# Support Vector Machines <br> Duke Course Notes <br> Cynthia Rudin 

Let's start with some intuition about margins.
The margin of an observation $\mathbf{x}_{i}=$ "distance" from observation to decision boundary

$$
=y_{i} f\left(\mathbf{x}_{i}\right)
$$



The margin is positive if the observation is on the correct side of the decision boundary, otherwise it's negative.

Here's the intuition for SVM's:

- We want all observations to have large margins, want them to be as far from decision boundary as possible.
- That way, the decision boundary is more "stable," we are confident in all decisions.

Most other algorithms (logistic regression, decision trees, perceptron) don't generally produce large margins. (AdaBoost generally produces large margins.)

SVM's maximize the distance from the decision boundary to the nearest training observation - they maximize the minimum margin.

As in logistic regression and AdaBoost, function $f$ is linear,

$$
f(\mathbf{x})=\sum_{j=1}^{p} \lambda_{j} x_{\cdot j}+\lambda_{0}
$$

Note that the intercept term can get swept into $\mathbf{x}$ by adding a 1 as the last component of each $\mathbf{x}$. Then $f(\mathbf{x})$ would be just $\boldsymbol{\lambda}^{T} \mathbf{x}$ but for this lecture we'll keep the intercept term separately because SVM handles that term differently than if you put the intercept as a separate feature. We classify $\mathbf{x} u \operatorname{using} \operatorname{sign}(f(\mathbf{x}))$.

If $\mathbf{x}_{i}$ has a large margin, we are confident that we classified it correctly. So we're essentially suggesting to use the margin $y_{i} f\left(\mathbf{x}_{i}\right)$ to measure the confidence in our prediction.


But there is a problem with using $y_{i} f\left(\mathbf{x}_{i}\right)$ to measure confidence in prediction. There is some arbitrariness about it.

If we multiply $f$ by 2 , the decision boundary doesn't change but we become twice as confident! We can make $f(\mathbf{x})$ arbitrarily large if we can scale $\boldsymbol{\lambda}$ and $\lambda_{0}$
arbitrarily. So we force $f$ to have norm 1 so that doesn't happen.
I'm going to tip the previous picture a different way. The axes in the above picture represent features (maybe the first component of $\mathbf{x}$ and the second). There's a third important direction, which is out of the page, $f(\mathbf{x})$, but you can only see marked the decision boundary where $f(\mathbf{x})=0$. Remember that $f$ is positive where the positive points are and negative where the negative points are. In the pictures below, the horizontal axis is along feature space and the vertical axis is function values $f(\mathbf{x})$. In the first picture you can see that the functional margin $y_{i} f\left(\mathbf{x}_{i}\right)$ for the positive example on the left is 1 , which is $y_{i} f\left(\mathbf{x}_{i}\right)$.


Now double $f(\mathbf{x})$, and $y_{i} f\left(\mathbf{x}_{i}\right)$ is 2 , but the decision boundary didn't change. The absolute slope is higher though.


In this case $y_{i} f\left(\mathbf{x}_{i}\right)$ doesn't tell us anything about how far the point is from the decision boundary. We could fix this in a couple ways. One way is to fix the absolute slope to be 1 all the time and just measure the distance to the nearest point. Then we maximize the distance to the nearest point to maximize a geometric margin that is meaningful.

Another way is to just force the nearest point to have functional margin $y_{i} f\left(\mathbf{x}_{i}\right)$ equal to 1 . What happens then? Let's say the nearest point is very close to
the decision boundary. Then in order to force $y_{i} f\left(\mathbf{x}_{i}\right)$ to be 1 , then the absolute slope of $f$ would need to be very large!


Now what do we tell an algorithm in order to keep the decision boundary away from the nearest training examples? You could ask the algorithm to choose $f$ with a small absolute slope. It would then prefer the picture below to the one above.


What would the algorithm do if we told it to have all of its functional margins $y_{i} f\left(x_{i}\right) \geq 1$, and asked it to have the lowest absolute slope? The picture below shows gray arrows where the functional margins $y_{i} f\left(x_{i}\right)$ are at least 1 . When tell it to minimize the slope, it ends up maximizing the distance to the nearest points.


We just showed that if you fix the absolute slope, you can maximize the geometric margin - this gives the same answer as if you restrict all the functional margins to be above one and minimize the slope.

