
Variable Importance

Duke Course Notes
Cynthia Rudin

Sources: Fisher et al, (2019), Breiman (2001)

An understanding of variable importance is useful for a multitude of reasons.
However, the term “variable importance” doesn’t have meaning without context.
Variable importance to what entity? People use the term all the time to mean
totally different things! And it is confusing.

1. How important is the variable to a given machine learning model?

2. How important is the variable’s unique information (that cannot be ex-
pressed by other variables) to a given machine learning model?

3. How important is the variable for a specific prediction given by a specific
machine learning model?

4. How important is the variable to a given algorithm on a dataset?

5. How important is the variable to the dataset? This last one is too general,
so let’s make it more specific: How important is the variable to any good
predictive model on the dataset?

6. How important is the variable’s unique information (that cannot be ex-
pressed by other variables) to the dataset? Again, let’s make it more specific:
How important is the variable’s unique information to any good predictive
model on the dataset?

There are a multitude of answers to any of these questions. We will pick one or
two for each.

1. How important is the variable to a given machine learning model? When
asking this question, you must remember that this doesn’t tell you how much
any reasonable model would use that variable, just how much a given model uses
the variable.

For linear models, one could use the magnitude of the variable’s coefficient. To
do this, you must remember to normalize the range of the variable to [0,1]. (If

1

you don’t, a variable that takes tiny values and thus has huge coefficients will
always appear to be very important!)

For nonlinear models, you can use model reliance, which is a permutation im-
portance technique. Random forests comes with its own variable importance
technique. I’ll describe both. They have a disadvantage that I’ll discuss.

Model Reliance (MR):
This is a simple technique: we scramble the variable (messing up its joint dis-
tribution with other variables and with the label), and determine how much the
loss increased when we did it. To do the scrambling, we would randomly per-
mute the jth variable (reorder the jth column) of the matrix X, where each
feature is a column. I will denote the matrix X with the jth column scrambled
as Xj scrambled. The model reliance of model f on variable j is:

MRdiff(f, j) := Loss(f(Xj scrambled),Y)− Loss(f(X),Y).

(Here I used matrix notation, where Loss is the empirical risk, that is, the sum
of losses over all i.) If MRdiff(f, j) = 0, it means the variable wasn’t important,
because the loss didn’t change when we messed up that variable.

Why do we scramble the variable rather than setting it to 0? Sometimes it
doesn’t matter, but sometimes it does: if your model is a decision tree, then
setting a variable to 0 could send all of the observations down one branch of the
tree that has a split on that variable, which you don’t want. When you scramble
the variable, you are destroying its joint distribution with the other features and
the label, but you are preserving its marginal distribution.

We can instead define MR as a ratio rather than a difference:

MRratio(f, j) :=
Loss(f(Xj scrambled),Y)

Loss(f(X),Y)
.

The values from MRratio(f, j) have a natural interpretation. If MRratio(f, j)=1,
then the variable wasn’t important, since the scrambled error is the same as the
regular error. If MRratio(f, j)=2, it means the error doubled when we scrambled
the variable. If MRratio(f, j)=1.5, the error went up by half its usual amount
when we scrambled the variable.

2

There are actually a few different variations of how to scramble the variable and
calculating the loss. For instance, instead of randomly permuting the values of
j, we could use all pairwise swaps. For ease of notation, let us say the variable
of interest is variable 1. I can swap point i’s value of variable 1 with point k’s
value, for each possible pair of points i and k.

1

n(n− 1)

!

i,k:i ∕=k

loss(f([xi,1,xi,2,..p]), yi).

If that is too computationally expensive, I could just take the value of variable
1 from the first half of the dataset, and swap it with variable 1’s values for the
second half of the dataset, and add up the losses for these n newly formed data
points.

Model reliance does have a disadvantage, which is that when you use predictions
from a scrambled variable, your scrambled data points may be outside the distri-
bution that the data typically reside (Hooker and Mentch, 2019). For instance,
you could have a datapoint representing a 40-year-old married male with dia-
betes, and when you scramble age, it could become a 2-year-old married male
with diabetes. The model might behave in unexpected ways on this new data
point because it wasn’t trained on data similar to this datapoint. That said, I
still think model reliance is useful, for the simple reason that if the variable does
not appear in the model, the model reliance will be around 0 (or 1 in the case
of MRratio), because you generally won’t predict better out-of-distribution than
you could predict within-distribution.

