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We aim to produce predictive models that are not only accurate, but are
also interpretable to human experts. Our models are decision lists, which con-
sist of a series of if . . . then. . . statements (e.g., if high blood pressure, then
stroke) that discretize a high-dimensional, multivariate feature space into a
series of simple, readily interpretable decision statements. We introduce a
generative model called Bayesian Rule Lists that yields a posterior distribu-
tion over possible decision lists. It employs a novel prior structure to encour-
age sparsity. Our experiments show that Bayesian Rule Lists has predictive
accuracy on par with the current top algorithms for prediction in machine
learning. Our method is motivated by recent developments in personalized
medicine, and can be used to produce highly accurate and interpretable med-
ical scoring systems. We demonstrate this by producing an alternative to the
CHADS2 score, actively used in clinical practice for estimating the risk of
stroke in patients that have atrial fibrillation. Our model is as interpretable as
CHADS2, but more accurate.

1. Introduction. Our goal is to build predictive models that are highly accu-
rate, yet are highly interpretable. These predictive models will be in the form of
sparse decision lists, which consist of a series of if. . . then. . . statements where
the if statements define a partition of a set of features and the then statements
correspond to the predicted outcome of interest. Because of this form, a decision
list model naturally provides a reason for each prediction that it makes. Figure 1
presents an example decision list that we created using the Titanic data set available
in R. This data set provides details about each passenger on the Titanic, including
whether the passenger was an adult or child, male or female, and their class (1st,
2nd, 3rd or crew). The goal is to predict whether the passenger survived based
on his or her features. The list provides an explanation for each prediction that is
made. For example, we predict that a passenger is less likely to survive than not
because he or she was in the 3rd class. The list in Figure 1 is one accurate and
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if male and adult then survival probability 21% (19%–23%)
else if 3rd class then survival probability 44% (38%–51%)
else if 1st class then survival probability 96% (92%–99%)
else survival probability 88% (82%–94%)

FIG. 1. Decision list for Titanic. In parentheses is the 95% credible interval for the survival prob-
ability.

interpretable decision list for predicting survival on the Titanic, possibly one of
many such lists. Our goal is to learn these lists from data.

Our model, called Bayesian Rule Lists (BRL), produces a posterior distribution
over permutations of if. . . then. . . rules, starting from a large, pre-mined set of
possible rules. The decision lists with high posterior probability tend to be both
accurate and interpretable, where the interpretability comes from a hierarchical
prior over permutations of rules. The prior favors concise decision lists that have a
small number of total rules, where the rules have few terms in the left-hand side.

BRL provides a new type of balance between accuracy, interpretability and
computation. Consider the challenge of constructing a predictive model that dis-
cretizes the input space in the same way as decision trees [Breiman et al. (1984),
Quinlan (1993)], decision lists [Rivest (1987)] or associative classifiers [Liu, Hsu
and Ma (1998)]. Greedy construction methods like classification and regression
trees (CART) or C5.0 are not particularly computationally demanding, but, in
practice, the greediness heavily affects the quality of the solution, both in terms
of accuracy and interpretability. At the same time, optimizing a decision tree over
the full space of all possible splits is not a tractable problem. BRL strikes a balance
between these extremes, in that its solutions are not constructed in a greedy way
involving splitting and pruning, yet it can solve problems at the scale required to
have an impact in real problems in science or society, including modern healthcare.

A major source of BRL’s practical feasibility is the fact that it uses pre-mined
rules, which reduces the model space to that of permutations of rules as opposed to
all possible sets of splits. The complexity of the problem then depends on the num-
ber of pre-mined rules rather than on the full space of feature combinations; in a
sense, this algorithm scales with the sparsity of the data set rather than the number
of features. As long as the pre-mined set of rules is sufficiently expressive, an accu-
rate decision list can be found and, in fact, the smaller model space might improve
generalization [through the lens of statistical learning theory, Vapnik (1995)]. An
additional advantage to using pre-mined rules is that each rule is independently
both interpretable and informative about the data.

BRL’s prior structure encourages decision lists that are sparse. Sparse decision
lists serve the purpose of not only producing a more interpretable model, but also
reducing computation, as most of the sampling iterations take place within a small
set of permutations corresponding to the sparse decision lists. In practice, BRL
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is able to compute predictive models with accuracy comparable to state-of-the-
art machine learning methods, yet maintain the same level of interpretability as
medical scoring systems.