So there is a tradeoff between the margin and the slope.

I say often that the margin is the same as the distance to the decision boundary, but I never really proved that. Let's do it.

Geometric perspective: The "functional margin" $y_{i} f\left(x_{i}\right)$ is the same as the geometric margin, which is the distance from observation $i$ to the decision boundary.

Let's show this.

I set the intercept to zero for this picture (so the decision boundary passes through the origin):


The decision boundary are $\mathbf{x}^{\prime}$ s where $\boldsymbol{\lambda}^{T} \mathbf{x}=0$. That means the unit vector for $\boldsymbol{\lambda}$ must be perpendicular to those $\mathbf{x}^{\prime}$ s that lie on the decision boundary.

Now that you have the intuition, we'll put the intercept back, and we have to translate the decision boundary, so it's really the set of $\mathbf{x}^{\prime}$ s where $\boldsymbol{\lambda}^{T} \mathbf{x}+\lambda_{0}=0$.

The margin of observation $i$ is denoted $\gamma_{i}$ :

$\mathbf{B}$ is the point on the decision boundary closest to the positive observation $\mathbf{x}_{i}$. $\mathbf{B}$ is

$$
\mathbf{B}=\mathbf{x}_{i}-\gamma_{i} \frac{\boldsymbol{\lambda}}{\|\boldsymbol{\lambda}\|_{2}}
$$

since we moved $-\gamma_{i}$ units along the unit vector to get from the observation to B.

Since $\mathbf{B}$ lies on the decision boundary, it obeys $\boldsymbol{\lambda}^{T} \mathbf{x}+\lambda_{0}=0$, where $\mathbf{x}$ is $\mathbf{B}$. (I wrote the intercept there explicitly). So,

$$
\begin{aligned}
\boldsymbol{\lambda}^{T}\left(\mathbf{x}_{i}-\gamma_{i} \frac{\boldsymbol{\lambda}}{\|\boldsymbol{\lambda}\|_{2}}\right)+\lambda_{0} & =0 \\
\boldsymbol{\lambda}^{T} \mathbf{x}_{i}-\gamma_{i} \frac{\|\boldsymbol{\lambda}\|_{2}^{2}}{\|\boldsymbol{\lambda}\|_{2}}+\lambda_{0} & =0
\end{aligned}
$$

Simplifying,

$$
\begin{aligned}
\gamma_{i} & =\frac{\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}}{\|\boldsymbol{\lambda}\|_{2}} \\
& \left.=: \tilde{f}\left(\mathbf{x}_{i}\right) \quad \text { (this is the normalized version of } f\right) \\
& =y_{i} \tilde{f}\left(\mathbf{x}_{i}\right) \text { since } y_{i}=1 .
\end{aligned}
$$

Note that here we normalized so we wouldn't have the arbitrariness in the meaning of the margin.

If the observation is negative, the same calculation works, with a few sign flips (we'd need to move $\gamma_{i}$ units rather than $-\gamma_{i}$ units).

So the "geometric" margin from the picture is the same as the "functional" $\operatorname{margin} y_{i} \tilde{f}\left(\mathbf{x}_{i}\right)$.

## Maximize the minimum margin

Support vector machines maximize the minimum margin. They would like to have all observations being far from the decision boundary. So they'll choose $f$ this way:

$$
\begin{gathered}
\max _{f} \max _{\gamma} \gamma \quad \text { s.t. } \quad y_{i} f\left(\mathbf{x}_{i}\right) \geq \gamma \quad i=1 \ldots n \\
\max _{\gamma, \boldsymbol{\lambda}, \lambda_{0}} \gamma \quad \text { s.t. } \quad y_{i} \frac{\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}}{\|\boldsymbol{\lambda}\|_{2}} \geq \gamma \quad i=1 \ldots n \\
\max _{\gamma, \lambda, \lambda_{0}} \gamma \quad \text { s.t. } \quad y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right) \geq \gamma\|\boldsymbol{\lambda}\|_{2} \quad i=1 \ldots n .
\end{gathered}
$$

For any $\boldsymbol{\lambda}$ and $\lambda_{0}$ that satisfy this, any positively scaled multiple satisfies them too, so we can arbitrarily set $\|\boldsymbol{\lambda}\|_{2}=1 / \gamma$ so that the right side is 1 .

