
Data Min Knowl Disc
DOI 10.1007/s10618-013-0329-7

Growing a list

Benjamin Letham · Cynthia Rudin ·
Katherine A. Heller

Received: 16 December 2012 / Accepted: 19 June 2013
© The Author(s) 2013

Abstract It is easy to find expert knowledge on the Internet on almost any topic,
but obtaining a complete overview of a given topic is not always easy: information
can be scattered across many sources and must be aggregated to be useful. We intro-
duce a method for intelligently growing a list of relevant items, starting from a small
seed of examples. Our algorithm takes advantage of the wisdom of the crowd, in
the sense that there are many experts who post lists of things on the Internet. We
use a collection of simple machine learning components to find these experts and
aggregate their lists to produce a single complete and meaningful list. We use exper-
iments with gold standards and open-ended experiments without gold standards to
show that our method significantly outperforms the state of the art. Our method uses
the ranking algorithm Bayesian Sets even when its underlying independence assump-
tion is violated, and we provide a theoretical generalization bound to motivate its
use.

Responsible editor: Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezny.

Electronic supplementary material The online version of this article
(doi:10.1007/s10618-013-0329-7) contains supplementary material, which is available to authorized users.

B. Letham (B)
Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: bletham@mit.edu

C. Rudin
MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: rudin@mit.edu

K.A. Heller
Center for Cognitive Neuroscience, Statistical Science, Duke University, Durham, NC, USA
e-mail: kheller@gmail.com

123

http://dx.doi.org/10.1007/s10618-013-0329-7

B. Letham et al.

Keywords Set completion · Ranking · Internet data mining · Collective intelligence

1 Introduction

We aim to use the collective intelligence of the world’s experts to grow a list of
useful information on any given topic. To do this, we aggregate knowledge from
many experts’ online guides in order to create a central, authoritative source list. We
focus on the task of open-ended list aggregation, inspired by the collective intelli-
gence problem of finding all planned events in a city. There are many online “experts”
that list Boston events, such as Boston.com or Yelp, however these lists are incom-
plete. As an example of the difficulties caused by information fragmentation, traffic
in parts of greater Boston can be particularly bad when there is a large public event
such as a street festival or fundraising walk. Even though these events are planned
well in advance, the lack of a central list of events makes it hard to avoid traffic
jams, and the number of online sources makes it difficult to compile a complete list
manually.

As the amount of information on the Internet continues to grow, it becomes increas-
ingly important to be able to compile information automatically in a fairly complete
way, for any given domain. The development of general methods that automatically
aggregate this kind of collective knowledge is a vital area of current research, with
the potential to positively impact the spread of useful information to users across the
Internet.

Our contribution in this paper is a real system for growing lists of relevant items from
a small “seed” of examples by aggregating information across many internet experts.
We provide an objective evaluation of our method to show that it performs well on a
wide variety of list growing tasks, and significantly outperforms existing methods. We
provide some theoretical motivation by giving bounds for the Bayesian Sets method
used within our algorithm. None of the components of our method are particularly
complicated; the value of our work lies in combining these simple ingredients in the
right way to solve a real problem.

There are two existing, publicly available methods for growing a list of items
related to a user-specified seed. The first was introduced ten years ago on a large
scale by Google Sets, which is accessible via Google Spreadsheet. The second is
a more recent online system called Boo!Wa! (http://boowa.com), which is similar
in concept to Google Sets. In our experiments, we found that Boo!Wa! is a sub-
stantial advance above Google Sets, and the algorithm introduced here is a simi-
larly sized leap in technology above Boo!Wa!. In a set of 50 experiments shown in
Sect. 4, the lower 25th percentile of our performance was better than the median
performance of both Google Sets and Boo!Wa! in Precision@10 and average pre-
cision. More generally, our work builds on “search” and other work in informa-
tion retrieval. Search engines locate documents containing relevant information,
but to produce a list one would generally need to look through the webpages
and aggregate the information manually. We build on the speed of search, but do
the aggregation automatically and in a much more complete way than a single
search.

123

http://boowa.com

Growing a list

2 Algorithm

Algorithm 1 gives an outline of the list growing algorithm, which we now discuss in
detail.

Algorithm 1 Outline of the list growing algorithm
Input: A list of seed items
Output: A ranked list of new items related to the seed items
for as many iterations as desired do

for each pair of seed items do
Source discovery: Find all sites containing both items
for each source site do

List extraction: Find all items on the site represented similarly to the seed items
end for

end for
for each discovered item do

Feature space: Using a search with the item as the query, construct a binary feature vector of domains
where the item is found
Ranking: Score the item according to the seed using Bayesian Sets

end for
Implicit feedback: Add the highest-ranked non-seed item to the seed

end for

Source discovery: We begin by using the seed items to locate sites on the Internet
that serve as expert sources for other relevant items. We use a combinatorial search
strategy that relies on the assumption that a site containing at least two of the seed
items likely contains other items of interest. Specifically, for every pair of seed items,
we search for all websites that contain both of the items; this step takes advantage of
the speed of “search.”

In some cases, seed items may appear together in several contexts. For example,
suppose one were to grow a list of Category 5 Atlantic hurricanes with “Hurricane
Katrina” and “Hurricane Emily” in the seed. In addition to being Category 5 hurricanes,
both of these hurricanes were in the 2005 hurricane season, and are found together
on lists of 2005 Atlantic hurricanes. A search for sites containing both of these seed
items would then recover both relevant sources on Category 5 hurricanes, as well as
irrelevant sources on 2005 hurricanes. When more than two seed items are available,
the context can be constrained by requiring source sites to contain all seed items, as
opposed to just pairs. While this can potentially reduce the number of incorrect items,
it could also miss relevant items that are found only on fragmented lists with little
overlap. With our pairwise search strategy, our primary goal is complete coverage of
relevant items, and we use the later ranking step to push the incorrect items to the
bottom of the list. In Sect. 4.2 we explore experimentally how additional seed items
constrain the context when ranking, and experimental results in Sect. 4.3 provide
additional motivation for source discovery with pairs.

List extraction: The output of the combinatorial search is a collection of source sites,
each of which contains at least two seed items. We then extract all of the new items
from each of these sites. Here our strategy relies on the assumption that human experts
organize information on the Internet using HTML tags. For each site found with the

123

B. Letham et al.

combinatorial search, we look for HTML tags around the seed items. We then find the
largest set of HTML tags that are common to both seed items (for this site) and extract
all items on the page that use the same HTML tags. In some situations, this strategy
can result in noisy lists because it allows any HTML tags, including generic ones
like and <a>. An alternative strategy is to limit item extraction to list-specific
HTML tags like , and we explore this and related strategies experimentally in
Sect. 4.2. As before, our goal at this step is complete coverage of relevant items, so we
allow all HTML tags and use the later ranking step to ensure that the noise is pushed
to the bottom of the list.

Feature space: At this point the algorithm has discovered a collection of lists,
each from a different source. We now combine these lists so that the most relevant
information is at the top of the final, merged list. To determine which of the discovered
items are relevant, we construct a feature space in which to compare them to the seed
items. Specifically, for each discovered item x , we construct a binary feature vector
where each feature j corresponds to an internet domain (like boston.com or mit.edu),
and x j = 1 if item x can be found on internet domain j . This set of internet domains
is found using a search engine with the item as the query.

The assumption behind this strategy is that related items should be found on a set
of mainly overlapping domains, so we determine relevance by looking for items that
cluster well with the seed items in the feature space. Constructing this feature space
requires an additional search query for each discovered item. An alternative strategy
that does not require additional search queries is to construct the feature space using
only the source sites, that is, sites containing at least two seed items. This strategy,
however, does not provide a way to distinguish between items that are found often in
general, both with or without seed items, and items that are found often specifically
with seed items. We compare these two approaches empirically in Sect. 4.2.

Ranking: The Bayesian Sets algorithm (Ghahramani and Heller 2005) ranks items
according to the likelihood that they form a cluster with the seed, based on a probabilis-
tic model for the feature space. Specifically, we suppose that each feature (in general,
x j) is a Bernoulli random variable with probability θ j of success: x j ∼ Bern(θ j).
Following the typical Bayesian practice, we assign a Beta prior to the probability of
success: θ j ∼ Beta(α j , β j). Bayesian Sets assigns a score f (x) to each item x by
comparing the likelihood that x and the seed S = {x1, . . . , xm} were generated by the
same distribution to the likelihood they are independent:

f (x) := log
p(x, S)

p(x)p(S)
. (1)

Suppose there are N features: x ∈ {0, 1}N . Because of the Bernoulli-Beta conju-
gacy, Ghahramani and Heller (2005) show that (1) has an analytical form under the
assumption of independent features. However, the score given in Ghahramani and
Heller (2005) can be arbitrarily large as m (the number of seed examples) increases.
We prefer a normalized score because it leads to guarantees that the results are stable,
or not too sensitive to any one seed item, as we show in Sect. 3. We use the following
scoring function which differs from that in Ghahramani and Heller (2005) only by
constant factors and normalization:

123

Growing a list

fS(x) := 1

Z(m)

N∑

j=1

x j log
α j + ∑m

s=1 xs
j

α j
+ (1 − x j) log

β j + m − ∑m
s=1 xs

j

β j
,

(2)

where

Z(m) := N log

(
γmin + m

γmin

)

and γmin := min
j

min{α j , β j } is the weakest prior hyperparameter. It is easy to show

that fS(x) ∈ [0, 1], as we do in Lemma S1 in the supplement. Given the seed and the
prior, (2) is linear in x , and can be formulated as a single matrix multiplication. When
items are scored and then ranked using Bayesian Sets, the items that were most likely
to have been generated by the same distribution as the seed items are put high on the
list.

As is typically the case in Bayesian analysis, there are several options for selecting
the prior hyperparametersα j andβ j , including the non-informative priorα j = β j = 1.
Heller and Ghahramani (2006) recommend using the empirical distribution. Given n
items to score x (1), . . . , x (n), we let

α j = κ1

(
1

n

n∑

i=1

x (i)
j

)
, β j = κ2

(
1 − 1

n

n∑

i=1

x (i)
j

)
. (3)

The first term in the sum in (2) corresponds to the amount of score obtained by x
for the co-occurrence of feature j with the seed, and the second term corresponds to
the amount of score obtained for the non-occurrence of feature j with the seed. When
α j = β j , the amount of score obtained when x j and the seed both occur is equivalent
to the amount of score obtained when x j and the seed both do not occur. Increasing
β j relative to α j gives higher emphasis to co-occurring features. This is useful when
the feature vectors are very sparse, as they are here; thus we take κ2 > κ1.

There are a number of alternative ranking algorithms that could be considered
within this same framework, including non-probabilistic metrics. Stand-alone com-
parisons of Bayesian Sets and several alternatives done in Heller and Ghahramani
(2006) provide empirical motivation for its use. The generalization bounds provided
in Sect. 3 provide theoretical motivation for using Bayesian Sets in high-dimensional
settings with correlated features.