The motivation for our work lies in developing interpretable patient-level pre-
dictive models using massive observational medical data. To this end, we use BRL
to construct an alternative to the CHADS2 score of Gage et al. (2001). CHADS2
is widely used in medical practice to predict stroke in patients with atrial fibrilla-
tion. A patient’s CHADS2 score is computed by assigning one “point” each for the
presence of congestive heart failure (C), hypertension (H), age 75 years or older
(A) and diabetes mellitus (D), and by assigning 2 points for history of stroke, tran-
sient ischemic attack or thromoembolism (S2). The CHADS2 score considers only
5 factors, whereas the updated CHA2DS2-VASc score [Lip et al. (2010b)] includes
three additional risk factors: vascular disease (V), age 65 to 74 years old (A) and
female gender (Sc). Higher scores correspond to increased risk. In the study defin-
ing the CHADS2 score [Gage et al. (2001)], the score was calibrated with stroke
risks using a database of 1733 Medicare beneficiaries followed for, on average,
about a year.

Our alternative to the CHADS2 was constructed using 12,586 patients and 4148
factors. Because we are using statistical learning, we are able to consider signif-
icantly more features; this constitutes over 6000 times the amount of data used
for the original CHADS2 study. In our experiments we compared the stroke pre-
diction performance of BRL to CHADS2 and CHA2DS2-VASc, as well as to a
collection of state-of-the-art machine learning algorithms: C5.0 [Quinlan (1993)],
CART [Breiman et al. (1984)], �1-regularized logistic regression, support vec-
tor machines [Vapnik (1995)], random forests [Breiman (2001a)], and Bayesian
CART [Chipman, George and McCulloch (1998), Denison, Mallick and Smith
(1998)]. The balance of accuracy and interpretability obtained by BRL is not easy
to obtain through other means: None of the machine learning methods we tried
could obtain both the same level of accuracy and the same level of interpretability.

2. Bayesian rule lists. The setting for BRL is multi-class classification, where
the set of possible labels is 1, . . . ,L. In the case of predicting stroke risk, there are
two labels: stroke or no stroke. The training data are pairs {(xi, yi)}ni=1, where
xi ∈ R

d are the features of observation i, and yi are the labels, yi ∈ {1, . . . ,L}. We
let x = (x1, . . . , xn) and y = (y1, . . . , yn).

In Sections 2.1 and 2.2 we provide the association rule concepts and notation
upon which the method is built. Section 2.3 introduces BRL by outlining the gen-
erative model. Sections 2.4 and 2.5 provide detailed descriptions of the prior and
likelihood, and then Sections 2.6 and 2.7 describe sampling and posterior predic-
tive distributions.

2.1. Bayesian association rules and Bayesian decision lists. An association
rule a → b is an implication with an antecedent a and a consequent b. For the
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purposes of classification, the antecedent is an assertion about the feature vector
xi that is either true or false, for example, “xi,1 = 1 and xi,2 = 0.” This antecedent
contains two conditions, which we call the cardinality of the antecedent. The con-
sequent b would typically be a predicted label y. A Bayesian association rule has
a multinomial distribution over labels as its consequent rather than a single label:

a → y ∼ Multinomial(θ).

The multinomial probability is then given a prior, leading to a prior consequent
distribution:

θ |α ∼ Dirichlet(α).

Given observations (x,y) classified by this rule, we let N·,l be the number of ob-
servations with label yi = l, and N = (N·,1, . . . ,N·,L). We then obtain a posterior
consequent distribution:

θ |x,y,α ∼ Dirichlet(α + N).

The core of a Bayesian decision list is an ordered antecedent list d =
(a1, . . . , am). Let Nj,l be the number of observations xi that satisfy aj but not
any of a1, . . . , aj−1, and that have label yi = l. This is the number of observa-
tions to be classified by antecedent aj that have label l. Let N0,l be the number
of observations that do not satisfy any of a1, . . . , am and that have label l. Let
Nj = (Nj,1, . . . ,Nj,L) and N = (N0, . . . ,Nm).