Now when we maximize $\gamma$, we're maximizing $\gamma=1 /\|\boldsymbol{\lambda}\|_{2}$. So we have

$$
\max _{\lambda, \lambda_{0}} \frac{1}{\|\boldsymbol{\lambda}\|_{2}} \quad \text { s.t. } \quad y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right) \geq 1 \quad i=1 \ldots n
$$

Equivalently,

$$
\begin{equation*}
\min _{\lambda, \lambda_{0}} \frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2} \quad \text { s.t. } \quad y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)-1 \geq 0 \quad i=1 \ldots n \tag{1}
\end{equation*}
$$

(the $1 / 2$ and square are just for convenience) which is the same as:

$$
\min _{\lambda, \lambda_{0}} \frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2} \quad \text { s.t. } \quad-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1 \leq 0 \quad i=1 \ldots n
$$

leading to the Lagrangian

$$
\mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}\right], \boldsymbol{\alpha}\right)=\frac{1}{2} \sum_{j=1}^{p} \lambda_{j}^{2}+\sum_{i=1}^{n} \alpha_{i}\left[-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1\right]
$$

Writing the KKT conditions, starting with Lagrangian stationarity, where we need to find the gradient with respect to $\boldsymbol{\lambda}$ and the derivative with respect to $\lambda_{0}$ :

$$
\begin{array}{rcl}
\nabla_{\lambda} \mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}\right], \boldsymbol{\alpha}\right)=\boldsymbol{\lambda}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=\mathbf{0} \Longrightarrow \boldsymbol{\lambda}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} . \\
\frac{\partial}{\partial \lambda_{0}} \mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}\right], \boldsymbol{\alpha}\right)=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \Longrightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0 . \\
\alpha_{i} \geq 0 & \forall i & \text { (dual feasibility) } \\
\alpha_{i}\left[-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1\right]=0 \quad \forall i \quad & \text { (complementary slackness) } \\
-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1 \leq 0 . & \text { (primal feasibility) }
\end{array}
$$

Using the KKT conditions, we can simplify the Lagrangian in order to get a nice
expression for the dual objective.

$$
\mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}\right], \boldsymbol{\alpha}\right)=\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+\boldsymbol{\lambda}^{T} \sum_{i=1}^{n}\left(-\alpha_{i} y_{i} \mathbf{x}_{i}\right)+\sum_{i=1}^{n}\left(-\alpha_{i} y_{i} \lambda_{0}\right)+\sum_{i=1}^{n} \alpha_{i}
$$

(We just expanded terms. Now we'll plug in the first KKT condition.)

$$
=\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}-\|\boldsymbol{\lambda}\|_{2}^{2}-\lambda_{0} \sum_{i=1}^{n}\left(\alpha_{i} y_{i}\right)+\sum_{i=1}^{n} \alpha_{i}
$$

(Plug in the second KKT condition.)

$$
\begin{equation*}
=-\frac{1}{2} \sum_{j=1}^{p} \lambda_{j}^{2}+0 \quad+\sum_{i=1}^{n} \alpha_{i} . \tag{2}
\end{equation*}
$$

Again using the first KKT condition, we can rewrite the first term.

$$
\begin{aligned}
-\frac{1}{2} \sum_{j=1}^{p} \lambda_{j}^{2} & =-\frac{1}{2} \sum_{j=1}^{p}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i j}\right)^{2} \\
& =-\frac{1}{2} \sum_{j=1}^{p} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{i} \alpha_{k} y_{i} y_{k} x_{i j} x_{k j} \\
& =-\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k} .
\end{aligned}
$$

Plugging back into the Lagrangian (2), which now only depends on $\boldsymbol{\alpha}$, and putting in the second and third KKT conditions gives us the dual problem;

$$
\max _{\boldsymbol{\alpha}} \mathcal{L}(\boldsymbol{\alpha})
$$

where

$$
\mathcal{L}(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, k} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k} \quad \text { s.t. } \quad\left\{\begin{array}{l}
\alpha_{i} \geq 0 \quad i=1 \ldots n  \tag{3}\\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

We'll use the last two KKT conditions in what follows, for instance to get conditions on $\lambda_{0}$, but what we've already done is enough to define the dual problem for $\boldsymbol{\alpha}$.