Feedback: Once the lists have been combined, we continue the discovery process
by expanding the seed. A natural, unsupervised way of expanding the seed is to add
the highest ranked non-seed item into the seed. Though not done here, one could also
use a domain expert or even crowdsourcing to quickly scan the top ranked items and
manually expand the seed from the discovered items. Then the process starts again; we
do a combinatorial search for websites containing all pairs with the new seed item(s),
extract possible new items from the websites, etc. We continue this process for as
many iterations as we desire. In practice, there is no need to repeat searches for pairs

123

B. Letham et al.

of seed items that have already been explored in previous iterations. Also, we track
which sites have been visited during source discovery and do not revisit these sites in
later iterations.

Further implementation details are given in Appendix A. All of the components of
our approach scale well to work fast on large problems: Item discovery is done with
a regular expression, ranking is done with a single matrix multiplication, and all of
the remaining steps require simple web queries. We used Google as the search engine
for our experiments, however, Google creates an artificial restriction on the number of
queries one can make per minute. This, and the speed of downloading webpages for
item extraction, are the only two slow steps in our method—with the webpages already
downloaded, the whole process took on average 1.9 s in our experiments in Sect. 4.1
(on a laptop with a 2.6 GHz i5 processor). Both issues would be fixed if we had our
own web index and search engine, for instance, if we had direct access to Google’s
resources. Google or another search engine could implement this method and it would
work in real time, and would give a substantial advantage over the state-of-the-art.
In the meantime, companies or researchers wanting to curate master lists on specific
topics can implement our method using one of the available search engines, as we do
in our experiments in Sect. 4.

3 Theoretical results

The derivation for Bayesian Sets assumes independent features. In this application,
features are internet domains, which are almost certainly correlated. Because Bayesian
sets is the core of our method, we motivate its use in this application by showing that
even in the presence of arbitrary dependence among features, prediction ability can
be guaranteed as the sample size increases. We consider an arbitrary distribution from
which the seed S is drawn, and prove that as long as there are a sufficient number of
items, x will on expectation score highly if it is from the same distribution as the seed
S. Specifically, we provide a lower bound for Ex [fS(x)] that shows that the expected
score of x is close to the score of S with high probability. We provide two results that
use different proof techniques. This is a case where statistical learning theory provides
theoretical backing for a Bayesian method.

Proposition 1 Suppose x1, . . . , xm are sampled independently from the same distri-
bution D over {0, 1}N . For all m ≥ 2, with probability at least 1 − δ on the draw of
the training set S = {x1, . . . , xm},

Ex [fS(x)] ≥ 1

m

m∑

s=1

fS(xs) −
√

1

2m
log

(
2N

δ

)
.

The proof of Proposition 1 is an application of Hoeffding’s inequality and the union
bound, and is given in the supplementary material.

Theorem 1 provides an additional result that has a weaker dependence on δ, but has
no dependence on the number of features N , which in this application is the number

123

Growing a list

of internet domains and is thus extremely large. Theorem 1 also gives insight into the
dependence of generalization on the problem parameters.

Theorem 1 Suppose x1, . . . , xm are sampled independently from the same distrib-
ution D. Define p j to be the probability that feature j takes value 1. Let pmin =
min

j
min{p j , 1− p j } be the probability of the rarest feature. For all pmin > 0, γmin > 0

and m ≥ 2, with probability at least 1 − δ on the draw of the training set
S = {x1, . . . , xm},

Ex∼D [fS(x)] ≥ 1

m

m∑

s=1

fS(xs) −
√

1

2mδ
+ 6

g(m)δ
+ O

(
1

m2 log m

)
,

where

g(m) := (γmin + (m − 1)pmin) log

(
γmin + m − 1

γmin

)

The proof of Theorem 1 involves showing that Bayesian Sets is a “stable” algorithm,
in the sense of “pointwise hypothesis stability” (Bousquet and Elisseeff 2002). We
show that the Bayesian Sets score is not too sensitive to perturbations in the seed set.
Specifically, when an item is removed from the seed, the average change in score
is bounded by a quantity that decays as 1

m log m . This stability allows us to apply a
generalization bound from Bousquet and Elisseeff (2002). The proof of pointwise
hypothesis stability is given in the supplementary material.

The two quantities with the most direct influence on the bound are γmin and pmin.
We show in the supplementary material that for pmin small relative to γmin, the bound
improves as γmin increases (a stronger prior). This suggests that a strong prior improves
stability when learning data with rare features. As pmin decreases, the bound becomes
looser, suggesting that datasets with rare features will be harder to learn and will be
more prone to errors.

The fact that the bound in Theorem 1 is independent of N provides motivation for
using Bayesian Sets on very large scale problems, even when the feature independence
assumption does not hold. It indicates that Bayesian Set’s performance may not degrade
when faced with high dimensional data. That is, Theorem 1 provides evidence that
Bayesian Sets may not suffer from the curse of dimensionality.

The gap between the expected score of x and the (empirical) score of the seed goes
to zero as 1√

m
. Thus when the seed is sufficiently large, regardless of the distribution

over relevant items, we can be assured that the relevant items generally have high
scores.

4 Experiments

We demonstrate and evaluate the algorithm with two sets of experiments. In the first set
of experiments, we provide an objective comparison between our method, Google Sets,
and Boo!Wa! using a randomly selected collection of list growing problems for which

123

B. Letham et al.

there exist gold standard lists. The true value of our work lies in the ability to construct
lists for which there are not gold standards, so in a second set of experiments we
demonstrate the algorithm’s performance on more realistic, open-ended list growing
problems. For all experiments, the steps and parameter settings of the algorithm were
exactly the same and completely unsupervised other than specifying two seed items.
Boo!Wa! and Google Sets are online tools and we used them as provided by http://
boowa.com and Google Spreadsheet, respectively. The dates on which the online tools
were accessed are given with the implementation details in Appendix A.

4.1 Wikipedia gold standard lists

Many of the experiments in past work on set completion, such as those used to develop
the technology behind Boo!Wa! of Wang and Cohen (2008), involve manually con-
structed gold standards on arbitrarily selected topics. Manually constructed lists are
inherently subjective, and experiments on a small set of arbitrarily selected topics do
not demonstrate that the method will perform well in general. We thus use Wikipedia
lists on randomly selected topics as gold standards, which is the same experimental
design used by Sarmento et al. (2007) and Pantel et al. (2009).

The “List of . . .” articles on Wikipedia form a large corpus of potential gold standard
lists that cover a wide variety of topics. We limited our experiments to the “featured
lists,” which are a collection of over 2,000 Wikipedia lists selected by Wikipedia
editors due to their high quality. We required the lists used in our experiments to have
at least 20 items, and excluded any lists of numbers (such as dates or sports scores). We
created a random sample of list growing problems by randomly selecting 50 Wikipedia
lists that met the above requirements. The selected lists covered a wide range of
topics, including, for example, “storms in the 2005 Atlantic hurricane season,” “current
sovereign monarchs,” “tallest buildings in New Orleans,” “X-Men video games,” and
“Pittsburgh Steelers first-round draft picks.” We treated the Wikipedia list as the gold
standard for the associated list growing problem. We give the names of all of the
selected lists in the supplementary material.

For each of the 50 list growing problems, we randomly selected two list items from
the gold standard to form a seed. We used the seed as an input to our algorithm, and
ran one iteration. We used the same seed as an input to Google Sets and Boo!Wa!.
We compared the lists returned by our method, Google Sets, and Boo!Wa! to the
gold standard list by computing two ranking measures: Precision@10 and average
precision. Precision@10 measures the fraction of the top 10 items in the list that are
found on the gold standard list:

Precision@10 = 1

10

10∑

i=1

1[item i in ranked list is correct]. (4)

Precision@10 is an intuitive measure that corresponds directly to the number of accu-
rate results at the top of the list. Average precision is a commonly used measure that
combines precision and recall, to ensure that lists are both accurate and complete. The
average precision of a ranked list is defined as the average of the precision recall curve.

123

http://boowa.com
http://boowa.com

Growing a list

(a) (b)

Fig. 1 a Precision@10 and b average precision across all 50 list growing problems sampled from Wikipedia.
The median is indicated in red (Color figure online)

Before computing these measures, the seed items were removed from each list, as it
is trivial to return the seed.

In Fig. 1 we show boxplots of the results across all 50 gold standard experiments.
For both Google Sets and Boo!Wa!, the median precision at 10 was 0, indicating no
correct results in the top 10. Our method performed significantly better (p < 0.001,
signed-rank test), with median precision of 0.4, indicating 4 correct results in the
top 10. Our method returned at least one relevant result in the top 10 for 80 % of the
experiments, whereas Google Sets and Boo!Wa! returned at least one relevant result in
the top 10 for only 24 % and 34 % of experiments, respectively. Our method performed
well also in terms of recall, as measured in average precision, with a median average
precision of 0.19, compared to 0 for Google Sets and 0.05 for Boo!Wa!. Boo!Wa! is
a significant improvement over Google Sets, and our method is a large improvement
over Boo!Wa!.

The supplementary material gives a list of the Precision@10 and average preci-
sion values for each of the Wikipedia gold standard experiments, as well as plots of
Precision@5 and Precision@20.

There are some flaws with using Wikipedia lists as gold standards in these exper-
iments. First, the gold standards are available online and could potentially be pulled
directly without requiring any aggregation of experts across different sites. However,
all three methods had access to the gold standards and the experiments did not favor any
particular method, thus the comparison is informative. A more interesting experiment
is one that necessitates aggregation of experts across different sites; these experiments
are given in Sect. 4.3. Second, these results are only accurate insofar as the Wikipedia
gold standard lists are complete. We limited our experiments to “featured lists” to have
the best possible gold standards. A truly objective comparison of methods requires
both randomly selected list problems and gold standards, and the Wikipedia lists, while
imperfect, provide a useful evaluation.

4.2 Experimental analysis of algorithm steps

We performed several experiments modifying individual steps of the algorithm to
explore the effect of design choices on performance, and to gather further insight
into how each step contributes to the performance gain seen in Sect. 4.1 relative to

123

B. Letham et al.

(a) (b)

Fig. 2 a Average precision across the Wikipedia gold standard problems when extracting items using all
tags (original implementation), tags only, and <a> tags only. b The proportion of correct items
extracted during the Wikipedia gold standard experiments that were found using a specific tag, for the six
most commonly found tags

the baseline methods. We use the Wikipedia gold standard lists to explore exper-
imentally the impact of which HTML tags are used for item extraction, the size
of the seed when scoring, and the set of domains used in constructing the feature
space.

