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Generalization  = Data + Knowledge

credits: Bousquet, Boucheron, Lugosi



drawn iid from

Goal:
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Regression function

Target function (Bayes classifier)

= Bayes Risk

t(x)



Best in practice

= Bayes Risk

Best in class

Best in theory





Test error of (Best in practice) – Test error of (Best in theory)

=          Approximation Error   +   Estimation Error

Comes from randomness in data

Comes from limit on function class



What comes next:

A bound for a single f

The reason why a bound for a single f is no good.
The Ockham’s Razor Bound.
The VC Bound.
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There is a bijection between

is 1 if  f makes a mistake on (x,y)

If ,

For each f in      create a loss function g: 

Want:



Change notation yet again:

In the new notation:

As n → ∞, the above approaches 0. But we can do better.



Plug in, and apply Hoeffding’s to P’s:

“2-sided Hoeffding’s”



After “inversion”:

“1-sided Hoeffding’s”



After “inversion”:

Want small
Is small

If n big, is small



Want small
Is small

If n big, is small

Interestingly, the bound doesn’t apply when f comes 
from any reasonable learning algorithm!
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Want small
Is small

If n big, is small

Interestingly, the bound doesn’t apply when f comes 
from any reasonable learning algorithm!



Want small
Is small

If n big, is small

For f, chosen in advance (without knowledge of the data),



Want small
Is small

If n big, is small

For f, chosen in advance (without knowledge of the data),

For fn

Want



Want small
Is small

If n big, is small

For f, chosen in advance (without knowledge of the data),

For all f in 

Want



For each fixed function               there is a large 
set of “good” datasets where

But this set can be different for different    ! 











If       is large, there are more opportunities to find an f
where distance between                                       is large.

We need to make sure this doesn’t happen! 
Solution: want that w.h.p.,                                       are close for all f  in        .



Solution: want that w.h.p.,                                       are close for all f  in        .

Uniform bounds
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Uniform deviations

From Hoeffding’s Inequality

For all j, with prob at least           , 



From Hoeffding’s Inequality

Union Bound

For all j, with prob at least           , 



From Hoeffding’s Inequality

Union Bound

Prob that our (random) dataset is bad for any of the functions

From Hoeffding’s Inequality

For all j, with prob at least           , 

Sum of probs that our (random) dataset is bad for each of the functions



(from Hoeffding’s Inequality)

(prob there’s a bad data for some function)

(from Union Bound)



Invert:

Replacing g with f, we have the main result. 



• Holds no matter which function f our algorithm chooses.
• Says that as long as our hypothesis space isn’t too big, we 

obtain knowledge about the true risk. 
• logarithmic in M 
• Applies to finite hypothesis spaces

• E.g., decision trees over binary/categorical variables
• E.g., linear models with integer coefficients
• E.g., neural networks with integer weights

• Infinite hypothesis spaces coming soon!
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Assuming , we can use Ockham’s Razor to
bound the estimation error.
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• Generalization = data + knowledge                             
(like restricting to a class of functions     ). 

• For a fixed function f, with high probability,



• For a fixed function f, with high probability,

• For if the function class is finite,  , with high probability,

the extra term is because we want to choose fn in a way that depends on data.

• Generalization = data + knowledge                             
(like restricting to a class of functions     ). 



• The union bound is in general loose, because it is as 
bad as if all the fj (Z)’s are independent

• The bound is vacuous when there are an infinite 
number of functions in     .
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• Let’s extend the Ockham’s Razor bound to the 
countably infinite case.  
• Recall the 1-sided Hoeffding’s Inequality. For any 𝑔,

This time, make on 𝛿 depend on 𝑔. 
If we have a countably infinite    , the union bound gives:  



• This creates a probability distribution over 𝑔’s.

After doing inversion,

with probability at least 1−𝛿



• This creates a probability distribution over 𝑔’s.

After doing inversion,

• Note: if      is finite of size M, and 𝑝 𝑔 = !
"

, we get back to the log(M) 
term and the Ockham’s Razor Bound.  

with probability at least 1−𝛿

• Does not work if any of the 𝑝 𝑔 ’s are 0.
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• Q. How do we reduce an infinite number of 
functions into a finite number of classifiers? 

• A. Look at how the functions classify the data. 

*
** *

*

*

**
*
*

*
*

• Under some configurations of the data, we can classify in more ways. 

* **



• Q. How do we reduce an infinite number of 
functions into a finite number of classifiers? 

• A. Look at how the functions classify the data. 

• Under some configurations of the data, we can classify in more ways. 

* *

**
** *

*

*

**
*
*

*
*



set of ways the data            ar can be classified by 
functions from     .

Definition: The growth function of function class      is the maximum 
number of ways into which n points can be classified by the function class.