We can solve this dual problem. Either $(i)$ we'd use a generic quadratic programming solver, or (ii) use another algorithm, like SMO, which I will discuss
later. For now, assume we solved it. So we have $\alpha_{1}^{*}, \ldots, \alpha_{n}^{*}$. We can use the solution of the dual problem to get the solution of the primal problem. We can plug $\boldsymbol{\alpha}^{*}$ into the first KKT condition to get

$$
\begin{equation*}
\boldsymbol{\lambda}^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \mathbf{x}_{i} \tag{4}
\end{equation*}
$$

We still need to get $\lambda_{0}^{*}$, but we can see something cool in the process.

## Support Vectors

Look at the complementary slackness KKT condition and the primal and dual feasibility conditions:

$$
\alpha_{i}^{*}\left[-y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right)+1\right]=0 \Rightarrow\left\{\begin{array}{l}
\alpha_{i}^{*}>0 \Rightarrow y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right)=1 \\
\alpha_{i}^{*}<0(\text { Can't happen }) \\
-y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right)+1<0 \Rightarrow \alpha_{i}^{*}=0 \\
-y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right)+1>0 \text { (Can't happen) }
\end{array}\right.
$$

Define the optimal (scaled) scoring function: $f^{*}\left(\mathbf{x}_{i}\right)=\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}$, then

$$
\left\{\begin{array}{ccc}
\alpha_{i}^{*}>0 & \Rightarrow & y_{i} f^{*}\left(\mathbf{x}_{i}\right)=\text { scaled } \operatorname{margin}_{i}=1 \\
1<y_{i} f^{*}\left(\mathbf{x}_{i}\right) & \Rightarrow & \alpha_{i}^{*}=0
\end{array}\right.
$$

The observations in the first category, for which the scaled margin is 1 and the constraints are active are called support vectors. They are the closest to the decision boundary.


## Finish What We Were Doing Earlier

To get $\lambda_{0}^{*}$, use the complementarity condition for any of the support vectors (in other words, use the fact that the unnormalized margin of the support vectors is one):

$$
1=y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right) .
$$

If you take a positive support vector, $y_{i}=1$, then

$$
\lambda_{0}^{*}=1-\boldsymbol{\lambda}^{* T} \mathbf{x}_{i} .
$$

Written another way, since the support vectors have the smallest margins,

$$
\lambda_{0}^{*}=1-\min _{i: y_{i}=1} \boldsymbol{\lambda}^{* T} \mathbf{x}_{i} .
$$

So that's the solution! Just to recap, to get the scoring function $f^{*}$ for SVM, you'd compute $\boldsymbol{\alpha}^{*}$ from the dual problem (3), plug it into (4) to get $\boldsymbol{\lambda}^{*}$, plug that into the equation above to get $\lambda_{0}^{*}$, and that's the solution to the primal problem, and the coefficients for $f^{*}$.

Because of the form of the solution:

$$
\boldsymbol{\lambda}^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}
$$

it is possible that $\boldsymbol{\lambda}^{*}$ is very fast to calculate. If there are only a few support vectors relative to the amount of data, then we can calculate and store the solution by storing only the support vectors and their $\alpha_{i}^{*}$ 's.

## The Nonseparable Case

If there is no separating hyperplane,

there is no feasible solution to the problem we wrote above. Most real problems are nonseparable.

Let us fix our SVM so it can accommodate the nonseparable case. The new formulation will penalize mistakes the farther they are from the decision boundary. So we are allowed to make mistakes now, but we pay a price.


Let us change our primal problem (1) to this new primal problem:

$$
\min _{\boldsymbol{\lambda}, \lambda_{0}, \boldsymbol{\xi}} \frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i} \quad \text { s.t. } \quad\left\{\begin{array}{l}
y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right) \geq 1-\xi_{i}  \tag{5}\\
\xi_{i} \geq 0
\end{array}\right.
$$

So the constraints allow some slack of size $\xi_{i}$, but we pay a price for it in the objective. That is, if $y_{i} f\left(\mathbf{x}_{i}\right) \geq 1$ then $\xi_{i}$ gets set to 0 , penalty is 0 . Otherwise, if $y_{i} f\left(\mathbf{x}_{i}\right)=1-\xi_{i}$, we pay price $\xi_{i}$.