In the item extraction step of our algorithm, we find the largest collection of HTML
tags common to both seed items and extract all other items on the page that use that
same collection of HTML tags. An alternative choice would be to look for a specific
type of HTML tag, for example, list tags , which could possibly reduce the
number of incorrect items extracted. In Fig. 2a we repeated the Wikipedia gold standard
experiments from Sect. 4.1, with a modified item extraction step in which we searched
only for a specific type of tag: list tags in one experiment, and hyperlink tags
<a> in a second. Restricting to list tags significantly reduced average precision, while
restricting to hyperlink tags produced results comparable to those obtained using all
tags. Figure 2b provides insight into this difference by showing the proportion of all
of the correct items extracted in the Wikipedia gold standard experiments that were
extracted using a particular HTML tag, for the six most common tags. An item may be
extracted using multiple HTML tags, either in a collection of tags or by discovering
the same item on multiple pages, thus these proportions do not sum to 1. The value of
0.21 for indicates that when extraction was limited to only tags, we only
obtained 21 % of the correct items that were obtained using all tags, which resulted
in the significant performance drop seen in Fig. 2a. Limiting to <a> tags recovered
81 % of the correct items, which was enough to yield average precision comparable to
that obtained using all tags. These results suggest that item extraction could be limited
to link extraction, a problem for which many efficient software packages are widely
available, without much loss.

In the gold standard experiments in Sect. 4.1 we used a seed of 2 items, the smallest
possible seed size. When seed items are related in multiple contexts, as discussed
for the case of Atlantic hurricanes, two seed items may not be enough to produce
an accurate ranked list. In Fig. 3a, for each Wikipedia gold standard experiment we
randomly selected additional seed items from the gold standard and used the larger
seed to compute a new ranked list. Increasing the seed size, which further constrained
the context of the relation between the seed items, produced a modest increase in

123

Growing a list

(a) (b)

Fig. 3 Average precision across the Wikipedia gold standard problems when a expanding the number of
seed items used in scoring, and b restricting the feature space construction to sites containing at least two
seed items, that is, sites found in source discovery

performance. These results indicate that for many of the lists used in these experiments,
two items were sufficient to specify the context. However, there is some gain to be
had with a larger seed, and in general it is best for the user to specify as large a seed
as possible.

We construct the binary feature space for each item using the domains of all of the
sites where the item can be found. An alternative approach is to restrict the search
to sites containing at least two seed items, that is, the sites found during the source
discovery step. In Fig. 3b we repeated the Wikipedia gold standard experiments using
this feature space strategy, and found that it significantly reduced average precision.
In fact, Boo!Wa! uses a strategy similar to this one to construct a feature space, as we
discuss in Sect. 5.

4.3 Open-ended experiments

In this set of experiments we demonstrate our method’s performance on more real-
istic, open-ended list growing problems. For these problems gold standard lists are
not available, and it is essential for the algorithm to aggregate results across many
experts. We focus on four open-ended list growing problems: Boston events, Jewish
foods, smartphone apps, and U.S. politicians. These are the sort of problems that our
algorithm was designed to solve, and it performs very well, especially compared to the
baselines.

4.3.1 Boston events

In this experiment, the seed items were two Boston events: “Boston arts festival”
and “Boston harborfest.” We ran the algorithm for 5 iterations, yielding 3,090 items.
Table 1 shows the top 50 ranked items, together with the domain of the source site
where they were discovered. There is no gold standard list to compare to directly,
but the results are overwhelmingly actual Boston events. The events were aggregated
across a variety of expert sources, including event sites, blogs, travel guides, and
hotel pages. Table 2 shows the full set of results returned from Google Sets with the
same two events as the seed, and the top 25 results returned by Boo!Wa!. Not only

123

B. Letham et al.

Table 1 Items and the domain of their source sites from the top of the ranked list for the Boston events
experiment

Item Source

0Boston arts festival (original seed)
3Cambridge river festival bizbash.com
0Boston harborfest (original seed)

harborfest
1Boston chowderfest celebrateboston.com
4Berklee beantown jazz festival pbase.com

the berklee beantown jazz festival,
berklee bean town jazz festival

2Chinatown main street festival blog.charlesgaterealty.com
www.chinatownmainstreet.org

4th of july boston pops concert & fireworks display travel2boston.us
boston 4th of july fireworks & concert

Boston common frog pond bostonmamas.com
ice skating on boston common frog pond

First night boston what-is-there-to-do.com
Boston dragon boat festival pbase.com

hong kong dragon boat festival of boston
dragon boat festival of boston

Boston tea party re enactment ef.com
Christopher columbus waterfront park bostonmamas.com
Jimmy fund scooper bowl bizbash.com
Opening our doors day ef.com
Oktoberfest harvard square & harpoon brewery sheratonbostonhotel.com
August moon festival ef.com
Annual boston wine festival worldtravelguide.net
Cambridge carnival soulofamerica.com
Regattabar berklee.edu
Arts on the arcade berklee.edu
Franklin park zoo hotels-rates.com
Faneuil hall annual tree lighting ceremony ef.com
Annual oktoberfest and honk festival ef.com

honk! festival
Boston jazz week telegraph.co.uk
Boston ballet celebrateboston.com
Fourth of july reading of the declaration of independence ef.com
Isabella stewart gardner museum hotels-rates.com
Revere beach sand sculpting festival bizbash.com
Shakespeare on the common boston-discovery-guide.com
Boston bacon takedown [...]bostonevents.blogspot.com
Jazz at the fort berklee.edu
Cambridge dance party [...]thrillsboston.blogspot.com
Boston celtic music festival ef.com
Taste of the south end bizbash.com
Greenway open market travel2boston.us
Boston winter jubilee ef.com
Urban ag fair bostonmamas.com
Figment boston festivaltrek.com
Boston kite festival bostoneventsinsider.com
Chefs in shorts bizbash.com
Old south meeting house hotels-rates.com

Superscript numbers indicate the iteration at which the item was added to the seed via implicit feedback.
[...] indicates the URL was truncated to fit in the figure. To improve readability, duplicate items were grouped
and placed in italics

123

Growing a list

Table 2 Complete Google Sets results and top 25 Boo!Wa! results for the Boston events experiment (seed
italicized)

Google Sets Boo!Wa!

Boston arts festival Boston arts festival
Boston harborfest Boston harborfest
Whats going this month Boston Fall Foliage
Interview with ann scott Boston Wine Expo
Studio view with dannyo Boston Flower and Garden Show
Tony savarino Boston Vegetarian Food Festival
Artwalk 2011 The Boston Wine Expo
Greater boston convention The Jazz Festival

visitors bureau First Night Celebration
Cambridge chamber of Thumbboston-vegetarian-food-festival

commerce Boston College Eagles
Boston tours Boston Vacation Rentals
3 county fairground Best Boston Restaurants
Boston massacre Boston Red Sox

Boston Bruins
Attractions in Boston:North End
Attractions in Boston:Freedom Trail
Attractions in Boston:Museum of Science
Attractions in Boston:Prudential Center
Attractions in Boston:New England Aquarium
Attractions in Boston: Boston Public Garden
Attractions in Boston:St. Patrick’s Cathedral
Attractions in Boston:South Beach - Ocean Drive
Vacation-rentals-boston
Boston-restaurants
Parking-in-boston
Shopping-boston

Google Sets and our implementation of our method return results all lower case, and in these tables we
have capitalized the first letter for aesthetics. Boo!Wa! returns capitalized results, and we use here the
capitalization that was returned

is the Google Sets list very short, but it does not contain any actual Boston events.
Boo!Wa! was able to return some Boston events, but with a substantial amount of
noise.

4.3.2 Jewish foods

In this experiment, the seed items were two Jewish foods: “Challah” and “Knishes.”
Although there are lists of foods that are typically found in Jewish cuisine, there is
variety across lists and no authoritative definition of what is or is not a Jewish food. We
completed 5 iterations of the algorithm, yielding 8,748 items. Table 3 shows the top 50
ranked items, together with their source domains. Almost all of the items are closely
related to Jewish cuisine. The items on our list came from a wide variety of expert
sources that include blogs, informational sites, bakery sites, recipe sites, dictionaries,
and restaurant menus. In fact, the top 100 most highly ranked items came from a total
of 52 unique sites. This diversity in source sites shows that the relevant items are found
in many small lists, which provides motivation for using pairs of seed items for source
discovery, as opposed to requiring all seed items to be on every source. In Table 4,

123

B. Letham et al.

Table 3 Items and their source domains from the top of the ranked list for the Jewish foods experiment

Item Source

0Challah (original seed)
braided challah

3Potato latkes jewishveg.com
latkes; sweet potato latkes; potato latke

1Blintzes jewfaq.org
cheese blintzes; blintz

0Knishes (original seed)
potato knishes; knish

2Noodle kugel pinterest.com
noodle kugel recipe; kugel; sweet noodle kugel

4Tzimmes jewfaq.org
carrot tzimmes

Matzo balls jewishveg.com
matzo ball soup; matzo; matzoh balls

Potato kugel challahconnection.com
Passover recipes lynnescountrykitchen.net

hanukkah recipes
Gefilte fish jewfaq.org
Honey cake kveller.com
Soups, kugels & liver allfreshkosher.com
Charoset jewishveg.com

haroset
Hamantaschen butterfloureggs.com
Matzo meal glattmart.net
Rugelach pinterest.com

rugelach recipe
Matzo brei ilovekatzs.com
Cholent jewfaq.org
Sufganiyot kosheronabudget.com
Potato pancakes jewishveg.com
Noodle pudding epicurious.com
Kreplach allmenus.com
Barley soup ecampus.com
Mushroom barley zagat.com

mushroom barley soup
Chopped liver ryedeli.com
Garlic mashed potatoes tovascatering.com
Caponata lynnescountrykitchen.net
Compote kveller.com
Farfel & mushrooms hungariankosher.com

farfel
Kasha varnishkes jinsider.com

we show the complete set of results returned from Google Sets for the same seed of
Jewish foods, and the top 25 results returned by Boo!Wa!. Although the Google Sets
results are foods, they are not closely related to Jewish cuisine. Boo!Wa! was able
to return some Jewish foods, but also a lot of irrelevant results like “Shop Online,”
“Lipkin’s Bakery,” and “Apple.”

123

Growing a list

Table 4 Complete Google Sets
results and top 25 Boo!Wa!
results for the Jewish foods
experiment (seed italicized)

Google Sets Boo!Wa!