Random Forest’s Variable Importance:
Random forest’s variable importance is essentially model reliance calculated on
data that wasn’t used in each tree. (Remember, when you take a bootstrap
sample, it would typically include some data points twice and some not at all.)
So it uses out-of-sample data for each tree t that was built in the forest. Here is
how it works:

• Take the data not used to construct tree t. Call it out-of-bag data for tree
t, OOBt.

• Compute losst(treet, OOBt), the loss for model treet on data OOBt.

3

• Now, randomly permute variable j, call this OOBt,scrambled. Compute loss(treet,
OOBt,scrambled).

• Calculate the variable importance for variable j as the average difference in
losses between the permuted and original data:

1

T

!

t

[Losst(treet,OOBt,scrambled)− Losst(treet,OOBt)] .

This is nice in that it is essentially an out-of-sample calculation within a training
set.

Back to the questions we could ask about variable importance:

2. How important is the variable’s unique information (that cannot be expressed
by other variables) to a given machine learning model?

Here, we’ll describe conditional model reliance.

Conditional Model Reliance. If features are highly correlated, a model might
choose one of them (call it variable 1). However, we want to know how much
the model relies on information from x·,1 that cannot be gleaned from the rest
of the variables, which we call x·,2...p. (I’m using notation x·,1 to mean that I am
looking at variable 1, without choosing a particular observation, which would
have been denoted xi,1 .)

To get the answer to this, we try to scramble just the part of x·,1 that cannot be
predicted using x·,2...p.

Step 1. For each observation i, we’re going to predict its value of xi,1 from its
value of xi,2...p. I’ll denote that with x̂i,1. We could write that x̂i,1 is an estimate
of the expectation of the random variable Xi,1 when variables 2 . . . p are set to
xi,2...p:

x̂i,1 = Ê(Xi,1|Xi,2...p = xi,2...p).

A tricky part about this calculation is that you need a separate machine learning
algorithm to make this prediction, and it is not clear which one to use. Proba-
bly I would use kernel least squares (which is explained later) if the variable is

4

continuous, or logistic regression or boosting (both explained later) for binary
variables. We can think about x̂i,1 as containing the information about xi,1 that
can be gleaned from other variables. The “unique” information to variable 1 for
point i is then what remains:

xi,1 − x̂i,1.

Step 2. Now we’ll scramble the unique information. We will take the unique
information from point i and give it to a different point k, whose unique infor-
mation has been removed.

xscrambled
ik,1 = [xi,1 − x̂i,1] + x̂k,1.

Now, we have successfully created a data point where the unique information
has been scrambled. We’ll put this new value for the first variable alongside the
rest of k’s variables:

xscrambled
ik = [xscrambled

ik,1 ,xk,2...p].

This point is actually xk but where k’s unique information about variable 1 was
replaced with i’s unique information about variable 1. I like to think of this new
vector xscrambled

ik as a sort of chimera, with the body of point k and the head of
point i.

Step 3. Calculate the scrambled loss for all of these “chimeric” points:

ScrambledLoss1 =
1

n(n− 1)

!

ik:i ∕=k

loss(yk, f(x
scrambled
ik)).

And then, as usual, you could use a difference or ratio to compare the scrambled
loss to the usual loss. I’ll use the ratio to compute conditional model reliance:

CMRratio(f, 1) :=
ScrambledLoss1
Loss(f(X),Y)

.

Note that using CMR assumes homogeneous residuals, which is a weaker as-
sumption than we implicitly assumed for MR. That is, CMR would be less likely
to consider predictions for points that are far outside the distribution of the data.

If the conditional model reliance (as defined above) is 1.1, then the unique infor-
mation that variable 1 provides would lead to a 10% increase in the loss if it were
damaged. If the CMR value is 1, then there is no unique information in variable

5

1; we can glean all the information we need about variable 1 from other variables.

3. How important is the variable for a specific prediction given by a specific
machine learning model?

For linear models, f(xi) = bTxi = b1xi,1+b2xi,2+ ...+bjxi,j+, So for variable
j, its contribution to the prediction is bjxi,j.

When we get to generalized additive models (GAMs), they will also tell you ex-
actly how much a variable contributed to each prediction.

For nonlinear models that are not inherently interpretable, it becomes more dif-
ficult. There is a whole cottage industry of methods that do this, though that
goes beyond today’s lecture.

4. How important is the variable to a given algorithm on a dataset?

This question is much easier to answer than some of the earlier questions. Here,
we run the algorithm with and without the variable and see how much the loss
changes. Let us denote this as algorithm reliance (AR):

AR(variable j, algorithm A) =
Loss of algorithm A using all variables except j

Loss of algorithm A using all variables
.