Parameter $C$ trades off between the twin goals of making the $\|\boldsymbol{\lambda}\|_{2}^{2}$ small (making what-was-the-minimum-margin $1 /\|\boldsymbol{\lambda}\|_{2}^{2}$ large) and ensuring that most observations have margin at least $1 /\|\boldsymbol{\lambda}\|_{2}^{2}$. If you would choose to make the margins large at the expense of not all points being correctly classified, it tends to make the decision boundary smoother. These images below use kernels, which I haven't introduced yet, but hopefully you can get the idea. The kernels map the points to a higher dimensional space and separate them by a hyperplane there, and then I'm mapping the decision boundary back down to the original space (where the decision boundary is nonlinear). The figure on the left has essentially no regularization. It correctly classifies all the points. The figure on the right misses a couple of the blue points in exchange for slightly larger margins on many of the magenta points.


If you make $C$ very large then it is the same as the separable case. Set $C$ large. Then assuming there is a separable solution, we would have all the points classified with a small but positive margin (which is the picture above on the left). If we decrease $C$, then we would tradeoff between the two (picture above on the right).

## Going on a Little Tangent

Rewrite the penalty another way:
If $y_{i} f\left(\mathbf{x}_{i}\right) \geq 1$, zero penalty. Else, pay price $\xi_{i}=1-y_{i} f\left(\mathbf{x}_{i}\right)$
Third time's the charm:
Pay price $\xi_{i}=\left\lfloor 1-y_{i} f\left(\mathbf{x}_{i}\right)\right\rfloor_{+}$ where this notation $\lfloor z\rfloor_{+}$means take the maximum of $z$ and 0 .

Equation (5) becomes:

$$
\min _{\lambda, \lambda_{0}} \frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+C \sum_{i=1}^{n}\left\lfloor 1-y_{i} f\left(\mathbf{x}_{i}\right)\right\rfloor_{+}
$$

Does that look familiar? It should!

## The Dual for the Nonseparable Case

Form the Lagrangian of (5):

$$
\mathcal{L}\left(\boldsymbol{\lambda}, \lambda_{0}, \xi, \boldsymbol{\alpha}, \mathbf{r}\right)=\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)-1+\xi_{i}\right]-\sum_{i=1}^{n} r_{i} \xi_{i}
$$

where $\alpha_{i}$ 's and $r_{i}$ 's are Lagrange multipliers (constrained to be $\geq 0$ ).
The dual turns out to be (after some work)

$$
\max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, k=1}^{n} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k} \quad \text { s.t. } \quad\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C \quad i=1 \ldots n  \tag{6}\\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

So the only difference from the original problem's Lagrangian (3) is that $0 \leq \alpha_{i}$ was changed to $0 \leq \alpha_{i} \leq C$. Neat! And, the $r_{i}$ 's went away because the KKT conditions says they are $C-\alpha_{i}$, as we will see next.

To get the dual, again we write the KKT conditions, starting with Lagrangian stationarity:

$$
\begin{array}{rlrl}
\nabla_{\lambda} \mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}, \xi\right], \boldsymbol{\alpha}, \mathbf{r}\right) & =\boldsymbol{\lambda}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=\mathbf{0} \Longrightarrow \boldsymbol{\lambda}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} . \\
\frac{\partial}{\partial \lambda_{0}} \mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}, \xi\right], \boldsymbol{\alpha}, \mathbf{r}\right) & =-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \Longrightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
\nabla_{\xi} \mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}, \xi\right], \boldsymbol{\alpha}, \mathbf{r}\right) & =C-\boldsymbol{\alpha}-\mathbf{r}=0 \Longrightarrow \mathbf{r}=C-\boldsymbol{\alpha} \\
\alpha_{i} \geq 0 & \forall i & & \text { (dual feasibility) } \\
r_{i} \geq 0 & \forall i & & \text { (dual feasibility) } \\
\alpha_{i}\left[-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1-\xi_{i}\right] & =0 & \forall i & \\
r_{i} \xi_{i} & =0 & \forall i & \\
\text { (complementary slackness) } \\
-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1 & \leq 0 . & & \text { (primalementary slackness) } \\
-\xi_{i} & \leq 0 . & & \text { (primal feasibilitily) } \\
\text { andity) }
\end{array}
$$