Knishes Knishes
Challah Challah
Crackers Applestrudel
Dinner rolls Holishkes
Focaccie Blintzes
Pains sucres Gefilte
Pains plats Apple
Biscotti integral de algarroba Kasha
Souffle de zanahorias Soup
Tarta de esparragos Knishes.pdf
Leftover meat casserole Knishes recipe PDF
Pan de canela Shop Online
Focaccia Hamantashen
Sweet hobz Kamish Bread
Pranzu rolls Apple Strudel
Focacce Location
Chicken quesadillas Danishes
Baked chicken chimichangas Lipkin’s Bakery
Honey mustard salad dressing Flax Seed Bread
Dixxijiet hobz Babka
Roast partridge Pumpernickel Loaf
Fanny farmer brownies Schnitzel
Pan pratos Latke
Pan doce Cole slaw
Cea rolls Chopped Liver
Flat paes Mini Potato Knish
Hobz dixxijiet Oven Roasted Chicken

4.3.3 Smartphone apps

In this experiment, we began with two popular smartphone apps as the seed items:
“Word lens” and “Aroundme.” We ran the algorithm for 5 iterations, throughout which
7,630 items were extracted. Table 5 shows the top 50 most highly ranked items, together
with the source domain where they were discovered. Not only are the results almost
exclusively apps, but they come from a wide variety of sources including personal
sites, review sites, blogs, and news sites. In Table 6, we show the lists returned by
Google Sets and Boo!Wa! for the same seed, which are also predominantly apps.

4.3.4 U.S. Politicians

In this experiment, we began with two prominent U.S. politicians as the seed items:
“Barack obama” and “Scott brown.” We ran the algorithm for 5 iterations, yielding
8,384 items. Table 7 shows the top 50 most highly ranked items, together with the
source site where they were discovered. All of the items in our list are names of politi-
cians or politically influential individuals. In Table 8, we show the results returned from
Google Sets and Boo!Wa! for the same seed. Google Sets managed to return only a few
people related to politics. Boo!Wa! performed better than Google Sets, but the list still
contains some noise, like “U.S. Senate 2014,” “President 2016,” and “Secret-service.”

123

B. Letham et al.

Table 5 Items and their source
domains from the top of the
ranked list for the smartphone
apps experiment

Item Source

0Word lens (original seed)
2Read it later iapps.scenebeta.com

read later
0Aroundme (original seed)
3Instapaper time.com

instapaper app
4Evernote crosswa.lk

evernote app
1Flipboard crosswa.lk
Dolphin browser 1mobile.com
Skitch worldwidelearn.com
Facebook messenger crosswa.lk
Zite adriandavis.com
Tweetbot duckduckgo.com
Google currents secure.crosswa.lk
Springpad time.com
Imessage iphoneae.com
Retina display twicpic.blogspot.com
Ibooks crosswa.lk
Dropbox mobileappreviews.craveonline.com

dropbox (app); dropbox app
Marco arment wired.com
Doubletwist appolicious.com
Google latitude iapps.scenebeta.com
Gowalla mobileappreviews.craveonline.com
Skype for ipad secure.crosswa.lk
Hulu plus appadvice.com
Icloud thetechcheck.com
Qik video 1mobile.com

qik
Find my friends oradba.ch
Skydrive crosswa.lk
Google shopper mobileappreviews.craveonline.com
Swype techcrunch.com
Pulse news reader techcrunch.com
Spotify crosswa.lk
Readability tips.flipboard.com
Apple app store socialmediaclub.org
Tweetdeck iapps.scenebeta.com
Angry birds space appys.com
Smartwatch theverge.com
Vlingo mobileappreviews.craveonline.com
Rdio techcrunch.com
Google goggles sofialys.com
Xmarks 40tech.com
Ios 6 zomobo.net
Ibooks author duckduckgo.com
Google drive geekandgirliestuff.blogspot.com
Facetime bgpublishers.com.au

123

Growing a list

Table 6 Complete Google Sets
results and top 25 Boo!Wa!
results for the smartphone apps
experiment (seed italicized)

Google Sets Boo!Wa!

Word lens Word lens
Aroundme Aroundme
Lifestyle Plants v. Zombies
View in itunes Amazon
Itunes Bloom
Jcpenney weekly deals AIM
Coolibah digital scrapbooking Plants vs. Zombies
Epicurious recipes shopping list Layar
170,000 recipes bigoven Bjrk: Biophilia
Cf iviewer Wikipedia Mobile
Txtcrypt Web Source Viewer
Speak4it WhatTheFont
Off remote free The Weather Channel
Catholic calendar EDITION29 STRUCTURES
Gucci Dexigner
Board Google
Ziprealty real estate Zipcar
Allsaints spitalfields Thrutu
Lancome make up Google Earth
Pottery barn catalog viewer Four-Square
Amazon mobile Wikipedia
Gravity clock Facebook
Dace Kindle
Zara Skype
Style com Mint
Iridiumhd Wi-Fi Finder App
Ebanner lite Green Gas Saver

5 Related work

There is a substantial body of work in areas or tasks related to the one which we have
presented, which we can only briefly review here. There are a number of papers on
various aspects of “set expansion,” often for completing lists of entities from structured
lists, like those extracted from Wikipedia (Sarmento et al. 2007), using rules from
natural language processing or topic models (Tran et al. 2010; Sadamitsu et al. 2011),
or from opinion corpora (Zhang and Liu 2011). The task we explore here is web-based
set expansion and methods developed for other set expansion tasks are not directly
applicable. See, for example, Jindal and Roth (2011), for a review of different set
expansion problems.

There is good deal of work in the machine learning community on aggregating
ranked lists (e.g., Dwork et al., 2001). These are lists that are typically already cleaned,
fixed in scope, and ranked by individual experts, unlike our case. There is also a body
of work on aggregated search (Lalmas 2011; Renda and Straccia 2003; Hsu and Taksa
2005; Beg and Ahmad 2003), which typically uses a text query to aggregate results
from multiple search engines, or of multiple formats or domains (e.g. image and news),
and returns links to the full source. Our goal is not to rank URLs but to scrape out and
rank information gleaned from them. There are many resources for performing a search

123

B. Letham et al.

Table 7 Items and their source
domains from the top of the
ranked list for the U.S.
politicians experiment

Item Source

0Barack obama (original seed)
obama

0Scott brown (original seed)
1John kerry publicpolicypolling.com
3Barney frank masslive.com
4John mccain publicpolicypolling.com

mccain
2Nancy pelosi theladypatriot.com

pelosi
Mitch mcconnell publicpolicypolling.com
Joe lieberman publicpolicypolling.com
Mike huckabee publicpolicypolling.com
Mitt romney masslive.com
Bill clinton mediaite.com
John boehner audio.wrko.com

boehner
Hillary clinton blogs.wsj.com
Jon kyl tpmdc.talkingpointsmemo.com
Joe biden publicpolicypolling.com
Rudy giuliani publicpolicypolling.com
Harry reid theladypatriot.com
Olympia snowe publicpolicypolling.com
Lindsey graham politico.com
Newt gingrich masspoliticsprofs.com
Jim demint theladypatriot.com
Arlen specter theladypatriot.com
Dick cheney blogs.wsj.com
George w bush wellgroomedmanscape.com

george w. bush
Eric holder disruptthenarrative.com
Dennis kucinich publicpolicypolling.com
Timothy geithner tpmdc.talkingpointsmemo.com
Barbara boxer publicpolicypolling.com
Tom coburn itmakessenseblog.com
Orrin hatch publicpolicypolling.com
Michael bloomberg masspoliticsprofs.com
Elena kagan audio.wrko.com
Maxine waters polination.wordpress.com
Al sharpton porkbarrel.tv
Rick santorum audio.wrko.com
Ted kennedy newomenforchange.org
Janet napolitano disruptthenarrative.com
Jeff sessions tpmdc.talkingpointsmemo.com
Jon huntsman publicpolicypolling.com
Michele bachmann publicpolicypolling.com
Al gore publicpolicypolling.com
Rick perry publicpolicypolling.com
Eric cantor publicpolicypolling.com
Ben nelson publicpolicypolling.com
Karl rove politico.com

123

Growing a list

Table 8 Complete Google Sets
results and top 25 Boo!Wa!
results for the U.S. politicians
experiment (seed italicized)

Google Sets Boo!Wa!

Barack obama Barack obama
Scott brown Scott brown
Our picks movies William Galvin
Sex Secret-service
Department of justice Sheldon Whitehouse
Viral video Debbie Stabenow
Africa Dennis Kucinich
One persons trash Susana Martinez
Donald trump Stephen Colbert
New mom confessions Martin O’Malley
Nonfiction Claire McCaskill
Libya U.S. Senate 2012
Sarah palin Brian Schweitzer
Mtv Michele Bachmann
Alan greenspan Condoleezza Rice
Great recession U.S. Senate 2014
Life stories Lisa Murkowski
Jon hamm Lindsey Graham
Islam Maria Cantwell
The killing Jeanne Shaheen
American idol South Carolina
Middle east North Carolina
Celebrity Terry Branstad
Tea parties President 2016
Budget showdown Tommy Thompson

Brian Sandoval
Offshore drilling

or query by example. They often involve using a single example of a full document
or image in order to retrieve more documents, structures within documents, or images
(Chang and Lui 2001; Liu et al. 2003; Wang and Lochovsky 2003; Zhai and Liu 2005).

Methods such as that of Gupta and Sarawagi (2009) and Pantel et al. (2009) learn
semantic classes, which could be used to grow a list, but require preprocessing which
crawls the web and creates an index of HTML lists in an unsupervised manner.
Kozareva et al. (2008) present a method for using a semantic class name and a seed of
example instances to discover other instances from the same class on the web, using
search queries. They limit the search to instances that match a very specific pattern of
words (“class name such as seed item and *”), thus requiring the semantic class to have
enough instances and web coverage that all instances match the pattern somewhere on
the Internet. We found that this was not the case for more realistic open-ended prob-
lems, like Boston events and the others in Sect. 4.3. Paşca (2007a,b) also discovers
semantic class attributes and instances, but using web query logs rather than actual
internet sites.

Systems for learning categories and relations of entities on the web, like the
Never-Ending Language Learner (NELL) system (Carlson et al. 2010a,b; Verma and
Hruschka 2012), or KnowItAll (Etzioni et al. 2005) can be used to construct lists but
require extensive preprocessing. We do not preprocess, instead we perform informa-
tion extraction online, deterministically, and virtually instantaneously given access to

123

B. Letham et al.

a search engine. There is no restriction to HTML list structures or need for more time
consuming learning methods (Freitag 1998; Soderland et al. 1999). We also do not
require human-labeled web pages like wrapper induction methods (Kushmerick 1997).

