+ b

a− b

a− b

2

x =
a+ b

2
.

19

Just as we expected! The decision boundary is right in the middle of the positive
and negative points.

We have shown that there must be at least two support vectors because otherwise
we could not have satisfied the constraint in the dual, α1+α2 = 0. In particular,
there can never be a solution with only one support vector. Intuitively if there
is only one support vector then we have not maximized the margin – we could
find a solution where the margin is larger so that both a positive and a negative
point have margin 1.

20