Examples
Halfspaces in 2D - binary functions whose decision 
boundary is a line. 

The growth function for one point is 



Examples
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boundary is a line. 
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Examples
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Examples
Halfspaces in 2D - binary functions whose decision 
boundary is a line. 

The growth function for one point is 

The growth function for two points is 

The growth function for three points is 

The growth function for four points is 
???

It is less than 24.



Examples
Halfspaces in 2D - binary functions whose decision 
boundary is a line. 

The growth function for one point is 

The growth function for two points is 

The growth function for three points is 

The growth function for four points is 

It is less than 24.

The growth function can be 
used to measure the “capacity” 

of a set of functions.





This theorem is non-vacuous for lines in the plane.

This theorem is non-vacuous for infinite function spaces.

In the finite case, strictly better than Ockham’s Razor.
(except for constants)



Proof ingredients:
• Symmetrization Lemma
• Create a “ghost” sample. 
• Bound the difference between the behavior on 

one dataset versus another. 
• This gives us a bound on the behavior of a 

dataset with respect to the true risk.
• Hoeffding’s Inequality
• Union Bound
• Chebyshev’s Inequality
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Have you noticed that this bound is not 
easy to compute?!



Halfspaces in 2D - binary functions whose decision 
boundary is a line. 

The growth function for one point is 

The growth function for two points is 

The growth function for three points is 

The growth function for four points is 

It is less than 24.



If                        , there is a dataset of n points where
can perfectly classify them, no matter what the 

labels are.                                     

shatters the set.

{Lines in the plane} shatters 
2 data points in 2D



If                        , there is a dataset of n points where
can perfectly classify them, no matter what the 

labels are.                                     

shatters the set.

{Lines in the plane} shatters 
3 data points in 2D.



If                        , there is a dataset of n points where
can perfectly classify them, no matter what the 

labels are.                                     

shatters the set.

{Lines in the plane} does not 
shatter 4 data points in 2D.



The VC dimension of     is the largest number of 
points it can shatter.                                     

Definition: The VC dimension of     is the largest 
number of points n such that:                                     

What is the VC dimension of halfspaces in 2 dimensions?

Can you guess the VC dimension of halfspaces in p dimensions?

3

p+1



Note: VC dimension is the largest number of 
points n such that there exists some configuration 
of them that can be shattered.

The VC dimension of     is the largest number of 
points it can shatter.                                     

+ +_ + +
_



Note: VC dimension is the largest number of 
points n such that there exists some configuration 
of them that can be shattered.

The VC dimension of     is the largest number of 
points it can shatter.                                     

To prove that VC dimension of     is h,
• show there exists a configuration of h points that can be shattered 
• show no configuration of h+1 points exist that can be shattered 



The VC dimension of     is the largest number of 
points it can shatter.                                     

Definition: The VC dimension of     is the largest 
number of points n such that:                                     

What is the VC dimension of halfspaces in 2 dimensions?

Can you guess the VC dimension of halfspaces in p dimensions?

3

p+1

Is the VC dimension always related to the number of parameters? No.
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There exists a 1-parameter family of functions with 
infinite VC dimension.



t = (1/4)*(sum(((1-y).*(10.^[i]))+1));
t =  5.050550500053250e+12

sign(sin(tx))i 𝑥 = 2𝜋10#$

t = !
%
∑$&!' [(1 − 𝑦$)10$ + 1]

y y



There exists a 1-parameter family of functions with 
infinite VC dimension.

VC dimension ≠ number of parameters
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Recall that in Theorem GrowthFunction, we ran 
into a problem… Perhaps VC dim will solve it.

If a class of functions has VC dim h, we know we can 
shatter n observations when n ≤ h and                        .

When n > h, we can’t shatter, and                       . 

An intriguing phenomenon 
about the growth function:

It i
s e

xponentia
l u

p to
 here

And polynomial afterwards!



It i
s e

xponentia
l u

p to
 here

And polynomial afterwards!



Combining this lemma with 
Theorem GrowthFunction:



Difference between true and empirical risks is at most

This is sooo much better than infinite!



Why is the VC bound important?

It’s a generalization bound that is non-vacuous 
even for infinite function classes.

It’s a finite sample bound.

VC dimension can be computed or bounded in many cases.

Beautiful combinatorial quantity.

Tells you what quantities are important for the learning process. 



Caveat:
Too loose to be directly useful in practice. You can’t 
minimize it and expect to keep the true risk low.

But, it tells you what quantities are important for the learning process. 
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Caveat:
Too loose to be directly useful in practice. You can’t 
minimize it and expect to keep the true risk low.

But, it tells you what quantities are important for the learning process. 



“Gap-tolerant” classifiers
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An upper bound on the True Risk by: 
• Empirical Risk  
• Margin 