The Set Expander for Any Language (SEAL) of Wang and Cohen (2007, 2008),
implemented in Boo!Wa!, at first appears similar to our work but differs in significant
ways. Wang and Cohen (2008) describe four strategies for source discovery, of which
“unsupervised increasing seed size (ISS)” is most similar to ours. Unsupervised ISS
begins with two seed items and iteratively expands the seed in the same way as our
implicit feedback, by adding the most highly ranked non-seed item to the seed at
each iteration. Within each iteration, unsupervised ISS uses only a subset of the seed
items to try to further expand the set. Specifically, it uses the most recently added
seed item together with three additional randomly-selected seed items, and searches
for source sites containing all four of these items. Our source discovery differs in
two major ways. First, our combinatorial search strategy uses all seed items in every
iteration, rather than a randomly-selected subset of four seed items. Second, we use
only pairs of seed items to find source sites, rather than requiring the source sites to
contain four seed items. With this strategy we find all of the sites discovered by ISS, as
well as additional sites that have less than four seed items. Once the source sites have
been found, SEAL extracts new items by learning a character-based wrapper that finds
patterns of characters that are common to the seed items. This is similar in concept to the
way that we extract new items, although SEAL allows arbitrary patterns of characters
whereas we look specifically for patterns in the HTML tree structure. Possibly the most
significant differences between SEAL and our approach lie in ranking the extracted
items. When the initial number of seed items is small, as in the list growing problems
that we considered here, Wang and Cohen (2008) recommend a ranking algorithm
that uses a random walk over a graph that contains nodes for the extracted items,
the wrappers learned for each source site, and the source sites themselves. Wang and
Cohen (2008) also considered using Bayesian Sets to rank, and in fact recommended
its use when the number of initial seed items was large. However, the way in which
SEAL constructs the feature space to be used by Bayesian Sets is critically different.
SEAL uses two sets of features: the sources sites on which the extracted item was
found during list extraction, and the wrappers that extracted it. We use the complete
set of domains (not sites) where the extracted item can be found, and do not limit
ourselves to the domains of source sites. Using all domains as features rather than
just those containing seed items is very important for reducing the rank of items that
happened to show up on the same site as a few seed items but in general are found on
very different types of domains, as shown in our experiments in Sect. 4.2. Finding this
full set of domains requires an additional set of queries, one for each item to be ranked,
however these types of queries can be done efficiently when one has access to a web
index. These differences between our method and Boo!Wa! translate into the order of
magnitude improvement in the quality of the returned lists shown throughout Sect. 4.

6 Conclusions

The next generation of search engines should not simply retrieve URLs, but should aim
at retrieving information. We designed a system that leads into this next generation,

123

Growing a list

leveraging information from across the Internet to grow an authoritative list on almost
any topic.

The gold standard experiments showed that our method performs well on a wide
range of list growing problems, and provided insight into the effect of design choices
on performance. There are several conclusions that can be drawn from the empirical
results. First, we showed how increasing the number of seed items can improve per-
formance by constraining the relationship between seed items, suggesting that users
should be encouraged to provide as many seed items as possible. Second, even when
a large seed is available, our results in Sect. 4.3 demonstrate the importance of using
small groups of seed items for source site discovery (we used pairs). There we showed
that in real problems, relevant items must be aggregated from many websites and are
often only found together with a small collection of other relevant items.

Of all of the design choices, we found that the construction of the feature space for
ranking discovered items had the largest impact on performance. Items that are likely
to be correct, and should thus be highly ranked, are those that are found frequently on
websites where seed items are found and, equally importantly, are not found frequently
where seed items are not found. A feature space that considers only the sites on which
seed items are found is not able to distinguish between items that are highly correlated
with the seed and items that are just generally common. Our solution was to construct
the feature space using an individual search query for each discovered item, allowing
us to verify that the item was not frequently found without seed items. This led to
substantially improved results compared to a feature space using only sites containing
seed items, though at a cost of more search queries.

This feature space construction is a major source of improvement, but can be time
consuming given the restrictions that Google and other search engines place on the
number of queries per minute. Without this restriction, our results can be obtained in
real-time on almost any computer. One major challenge that needs to be overcome to
have a real-time implementation for public use is either to embed code like ours within
a search engine infrastructure, or to find ways to use fewer search queries, chosen in an
intelligent way, to construct a similar feature space that incorporates information about
sites without seed items. Another challenge not handled here is to build in knowledge
of language. Our results are not English-specific, but with some knowledge of natural
language, higher quality results could potentially be obtained.

The Wikipedia gold-standard experiments provided a framework for quantifying
performance on a range of list topics, but the open-ended experiments showed, qualita-
tively, the true strength of the developed method. For real problems for which complete
lists were not available online, we found that the algorithm produced meaningful lists,
with information extracted from a wide variety of sources. Moreover, the lists com-
pared favorably with those from existing related technology.

In addition to these empirical results, we presented a theoretical bound that justifies
the use of Bayesian Sets in a setting where its feature independence assumptions are
not met. This bound will help to motivate its continued use in set expansion problems.

The list growing algorithm we presented was implemented on a laptop, with min-
imal heuristics and hand-tuning, and no language-specific processing or handling of
special cases. Yet, the results are good enough to be directly useful to users in many

123

B. Letham et al.

cases. These encouraging results are an indication of the power of high-quality algo-
rithms to gather crowdsourced information.

Acknowledgments Cynthia Rudin acknowledges funding from MIT Lincoln Laboratory and from NSF
IIS-1053407. Katherine Heller acknowledges funding from a NSF postdoctoral fellowship and NIH P30
DA028803.

Appendix A implementation details

Source discovery: This step requires submitting the query “term1” “term2” to a search
engine. In our experiments we used Google as the search engine, but any index would
suffice. We retrieved the top 100 results.

List extraction: For each site found with the combinatorial search, we look for
HTML tags around the seed items. We use the following lines of HTML to illustrate:

<h2> Boston Harborfest </h2>

 Jimmy fund scooper bowl

 the Boston Arts Festival 2012

<h3> Boston bacon takedown < /h3>

 Just a url

For each of the two seed items used to discover this source, we search the HTML
for the pattern:

< largest set of tags> (up to 5 words) seed item (up to 5 words) <matching end tags>.

In the above example, if the first seed item is “Boston arts festival,” then it matches the
pattern with the HTML tags: <a>. If the second seed item is “Boston harborfest,”
it matches the pattern with HTML tags: <h2><a>. We then find the largest
set of HTML tags that are common to both seed items, for this site. In this example,
“Boston arts festival” does not have the <h2> tag, so the largest set of common tags
is: <a>. If there are no HTML tags common to both seed items, we discard
the site. Otherwise, we extract all items on the page that use the same HTML tags. In
this example, we extract everything with both a and an <a> tag, which means
“Jimmy fund scooper bowl” and “Boston bacon takedown,” but not “Just a url.”

In our experiments, to avoid search spam sites with extremely long lists of unrelated
keywords, we reject sources that return more than 300 items. We additionally applied
a basic filter rejecting items of more than 60 characters or items consisting of only
numbers and punctuation. No other processing was done.

Feature space: We do separate Google searches for each item we have extracted to
find the set of webpages containing it. We use quotes around the query term, discard
results when Google’s spelling correction system modifies the query, and retrieve the
top 300 search results.

Ranking: In all of our experiments we took κ2 = 5 and κ1 = 2, similarly to that
done in Heller and Ghahramani (2006).

Feedback: To avoid filling the seed with duplicate items like “Boston arts festival”
and “The boston arts festival 2012,” in our implicit feedback we do not add items to
the seed if they are a sub- or super-string of a current seed item.

123

Growing a list

Access of online tools: The results for Boo!Wa! and Google Sets used in Sect.4.1
were retrieved from their respective online tools on November 14, 2012, and those used
in Sect. 4.3 were retrieved on December 13, 2012. Results for our algorithm, which
depend on Google search results and the content of the source webpages, were obtained
in the period March 14–21, 2013 for the Wikipedia gold-standard experiments in
Sects. 4.1 and 4.2, and in the period May 28–30, 2012 for the open-ended experiments
in Sect. 4.3.

References

Beg MMS, Ahmad N (2003) Soft computing techniques for rank aggregation on the world wide web. World
Wide Web 6(1):5–22

Bousquet O, Elisseeff A (2002) Stability and generalization. J Mach Learn Res 2:499–526
Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER, Mitchell TM (2010a) Toward an architecture for

never-ending language learning. In: Proceedings of the 24th conference on artificial intelligence, AAAI
’10.

Carlson A, Betteridge J, Wang RC, Hruschka ER, Mitchell TM (2010b) Coupled semi-supervised learning
for information extraction. In: Proceedings of the 3rd ACM international conference on web search and
data mining, WSDM ’10, pp 101–110.

Chang CH, Lui SC (2001) IEPAD: Information extraction based on pattern discovery. In: Proceedings of
the 10th international conference on world wide web, WWW ’01, pp 681–688.

Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceedings
of the 10th international conference on world wide web, WWW ’01, pp 613–622.

Etzioni O, Cafarella M, Downey D, Popescu AM, Shaked T, Soderland S, Weld DS, Yates A (2005)
Unsupervised named-entity extraction from the web: an experimental study. Artif Intell 165(1):91–134

Freitag D (1998) Information extraction from HTML: application of a general machine learning approach.
In: Proceedings of the 15th national conference on artificial intelligence, AAAI ’98, pp 517–523.

Ghahramani Z, Heller KA (2005) Bayesian sets. In: Advances in neural information processing systems
18, NIPS ’05, pp 435–442.

Gupta R, Sarawagi S (2009) Answering table augmentation queries from unstructured lists on the web.
Proceedings of the VLDB Endowment 2:289–300

Heller KA, Ghahramani Z (2006) A simple Bayesian framework for content-based image retrieval. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, CVPR ’06, pp 2110–
2117.

Hsu DF, Taksa I (2005) Comparing rank and score combination methods for data fusion in information
retrieval. Inf Retr 8(3):449–480

Jindal P, Roth D (2011) Learning from negative examples in set-expansion. In: Proceedings of the 2011
11th IEEE international conference on data mining, ICDM ’11, pp 1110–1115.

Kozareva Z, Riloff E, Hovy E (2008) Semantic class learning from the web with hyponym pattern linkage
graphs. In: Proceedings of the 46th annual meeting of the association for computational linguistics:
human language technologies, ACL ’08, pp 1048–1056.

Kushmerick N (1997) Wrapper induction for information extraction. PhD thesis, University of Washington.
Lalmas M (2011) Aggregated search. In: Melucci M, Baeza-Yates R (eds) Advanced topics on information

retrieval. Springer, Berlin
Liu B, Grossman R, Zhai Y (2003) Mining data records in web pages. In: Proceedings of the 9th ACM

SIGKDD international conference on knowledge discovery and data mining, KDD ’03, pp 601–606.
Paşca M (2007a) Organizing and searching the world wide web of facts—step two: harnessing the wisdom

of the crowds. In: Proceedings of the 16th international conference on world wide web, WWW ’07, pp
101–110.

Paşca M (2007b) Weakly-supervised discovery of named entities using web search queries. In: Proceedings
of the 16th ACM conference on information and knowledge management, CIKM ’07, pp 683–690.

Pantel P, Crestan E, Borkovsky A, Popescu AM, Vyas V (2009) Web-scale distributional similarity and
entity set expansion. In: Proceedings of the 2009 conference on empirical methods in natural language
processing, EMNLP ’09, pp 938–947.