Combining $r_{i} \geq 0$ with $r_{i}=C-\alpha_{i}$, we get that $C-\alpha_{i} \geq 0$, that is, $\alpha_{i} \leq C$. We
can also simplify the Lagrangian:

$$
\begin{aligned}
& \mathcal{L}\left(\boldsymbol{\lambda}, \lambda_{0}, \xi, \boldsymbol{\alpha}, \mathbf{r}\right) \\
& =\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)-1+\xi_{i}\right]-\sum_{i=1}^{n} r_{i} \xi_{i} \\
& =\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)-1\right]+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i} \xi_{i}-\sum_{i=1}^{n} r_{i} \xi_{i} \\
& =\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)-1\right] .
\end{aligned}
$$

where in the last line we again used $r_{i}=C-\alpha_{i}$. Now using the Lagrangian stationarity condition $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$, we can remove the $\lambda_{0}$ term in the expression above. And, as in the separable case, the $\|\boldsymbol{\lambda}\|_{2}^{2}$ term combines with the first term in the sum. The result is:

$$
\mathcal{L}\left(\boldsymbol{\lambda}, \lambda_{0}, \xi, \boldsymbol{\alpha}, \mathbf{r}\right)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, k=1}^{n} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k}
$$

Since the Lagrangian no longer depends on other variables, we can omit the constraints for those other variables and we are done.

The complementary slackness conditions reveal that:

$$
\begin{aligned}
\alpha_{i}>0 & \Longrightarrow 1-\xi_{i}-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)=0 \\
r_{i}>0 \Longrightarrow C>\alpha_{i} & \Longrightarrow \xi_{i}=0
\end{aligned}
$$

which means that if $0<\alpha_{i}<C$ then $1-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)=0$.
The interesting points have $\alpha_{i}>0$ (the others are correctly classified with large margins and don't participate in the solution). There are then three kinds of interesting points: (1) support vectors with $0<\alpha_{i}<C$ (which are correctly classified and with a margin of 1 , where $\xi_{i}=0$ ), (2) points where $\alpha_{i}=C$ and $0<\xi_{i}<1$ (which are correctly classified but have a margin smaller than 1 ), and (3) misclassified points, with $\xi_{i} \geq 1$. To get $\boldsymbol{\lambda}$ we need only sum over the points with nonzero $\alpha_{i}$ 's, so $\boldsymbol{\lambda}=\sum_{i: \alpha_{i}>0} \alpha_{i} y_{i} \mathbf{x}_{i}$. To get $\lambda_{0}$, it is easiest to use a positive support vector in the first category, where complementary slackness tells us that $\lambda_{0}=1-\boldsymbol{\lambda}^{T} \mathbf{x}_{i}$.

## Solving the dual problem with SMO

SMO (Sequential Minimal Optimization) is a type of coordinate ascent algorithm, but adapted to SVM so that the solution always stays within the feasible region.

Start with (6). Let's say you want to hold $\alpha_{2}, \ldots, \alpha_{n}$ fixed and take a coordinate step in the first direction. That is, change $\alpha_{1}$ to maximize the objective in (6). Can we make any progress? Can we get a better feasible solution by doing this?

Turns out, no. Look at the constraint in (6), $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$. This means:

$$
\begin{aligned}
\alpha_{1} y_{1} & =-\sum_{i=2}^{n} \alpha_{i} y_{i}, \text { or multiplying by } y_{1}, \\
\alpha_{1} & =-y_{1} \sum_{i=2}^{n} \alpha_{i} y_{i} .
\end{aligned}
$$

So, since $\alpha_{2}, \ldots, \alpha_{n}$ are fixed, $\alpha_{1}$ is also fixed.

So, if we want to update any of the $\alpha_{i}$ 's, we need to update at least 2 of them simultaneously to keep the solution feasible (i.e., to keep the constraints satisfied).

Start with a feasible vector $\boldsymbol{\alpha}$. Let's update $\alpha_{1}$ and $\alpha_{2}$, holding $\alpha_{3}, \ldots, \alpha_{n}$ fixed. What values of $\alpha_{1}$ and $\alpha_{2}$ are we allowed to choose?