Here, if the algorithm actually needed the variable to perform well, AR would be
large. If the algorithm could perform equally well with and without the variable,
its value would be 1.

I use algorithmic reliance quite a lot. It is really useful because it tells you how
much the algorithm needs to rely on a variable. It tells you about necessity of
the variable.

(Note that it does not tell you how much a single model f uses a variable since
AR uses multiple models. If you are studying a single model, MR or CMR would
be relevant.)

5. How important is the variable to the dataset? This last one is too general, so
let’s make it more specific: How important is the variable to any good predictive

6

model on the dataset?

This question interests a lot of people. Unfortunately people who often want
the answer to this question mistakenly end up calculating the answer to other
problems instead because they do not understand the differences between these
variable importance questions. Unfortunately it means they will get the wrong
answer if they don’t ask the right question!

What we would like is the most and the least that any good predictive model
will depend on variable j. The problem with this question is that we cannot
actually enumerate or optimize over all good predictive models. Thus, to make
the problem computable, we will optimize over all good models within a chosen
function class F . This is called Model Class Reliance.

Model Class Reliance. Let us define the set of all good models in class F to
be the set of models with loss that is not much more that of a reference model
fref that is known to be reasonably good. We call this the Rashomon Set.

Rset(F , !, fref) = {f ∈ F : Loss(f(X), Y) ≤ Loss(fref, Y) + !} .

Then we compute the range of possible model reliance values over functions in
the Rashomon set.

[MCR−(!, j),MCR+(!, j)] :=

"
min

f∈Rset(F ,!,fref)
MR(f, j), max

f∈Rset(F ,!,fref)
MR(f, j)

#
.

This range (these two numbers) constitutes the model class reliance.

The name Rashomon comes from a Japanese movie, and it was used by Leo
Breiman (Breiman, Two Cities) to describe the notion that there may not be a
“best” model, but instead there are many almost-equally-good models, none of
which might represent the “truth.”

If the MCR+ value is small, it means there are no good models in F that heavily
use variable j. For instance, say we are using the ratio version of model reliance,
MRratio. Then, if the range is [1, 1.001], it means that permuting variable j for
any good model would increase error only by at most .1%. In that case, it’s safe
to remove the variable, since no good models use it.

7

If the MCR range is large, it means that there are some good models that heav-
ily use j and some that do not. For instance, in criminal justice, race variables
are usually correlated with age and criminal history (due to systemic racism in
society). Thus, if we were to predict future re-offending, we might see an MCR
that looks like [1,2] for a race variable. This means that there are some low-loss
models that do not depend on race at all, and some models that depend on it a
lot. Since race doesn’t cause crime, some people might be surprised that it can
be predictive. For many applications in criminal justice, financial lending and
beyond, we omit explicit race variables, though we should mention that informa-
tion about race is often contained in correlated variables, as shown by the MCR.

If the MCR range consists of all large numbers (e.g., [1.4-3]), it means that all
good models from F rely on variable j. For instance, we might find that all
models for criminal re-offense heavily rely on criminal history features.

MCR is not trivial to calculate, but it has a direct method of calculation for
linear models and models from reproducing kernel Hilbert spaces (which will be
discussed later, see Fisher et al, 2019). These are very flexible classes of models,
because they can include linear combinations of nonlinear combinations of the
original variables.

6. How important is the variable’s unique information (that cannot be expressed
by other variables) to the dataset? Again, let’s make it more specific: How im-
portant is the variable’s unique information to any good predictive model on the
dataset?

Here, we can use conditional model class reliance (CMCR), which is a combina-
tion of CMR and CMCR (Fisher et al, 2019):

[CMCR−(!, j),CMCR+(!, j)] :=

"
min

f∈Rset(F ,!,fref)
CMR(f, j), max

f∈Rset(F ,!,fref)
CMR(f, j)

#
.

Again, this is not trivial to calculate; calculating CMCR for different model
classes could be an interesting future area of research. CMCR is probably closer
to what scientists actually want when exploring importance of variables. It
has some major advantages: like CMR, it looks only at the unique information
provided by a variable that cannot be gleaned from other variables; and, like

8

MCR, it is model independent, depending only on a model class that is hopefully
large enough to approximate all good models. Thus, it should reveal general
information that is unique to the variable, and thus a property of a dataset
rather than of a single model.

9