123

B. Letham et al.

Renda ME, Straccia U (2003) Web metasearch: rank versus score based rank aggregation methods. In:
Proceedings of the 2003 ACM symposium on applied computing, SAC ’03, pp 841–846.

Sadamitsu K, Saito K, Imamura K, Kikui G (2011) Entity set expansion using topic information. In:
Proceedings of the 49th annual meeting of the association for computational linguistics: human language
technologies, ACL ’11, vol 2, pp 726–731.

Sarmento L, Jijkoun V, de Rijke M, Oliveira E (2007) “More like these” : growing entity classes from seeds.
In: Proceedings of the 16th ACM conference on information and knowledge management, CIKM ’07,
pp 959–962.

Soderland S, Cardie C, Mooney R (1999) Learning information extraction rules for semi-structured and
free text. Mach Learn 34(1–3):233–272

Tran MV, Nguyen TT, Nguyen TS, Le HQ (2010) Automatic named entity set expansion using semantic
rules and wrappers for unary relations. In: Proceedings of the 2010 international conference on Asian
language processing, IALP ’10, pp 170–173.

Verma S, Hruschka ER (2012) Coupled bayesian sets algorithm for semi-supervised learning and informa-
tion extraction. In: Proceedings of the 2012 European conference on machine learning and knowledge
discovery in databases, ECML PKDD ’12, pp 307–322.

Wang J, Lochovsky FH (2003) Data extraction and label assignment for web databases. In: Proceedings of
the 12th international conference on world wide web, WWW ’03, pp 187–196.

Wang RC, Cohen WW (2007) Language-independent set expansion of named entities using the web. In:
Proceedings of the 2007 7th IEEE international conference on data mining, ICDM ’07, pp 342–350.

Wang RC, Cohen WW (2008) Iterative set expansion of named entities using the web. In: Proceedings of
the 2008 8th IEEE international conference on data mining, ICDM ’08, pp 1091–1096.

Zhai Y, Liu B (2005) Web data extraction based on partial tree alignment. In: Proceedings of the 14th
international conference on world wide web, WWW ’05, pp 76–85.

Zhang L, Liu B (2011) Entity set expansion in opinion documents. In: Proceedings of the 22nd ACM
conference on hypertext and hypermedia, HT ’11, pp 281–290.

123

Supplement to Growing a List

Benjamin Letham∗ Cynthia Rudin† Katherine A. Heller‡

This supplementary material expands on the experiments and theory given in the main text of Growing
a List. In Section 1 we give further detail on the Wikipedia gold standard experiments. In Section 2 we give
the proofs of our main theoretical results, Proposition 1 and Theorem 1.

1 Wikipedia Gold Standard Experiments

In Table S1 we give a complete enumeration of the results from the Wikipedia gold standard experiments.
For each list growing problem, we provide the Precision@10 and average precision (AveP) for all three
methods (our method, Google Sets, and Boo!Wa!). This table illustrates both the diversity of the sampled
list growing problems and the substantially improved performance of our method compared to the others.
We focused on Precision@10 because 10 is the typical number of search results returned by a search engine.
We supplement these results further with Precision@5 and Precision@20 in Figure S1.

2 Proofs

In this section, we provide the proofs of Proposition 1 and Theorem 1, comments on the effect of the prior
(γmin) on generalization, and an example showing that Bayesian Sets does not satisfy the requirements for
“uniform stability” defined by Bousquet and Elisseeff (2002).

Recall the definition of the scoring function:

fS(x) :=
1

Z(m)

N∑
j=1

xj log
αj +

∑m
s=1 x

s
j

αj
+ (1− xj) log

βj +m−
∑m
s=1 x

s
j

βj
, (S1)

where

Z(m) := N log

(
γmin +m

γmin

)
∗Operations Research Center, MIT
†MIT Sloan School of Management
‡Center for Cognitive Neuroscience, Statistical Science, Duke

Figure S1: (a) Precision@5 and (b) Precision@20 across all 50 list growing problems sampled from
Wikipedia. The median is indicated in red.

1

Table S1: Results for all 50 experiments with Wikipedia gold standards. “Us” indicates our method, “BW”
indicates Boo!Wa!, and “GS” indicates Google Sets. “List of” has been removed from the title of each
Wikipedia article, for brevity.

Precision@10 AveP
Wikipedia gold standard list Us BW GS Us BW GS

Awards and nominations received by Chris Brown 1 1 0 0.66 0.34 0
Medal of Honor recipients educated at the United States Military Academy 0.2 0 0 0.28 0.01 0
Nine Inch Nails concert tours 0.8 0 0 0.51 0 0
Bleach episodes (season 4) 0 0 0 0 0 0
Storms in the 2005 Atlantic hurricane season 0.1 0 0 0.13 0.11 0
Houses and associated buildings by John Douglas 0.6 0.6 0 0.26 0.32 0
Kansas Jayhawks head football coaches 0.9 0.8 0 0.91 0.79 0
Kraft Nabisco Championship champions 0 0 0 0.05 0.05 0
Washington state symbols 0 0 0 0 0 0
World Heritage Sites of the United Kingdom 0.3 0 0 0.19 0.08 0
Philadelphia Eagles head coaches 0 0 0 0.09 0 0
Los Angeles Dodgers first-round draft picks 0.6 0 0 0.19 0.28 0.00
New York Rangers head coaches 0.3 0.8 0 0.16 0.46 0
African-American Medal of Honor recipients 1 0 0 0.73 0.06 0
Current sovereign monarchs 0.5 0 0 0.15 0 0
Brotherhood episodes 0.9 0.2 0 0.72 0.06 0
Knight’s Cross of the Iron Cross with Oak Leaves recipients (1945) 0 0 0 0 0.01 0.00
Pittsburgh Steelers first-round draft picks 0.1 0 0 0.38 0.00 0
Tallest buildings in New Orleans 0.6 0 0.6 0.45 0 0.08
Asian XI ODI cricketers 0.2 0 0.4 0.18 0.01 0.08
East Carolina Pirates head football coaches 0.1 0 0 0.05 0.01 0
Former championships in WWE 0.4 0 0.4 0.31 0.09 0.15
Space telescopes 0 0 0 0 0 0
Churches preserved by the Churches Conservation Trust in Northern England 0 0 0 0 0 0
Canadian Idol finalists 0.4 0 0.2 0.27 0.14 0.02
Wilfrid Laurier University people 0.3 0 0 0.34 0.11 0
Wario video games 0.1 0.6 0.8 0.12 0.22 0.34
Governors of Washington 0.5 0 0 0.42 0.13 0
Buffalo Sabres players 0.1 0 0 0.03 0 0
Australia Twenty20 International cricketers 0.6 0 1 0.24 0.01 0.32
Awards and nominations received by Madonna 0.9 1 0.2 0.70 0.13 0.00
Yukon Quest competitors 0.7 0.4 0.2 0.02 0.35 0.00
Arsenal F.C. players 0.8 0 0 0.85 0.18 0
Victoria Cross recipients of the Royal Navy 0.4 0 0 0.12 0.01 0
Formula One drivers 0 0.6 1 0 0.15 0.01
Washington & Jefferson College buildings 0 0 0 0 0 0
X-Men video games 0.4 0.2 0 0.27 0.05 0
Governors of Florida 0.4 0 0 0.25 0.04 0
The Simpsons video games 0.1 0 0 0.18 0 0
Governors of New Jersey 0.7 0 0 0.34 0.07 0
Uncharted characters 0.4 0 0.6 0.27 0.01 0.33
Miami Marlins first-round draft picks 0.4 1 0 0.16 0.27 0
Tallest buildings in Dallas 0.7 0.2 0 0.34 0.14 0
Cities and towns in California 0.8 0.6 1 0.35 0.04 0.04
Olympic medalists in badminton 0.3 0 0 0.13 0.05 0
Delegates to the Millennium Summit 0.9 0.4 0 0.51 0.01 0
Honorary Fellows of Jesus College, Oxford 0 0.4 0 0.03 0.34 0
Highlander: The Raven episodes 0.2 1 0 0.14 0.95 0
Voice actors in the Grand Theft Auto series 0.4 0 0 0.16 0.18 0
Medal of Honor recipients for the Vietnam War 0.9 0.8 0 0.84 0.08 0

2

and γmin := min
j

min{αj , βj}. We begin by showing that the normalized score fS(x) in (S1) takes values

only on [0, 1].

Lemma S1. 0 ≤ fS(x) ≤ 1.

Proof. It is easy to see that fS(x) ≥ 0. To see that fS(x) ≤ 1,

max
S,x

fS(x) =
1

Z(m)
max
S,x

N∑
j=1

(
xj log

αj +
∑m
s=1 x

s
j

αj
+ (1− xj) log

βj +m−
∑m
s=1 x

s
j

βj

)

≤ 1

Z(m)

N∑
j=1

max
xj ,x1

j ,...,x
m
j

(
xj log

αj +
∑m
s=1 x

s
j

αj
+ (1− xj) log

βj +m−
∑m
s=1 x

s
j

βj

)

=
1

Z(m)

N∑
j=1

max

{
max

x1
j ,...,x

m
j

log
αj +

∑m
s=1 x

s
j

αj
, max
x1
j ,...,x

m
j

log
βj +m−

∑m
s=1 x

s
j

βj

}

=
1

Z(m)

N∑
j=1

max

{
log

αj +m

αj
, log

βj +m

βj

}

=
1

Z(m)

N∑
j=1

log
min{αj , βj}+m

min{αj , βj}

≤ 1

Z(m)

N∑
j=1

log
γmin +m

γmin

= 1.

Now we provide the proof to Proposition 1.

Proof of Proposition 1. For convenience, denote the seed sample average as µj := 1
m

∑m
s=1 x

s
j , and the

probability that xj = 1 as pj := Ex[xj]. Then,

1

m

m∑
s=1

fS(xs)− Ex [fS(x)]

=
1

N log
(
γmin+m
γmin

) N∑
j=1

(
(µj − pj) log

αj +mµj
αj

+ (pj − µj) log
βj +m(1− µj)

βj

)

≤ 1

N

N∑
j=1

|µj − pj |. (S2)

For any particular feature j, Hoeffding’s inequality (Hoeffding, 1963) bounds the difference between the
empirical average and the expected value:

P(|µj − pj | > ε) ≤ 2 exp
(
−2mε2

)
. (S3)

We then apply the union bound to bound the average over features:

P

 1

N

N∑
j=1

|µj − pj | > ε

 ≤ P

 N⋃
j=1

{|µj − pj | > ε}


≤

N∑
j=1

P (|µj − pj | > ε)

≤ 2N exp
(
−2mε2

)
. (S4)

3

Thus,

P

(
1

m

m∑
s=1

fS(xs)− Ex [fS(x)] > ε

)
≤ 2N exp

(
−2mε2

)
, (S5)

and the proposition follows directly.