Again, the constraint is: $\alpha_{1} y_{1}+\alpha_{2} y_{2}=-\sum_{i=3}^{n} \alpha_{i} y_{i}=: \zeta$ (fixed constant). We are only allowed to choose $\alpha_{1}, \alpha_{2}$ on the line, so when we pick $\alpha_{2}$, we get $\alpha_{1}$ automatically, from this:

$$
\begin{aligned}
\alpha_{1} & =\frac{1}{y_{1}}\left(\zeta-\alpha_{2} y_{2}\right) \\
& =y_{1}\left(\zeta-\alpha_{2} y_{2}\right) \quad\left(y_{1}=1 / y_{1} \text { since } y_{1} \in\{+1,-1\}\right)
\end{aligned}
$$

Also, the other constraints in (6) say $0 \leq \alpha_{1}, \alpha_{2} \leq C$. So, $\alpha_{2}$ needs to be within $[\mathrm{L}, \mathrm{H}]$ on the figure (in order for $\alpha_{1}$ to stay within $[0, C]$ ), where we will always have $0 \leq \mathrm{L}, \mathrm{H} \leq C$. To do the coordinate ascent step, we will optimize the objective over $\alpha_{2}$, keeping it within [ $\mathrm{L}, \mathrm{H}$ ]. Intuitively, (6) becomes:


$$
\begin{equation*}
\max _{\alpha_{2} \in[\mathrm{~L}, \mathrm{H}]}\left[\alpha_{1}+\alpha_{2}+\text { constants }-\frac{1}{2} \sum_{i, k} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k}\right] \text { where } \alpha_{1}=y_{1}\left(\zeta-\alpha_{2} y_{2}\right) \tag{7}
\end{equation*}
$$

The objective is quadratic in $\alpha_{2}$. This means we can just set its derivative to 0 to optimize it and get $\alpha_{2}$ for the next iteration of SMO. If the optimal value is outside of $[\mathrm{L}, \mathrm{H}]$, just choose $\alpha_{2}$ to be either L or H for the next iteration.

For instance, if this is a plot of (7)'s objective (sometimes it doesn't look like this, sometimes it's upside-down), then we'll choose :


Note: there are heuristics to choose the order of $\alpha_{i}$ 's chosen to update.

## An Interesting Exercise

Let us solve the 1d separable case manually. Let us put positives on the left, and negatives on the right. We will call $a$ the position of the rightmost positive point. We will call $b$ the position of the leftmost negative point.
We know the solution will have at most 2 support vectors at $a$ and $b$ because they are the closest to the decision boundary. They can be the only possible points with a margin of 1 . Every other point must have margin more than 1. We call $\alpha_{1}$ the dual variable for the point at $a$ and $\alpha_{2}$ the dual variable for the point at $b$.
The dual objective is:

$$
\alpha_{1}+\alpha_{2}-\frac{1}{2}\left[\alpha_{1}^{2} a^{2}+\alpha_{2}^{2} b^{2}-2 \alpha_{1} \alpha_{2} a b\right] .
$$

From the constraints for the dual problem, I know that $\alpha_{1}-\alpha_{2}=0$ so $\alpha_{1}=$ $\alpha_{2}:=\alpha$ (we will call it $\alpha$ ). The dual objective simplifies to:

$$
2 \alpha-\frac{1}{2}\left[\alpha^{2}\left(a^{2}+b^{2}-2 a b\right)\right] .
$$

Take the derivative of the dual objective and set it to 0 :

$$
0=2-\frac{1}{2}[2 a]\left[a^{2}+b^{2}-2 a b\right] \Longrightarrow \alpha=\frac{2}{(a-b)^{2}}
$$

Thus, plugging into the formulas for the primal solution:

$$
\begin{aligned}
& \lambda^{*}=\alpha a-\alpha b=\frac{2(a-b)}{(a-b)^{2}}=\frac{2}{a-b} \\
& \lambda_{0}^{*}=1-\frac{2}{a-b} a
\end{aligned}
$$

Now, let us solve for the decision boundary, which is the $x$ for which $f(x)=0$.

$$
\begin{aligned}
0 & =f(x)=\lambda^{*} x+\lambda_{0}=\frac{2}{a-b} x+1-\frac{2 a}{a-b} \\
\frac{2 a}{a-b}-1 & =\frac{2}{a-b} x \\
x & =\frac{2 a-a+b}{a-b} \frac{a-b}{2} \\
x & =\frac{a+b}{2}
\end{aligned}
$$

Just as we expected! The decision boundary is right in the middle of the positive and negative points.

We have shown that there must be at least two support vectors because otherwise we could not have satisfied the constraint in the dual, $\alpha_{1}+\alpha_{2}=0$. In particular, there can never be a solution with only one support vector. Intuitively if there is only one support vector then we have not maximized the margin - we could find a solution where the margin is larger so that both a positive and a negative point have margin 1.