The bound in Proposition 1 has a tighter dependence on δ than the bound in Theorem 1, however it
depends inversely on N , the number of features.

We now present the proof of Theorem 1. The result uses the algorithmic stability bounds of Bousquet
and Elisseeff (2002), specifically the bound for pointwise hypothesis stability. We begin by defining an
appropriate loss function. Suppose x and S were drawn from the same distribution D. Then, we wish for
fS(x) to be as large as possible. Because fS(x) ∈ [0, 1], an appropriate metric for the loss in using fS to
score x is:

`(fS , x) = 1− fS(x). (S6)

Further, `(fS , x) ∈ [0, 1].
For algorithmic stability analysis, we will consider how the algorithm’s performance changes when an

element is removed from the training set. We define a modified training set in which the i’th element has
been removed: S\i := {x1, . . . , xi−1, xi+1, . . . , xm}. We then define the score of x according to the modified
training set:

fS\i(x) =
1

Z(m− 1)

N∑
j=1

xj log
αj +

∑
s6=i x

s
j

αj
+ (1− xj) log

βj + (m− 1)−
∑
s6=i x

s
j

βj
, (S7)

where

Z(m− 1) = N log

(
γmin +m− 1

γmin

)
. (S8)

We further define the loss using the modified training set:

`(fS\i , x) = 1− fS\i(x). (S9)

The general idea of algorithmic stability is that if the results of an algorithm do not depend too heavily on any
one element of the training set, the algorithm will be able to generalize. One way to quantify the dependence
of an algorithm on the training set is to examine how the results change when the training set is perturbed,
for example by removing an element from the training set. The following definition of pointwise hypothesis
stability, taken from Bousquet and Elisseeff (2002), states that an algorithm has pointwise hypothesis stability
if, on expectation, the results of the algorithm do not change too much when an element of the training set
is removed.

Definition S1 (Bousquet and Elisseeff, 2002). An algorithm has pointwise hypothesis stability η with respect
to the loss function ` if the following holds

∀i ∈ {1, . . . ,m}, ES
[
|`(fS , xi)− `(fS\i , xi)|

]
≤ η. (S10)

The algorithm is said to be stable if η scales with 1
m .

In our theorem, we suppose that all of the data belong to the same class of “relevant” items. The
framework of Bousquet and Elisseeff (2002) can easily be adapted to the single-class setting, for example by
framing it as a regression problem where all of the data points have the identical “true” output value 1. The
following theorem comes from Bousquet and Elisseeff (2002), with the notation adapted to our setting.

Theorem S1 (Bousquet and Elisseeff, 2002). If an algorithm has pointwise hypothesis stability η with respect
to a loss function ` such that 0 ≤ `(·, ·) ≤ 1, we have with probability at least 1− δ,

Ex [`(fS , x)] ≤ 1

m

m∑
i=1

`(fS , x
i) +

√
1 + 12mη

2mδ
. (S11)

4

We now show that Bayesian Sets satisfies the conditions of Definition S1, and determine the corresponding
η. The proof of Theorem 1 comes from inserting our findings for η into Theorem S1. We begin with a lemma
providing a bound on the central moments of a Binomial random variable.

Lemma S2. Let t ∼ Binomial(m,p) and let µk = E
[
(t− E[t])k

]
be the kth central moment. For integer

k ≥ 1, µ2k and µ2k+1 are O
(
mk
)
.

Proof. We will use induction. For k = 1, the central moments are well known (e.g., Johnson et al, 2005):
µ2 = mp(1 − p) and µ3 = mp(1 − p)(1 − 2p), which are both O(m). We rely on the following recursion
formula (Johnson et al, 2005; Romanovsky, 1923):

µs+1 = p(1− p)
(
dµs
dp

+msµs−1

)
. (S12)

Because µ2 and µ3 are polynomials in p, their derivatives will also be polynomials in p. This recursion makes
it clear that for all s, µs is a polynomial in p whose coefficients include terms involving m.

For the inductive step, suppose that the result holds for k = s. That is, µ2s and µ2s+1 are O(ms). Then,
by (S12),

µ2(s+1) = p(1− p)
(
dµ2s+1

dp
+ (2s+ 1)mµ2s

)
. (S13)

Differentiating µ2s+1 with respect to p yields a term that is O(ms). The term (2s+ 1)mµ2s is O(ms+1), and
thus µ2(s+1) is O(ms+1). Also,

µ2(s+1)+1 = p(1− p)
(
dµ2(s+1)

dp
+ 2(s+ 1)mµ2s+1

)
. (S14)

Here
dµ2(s+1)

dp is O(ms+1) and 2(s+ 1)mµ2s+1 is O(ms+1), and thus µ2(s+1)+1 is O(ms+1).
This shows that if the result holds for k = s then it must also hold for k = s + 1 which completes the

proof.

The next lemma provides a stable, O
(

1
m

)
, bound on the expected value of an important function of a

binomial random variable.

Lemma S3. For t ∼ Binomial(m, p) and α > 0,

E
[

1

α+ t

]
=

1

α+mp
+O

(
1

m2

)
. (S15)

Proof. We expand 1
α+t at t = mp:

E
[

1

α+ t

]
= E

[∞∑
i=0

(−1)i
(t−mp)i

(α+mp)i+1

]

=

∞∑
i=0

(−1)i
E
[
(t−mp)i

]
(α+mp)i+1

=
1

α+mp
+

∞∑
i=2

(−1)i
µi

(α+mp)i+1
(S16)

where µi is the ith central moment and we recognize that µ1 = 0. By Lemma S2,

µi
(α+mp)i+1

=
O
(
mb

i
2 c
)

O (mi+1)
= O

(
mb

i
2 c−i−1

)
. (S17)

The alternating sum in (S16) can be split into two sums:

∞∑
i=2

(−1)i
µi

(α+mp)i+1
=

∞∑
i=2

O
(
mb

i
2 c−i−1

)
=

∞∑
i=2

O

(
1

mi

)
+

∞∑
i=3

O

(
1

mi

)
. (S18)

These are, for m large enough, bounded by a geometric series that converges to O
(

1
m2

)
.

5

The following three lemmas provide results that will be useful for proving the main lemma, Lemma S7.

Lemma S4. For all α > 0,

g(α,m) :=
log
(
α+m
α

)
log
(
α+m−1

α

) (S19)

is monotonically non-decreasing in α for any fixed m ≥ 2.

Proof. Define a = m−1
α and b = m

m−1 . Observe that a ≥ 0 and b ≥ 1, and that for fixed m, a is inversely
proportional to α. We reparameterize (S19) to

g(a, b) :=
log (ab+ 1)

log (a+ 1)
. (S20)

To prove the lemma, it is sufficient to show that g(a, b) is monotonically non-increasing in a for any fixed
b ≥ 1. Well,

∂g(a, b)

∂a
=

b
ab+1 log (a+ 1)− 1

a+1 log (ab+ 1)

(log (a+ 1))
2 ,

so ∂g(a,b)
∂a ≤ 0 if and only if

h(a, b) := (ab+ 1) log (ab+ 1)− b(a+ 1) log (a+ 1) ≥ 0. (S21)

h(a, 1) = (a+ 1) log (a+ 1)− (a+ 1) log (a+ 1) = 0, and,

∂h(a, b)

∂b
= a log (ab+ 1) + a− (a+ 1) log (a+ 1)

= a (log (ab+ 1)− log (a+ 1)) + (a− log (a+ 1))

≥ 0 ∀a ≥ 0,

because b ≥ 1 and a ≥ log(1 + a) ∀a ≥ 0. This shows that (S21) holds ∀a ≥ 0, b ≥ 1, which proves the
lemma.

Lemma S5. For any m ≥ 2, t ∈ [0,m− 1], α > 0, and γmin ∈ (0, α],

1

Z(m)
log

α+ t+ 1

α
≥ 1

Z(m− 1)
log

α+ t

α
. (S22)

Proof. Denote,

g(t;m,α) :=
1

Z(m)
log

α+ t+ 1

α
− 1

Z(m− 1)
log

α+ t

α
. (S23)

By Lemma S4 and γmin ≤ α, for any α > 0 and for any m ≥ 2,

log
(
α+m
α

)
log
(
α+m−1

α

) ≥ log
(
γmin+m
γmin

)
log
(
γmin+m−1

γmin

) =
Z(m)

Z(m− 1)
.

Thus,
log
(
α+m
α

)
Z(m)

≥
log
(
α+m−1

α

)
Z(m− 1)

, (S24)

which shows

g(m− 1;m,α) =
1

Z(m)
log

α+m

α
− 1

Z(m− 1)
log

α+m− 1

α
≥ 0. (S25)

Furthermore, because Z(m) > Z(m− 1),

∂g(t;m,α)

∂t
=

1

Z(m)

1

α+ t+ 1
− 1

Z(m− 1)

1

α+ t
< 0, (S26)

for all t ≥ 0. Equations S25 and S26 together show that g(t;m,α) ≥ 0 for all t ∈ [0,m− 1],m ≥ 2, proving
the lemma.

6

Lemma S6. For any m ≥ 2, t ∈ [0,m− 1], β > 0, and γmin ∈ (0, β],

1

Z(m)
log

β +m− t
β

≥ 1

Z(m− 1)
log

β +m− 1− t
β

. (S27)

Proof. Let t̃ = m− t− 1. Then, t̃ ∈ [0,m− 1] and by Lemma S5, replacing α with β,

1

Z(m)
log

β + t̃+ 1

β
≥ 1

Z(m− 1)
log

β + t̃

β
. (S28)

The next lemma is the key lemma that shows Bayesian Sets satisfies pointwise hypothesis stability,
allowing us to apply Theorem S1.

Lemma S7. The Bayesian Sets algorithm satisfies the conditions for pointwise hypothesis stability with

η =
1

log
(
γmin+m−1

γmin

)
(γmin + (m− 1)pmin)

+O

(
1

m2 logm

)
. (S29)

Proof.

ES |`(fS , xi)− `(fS\i , xi)|
= ES

∣∣fS\i(xi)− fS(xi)
∣∣

= ES

∣∣∣∣∣∣ 1

Z(m− 1)

N∑
j=1

[
xij log

αj +
∑
s6=i x

s
j

αj
+ (1− xij) log

βj + (m− 1)−
∑
s6=i x

s
j

βj

]

− 1

Z(m)

N∑
j=1

[
xij log

αj +
∑m
s=1 x

s
j

αj
+ (1− xij) log

βj +m−
∑m
s=1 x

s
j

βj

]∣∣∣∣∣∣
≤ ES

N∑
j=1

xij

∣∣∣∣∣ 1

Z(m− 1)
log

αj +
∑
s6=i x

s
j

αj
− 1

Z(m)
log

αj +
∑m
s=1 x

s
j

αj

∣∣∣∣∣
+ (1− xij)

∣∣∣∣∣ 1

Z(m− 1)
log

βj + (m− 1)−
∑
s6=i x

s
j

βj
− 1

Z(m)
log

βj +m−
∑m
s=1 x

s
j

βj

∣∣∣∣∣ (S30)

:= ES
N∑
j=1

xijterm1
j + (1− xij)term2

j (S31)

=

N∑
j=1

Ex1
j ,...,x

m
j

[
xijterm1

j + (1− xij)term2
j

]
=

N∑
j=1

Exi
j

[
Exs 6=i

j |xi
j

[
xijterm1

j

]]
+ Exi

j

[
Exs 6=i

j |xi
j

[
(1− xij)term2

j

]]

=

N∑
j=1

Exi
j

[
xijExs 6=i

j |xi
j

[
term1

j

]]
+ Exi

j

[
(1− xij)Exs 6=i

j |xi
j

[
term2

j

]]

=

N∑
j=1

Exs 6=i
j

[
term1

j |xij = 1
]
P
(
xij = 1

)
+ Exs 6=i

j

[
term2

j |xij = 0
]
P
(
xij = 0

)
≤

N∑
j=1

max
{
Exs 6=i

j

[
term1

j |xij = 1
]
,Exs 6=i

j

[
term2

j |xij = 0
]}
, (S32)

7

where (S30) uses the triangle inequality, and in (S31) we define term1
j and term2

j for notational convenience.
Now consider each term in (S32) separately,

Exs 6=i
j

[
term1

j |xij = 1
]

= Exs 6=i
j

∣∣∣∣ 1

Z(m− 1)
log

αj +
∑
s6=i x

s
j

αj
− 1

Z(m)
log

αj +
∑
s6=i x

s
j + 1

αj

∣∣∣∣
= Exs 6=i

j

[
1

Z(m)
log

αj +
∑
s 6=i x

s
j + 1

αj
− 1

Z(m− 1)
log

αj +
∑
s6=i x

s
j

αj

]
, (S33)

where we have shown in Lemma S5 that this quantity is non-negative. Because {xs} are independent, {xsj}
are independent for fixed j. We can consider {xsj}s6=i to be a collection of m−1 independent Bernoulli random
variables with probability of success pj = Px∼D(xj = 1), the marginal distribution. Let t =

∑
s6=i x

s
j , then

t ∼ Binomial(m− 1, pj). Continuing (S33),

Exs 6=i
j

[
term1

j |xij = 1
]

= Et∼Bin(m−1,pj)

[
1

Z(m)
log

αj + t+ 1

αj
− 1

Z(m− 1)
log

αj + t

αj

]
≤ 1

Z(m− 1)
Et∼Bin(m−1,pj)

[
log

αj + t+ 1

αj + t

]
=

1

Z(m− 1)
Et∼Bin(m−1,pj)

[
log

(
1 +

1

αj + t

)]
≤ 1

Z(m− 1)
log

(
1 + Et∼Bin(m−1,pj)

[
1

αj + t

])
=

1

Z(m− 1)
log

(
1 +

1

αj + (m− 1)pj
+O

(
1

m2

))
. (S34)

The second line uses Z(m) ≥ Z(m−1), the fourth line uses Jensen’s inequality, and the fifth line uses Lemma
S3. Now we turn to the other term.

Exs 6=i
j

[
term2

j |xij = 0
]

= Exs 6=i
j

∣∣∣∣ 1

Z(m− 1)
log

βj + (m− 1)−
∑
s6=i x

s
j

βj
− 1

Z(m)
log

βj +m−
∑
s 6=i x

s
j

βj

∣∣∣∣
= Exs 6=i

j

[
1

Z(m)
log

βj +m−
∑
s6=i x

s
j

βj
− 1

Z(m− 1)
log

βj + (m− 1)−
∑
s6=i x

s
j

βj

]
. (S35)

We have shown in Lemma S6 that this quantity is non-negative. Let qj = 1− pj . Let t = m− 1−
∑
s6=i x

s
j ,

then t ∼ Binomial(m− 1, qj). Continuing (S35):

Exs 6=i
j

[
term2

j |xij = 0
]
≤ 1

Z(m− 1)
Et∼Bin(m−1,qj)

[
log

βj + t+ 1

βj + t

]
≤ 1

Z(m− 1)
log

(
1 +

1

βj + (m− 1)qj
+O

(
1

m2

))
. (S36)

8

where the steps are as with (S34). We now take (S34) and (S36) and use them to continue (S32):

ES |`(fS , xi)− `(fS\i , xi)|

≤
N∑
j=1

max

{
1

Z(m− 1)
log

(
1 +

1

αj + (m− 1)pj
+O

(
1

m2

))
,

1

Z(m− 1)
log

(
1 +

1

βj + (m− 1)qj
+O

(
1

m2

))}
≤

N∑
j=1

1

Z(m− 1)
log

(
1 +

1

min{αj , βj}+ (m− 1) min{pj , qj}
+O

(
1

m2

))

≤ N

Z(m− 1)
log

(
1 +

1

γmin + (m− 1)pmin
+O

(
1

m2

))
:= η. (S37)

Using the Taylor expansion of log(1 + x),

η =
N

Z(m− 1)

(
1

γmin + (m− 1)pmin
+O

(
1

m2

)
− 1

2

(
1

γmin + (m− 1)pmin
+O

(
1

m2

))2
)

=
N

Z(m− 1)

(
1

γmin + (m− 1)pmin
+O

(
1

m2

))
=

1

log
(
γmin+m−1

γmin

)
(γmin + (m− 1)pmin)

+O

(
1

m2 logm

)
. (S38)

The proof of Theorem 1 is now a straightforward application of Theorem S1 using the result of Lemma
S7.

Proof of Theorem 1. By Lemma S7, we can apply Theorem S1 to see that with probability at least 1− δ on
the draw of S,

Ex [`(fS , x)] ≤ 1

m

m∑
i=1

`(fS , x
i) +

√
1 + 12mη

2mδ

Ex [1− fS(x)] ≤ 1

m

m∑
s=1

(1− fS(xs)) +

√
1 + 12mη

2mδ

Ex [fS(x)] ≥ 1

m

m∑
s=1

fS(xs)−
√

1 + 12mη

2mδ

=
1

m

m∑
s=1

fS(xs)

−

√√√√ 1

2mδ
+

6

δ log
(
γmin+m−1

γmin

)
(γmin + (m− 1)pmin)

+O

(
1

δm2 logm

)
.

2.1 Comments on the effect of the prior on generalization.

The prior influences the generalization bound via the quantity

h(γmin,m, pmin) := log

(
γmin +m− 1

γmin

)
(γmin + (m− 1)pmin) . (S39)

9

Figure S2: The stability bound η as a function of the prior γmin, for fixed m = 100 and pmin = 0.001. For
γmin large enough relative to pmin, stronger priors yield tighter bounds.

As this quantity increases, the bound becomes tighter. We can thus study the influence of the prior on gen-
eralization by studying the behavior of this quantity as γmin varies. The second term, (γmin + (m− 1)pmin),
is similar to many results from Bayesian analysis in which the prior plays the same role as additional data.
This term is increasing with γmin, meaning it yields a tighter bound with a stronger prior. The first term,

log
(
γmin+m−1

γmin

)
, is inherited from the normalization Z(m). This term is decreasing with γmin, that is, it

gives a tighter bound with a weaker prior. The overall effect of γmin on generalization depends on how these
two terms balance each other, which in turn depends primarily on pmin.

Exact analysis of the behavior of h(γmin,m, pmin) as a function of γmin does not yield interpretable results,
however we gain some insight by considering the case where γmin scales with m: γmin := γ̃(m− 1). Then we
can consider (S39) as a function of γ̃ and pmin alone:

h(γ̃, pmin) := log

(
γ̃ + 1

γ̃

)
(γ̃ + pmin) . (S40)

The bound becomes tighter as γ̃ increases, as long as we have ∂h(γ̃,pmin)
∂γ̃ > 0. This is the case when

pmin < γ̃(γ̃ + 1) log

(
γ̃ + 1

γ̃

)
− γ̃. (S41)

The quantity on the right-hand side is increasing with γ̃. Thus, for pmin small enough relative to γ̃, stronger
priors lead to a tighter bound. To illustrate this behavior, in Figure S1 we plot the stability bound η (ex-

cluding O
(

1
m2 logm

)
terms) as a function of γmin, for m = 100 and pmin = 0.001. For γmin larger than about

0.01, the bound tightens as the prior is increased.

2.2 Bayesian Sets and Uniform Stability.

In addition to pointwise hypothesis stability, Bousquet and Elisseeff (2002) define a stronger notion of
stability called “uniform stability.”

10

Definition S2 (Bousquet and Elisseeff, 2002). An algorithm has uniform stability κ with respect to the loss
function ` if the following holds

∀S, ∀i ∈ {1, . . . ,m}, ||`(fS , ·)− `(fS\i , ·)||∞ ≤ κ. (S42)

The algorithm is said to be stable if κ scales with 1
m .

Uniform stability requires a O
(

1
m

)
bound for all training sets, rather than the average training set as

with pointwise hypothesis stability. The bound must also hold for all possible test points, rather than testing
on the perturbed point. Uniform stability is actually a very strong condition that is difficult to meet, since
if (S42) can be violated by any possible combination of training set and test point, then uniform stability
does not hold. Bayesian Sets does not have this form of stability, as we now show with an example.

Choose the training set of m data points to satisfy:

xij = 0 ∀j, i = 1, . . . ,m− 1

xmj = 1 ∀j,

and as a test point x, take xj = 1 ∀j. Let xm be the point removed from the training set. Then,

κ = |`(fS , x)− `(fS\m , x)|
= |fS\m(x)− fS(x)|

=

∣∣∣∣∣∣ 1

Z(m− 1)

N∑
j=1

xj log
αj +

∑m
s=1 x

s
j − xmj

αj
− 1

Z(m)

N∑
j=1

xj log
αj +

∑m
s=1 x

s
j

αj

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

Z(m− 1)

N∑
j=1

log
αj
αj
− 1

Z(m)

N∑
j=1

log
αj + 1

αj

∣∣∣∣∣∣
=

1

Z(m)

N∑
j=1

log
αj + 1

αj

≥
log

maxj αj+1
maxj αj

log
(
γmin+m
γmin

) , (S43)

which scales with m as 1
logm , not the 1

m required for stability.

References

Bousquet O, Elisseeff A (2002) Stability and generalization. Journal of Machine Learning Research 2:499–526

Hoeffding W (1963) Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association 58(301):13–30

Johnson NL, Kemp AW, Kotz S (2005) Univariate Discrete Distributions. John Wiley & Sons

Romanovsky V (1923) Note on the moments of a binomial (p+ q)n about its mean. Biometrika 15:410–412

11