A Bayesian decision list D = (d,α,N) is an ordered list of antecedents together
with their posterior consequent distributions. The posterior consequent distribu-
tions are obtained by excluding data that have satisfied an earlier antecedent in the
list. A Bayesian decision list then takes the form:

if a1 then y ∼ Multinomial(θ1), θ1 ∼ Dirichlet(α + N1)

else if a2 then y ∼ Multinomial(θ2), θ2 ∼ Dirichlet(α + N2)
...

else if am then y ∼ Multinomial(θm), θm ∼ Dirichlet(α + Nm)

else y ∼ Multinomial(θ0), θ0 ∼ Dirichlet(α + N0).

Any observations that do not satisfy any of the antecedents in d are classified using
the parameter θ0, which we call the default rule parameter.

2.2. Antecedent mining. We are interested in forming Bayesian decision lists
whose antecedents are a subset of a preselected collection of antecedents. For data
with binary or categorical features this can be done using frequent itemset min-
ing, where itemsets are used as antecedents. In our experiments, the features were
binary and we used the FP-Growth algorithm [Borgelt (2005)] for antecedent min-
ing, which finds all itemsets that satisfy constraints on minimum support and maxi-
mum cardinality. This means each antecedent applies to a sufficiently large amount
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of data and does not have too many conditions. For binary or categorical features
the particular choice of the itemset mining algorithm is unimportant, as the out-
put is an exhaustive list of all itemsets satisfying the constraints. Other algorithms,
such as Apriori or Eclat [Agrawal and Srikant (1994), Zaki (2000)], would return
an identical set of antecedents as FP-Growth if given the same minimum support
and maximum cardinality constraints. Because the goal is to obtain decision lists
with few rules and few conditions per rule, we need not include any itemsets that
apply only to a small number of observations or have a large number of condi-
tions. Thus, frequent itemset mining allows us to significantly reduce the size of
the feature space, compared to considering all possible combinations of features.

The frequent itemset mining that we do in our experiments produces only an-
tecedents with sets of features, such as “diabetes and heart disease.” Other tech-
niques could be used for mining antecedents with negation, such as “not diabetes”
[Wu, Zhang and Zhang (2004)]. For data with continuous features, a variety of
procedures exist for antecedent mining [Dougherty, Kohavi and Sahami (1995),
Fayyad and Irani (1993), Srikant and Agrawal (1996)]. Alternatively, one can cre-
ate categorical features using interpretable thresholds (e.g., ages 40–49, 50–59,
etc.) or interpretable quantiles (e.g., quartiles)—we took this approach in our ex-
periments.

We let A represent the complete, pre-mined collection of antecedents, and sup-
pose that A contains |A| antecedents with up to C conditions in each antecedent.

2.3. Generative model. We now sketch the generative model for the labels y
from the observations x and antecedents A. Define a<j as the antecedents before j

in the rule list if there are any, for example, a<3 = {a1, a2}. Similarly, let cj be the
cardinality of antecedent aj , and c<j the cardinalities of the antecedents before j

in the rule list. The generative model is then:

– Sample a decision list length m ∼ p(m|λ).
– Sample the default rule parameter θ0 ∼ Dirichlet(α).
– For decision list rule j = 1, . . . ,m:

Sample the cardinality of antecedent aj in d as cj ∼ p(cj |c<j ,A, η).
Sample aj of cardinality cj from p(aj |a<j , cj ,A).
Sample rule consequent parameter θj ∼ Dirichlet(α).

– For observation i = 1, . . . , n:
Find the antecedent aj in d that is the first that applies to xi .
If no antecedents in d apply, set j = 0.
Sample yi ∼ Multinomial(θj ).

Our goal is to sample from the posterior distribution over antecedent lists:

p(d|x,y,A,α, λ, η) ∝ p(y|x, d,α)p(d|A, λ, η).

Given d , we can compute the posterior consequent distributions required to con-
struct a Bayesian decision list as in Section 2.1. Three prior hyperparameters must
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be specified by the user: α, λ and η. We will see in Sections 2.4 and 2.5 that these
hyperparameters have natural interpretations that suggest the values to which they
should be set.

2.4. The hierarchical prior for antecedent lists. Suppose the list of an-
tecedents d has length m and antecedent cardinalities c1, . . . , cm. The prior proba-
bility of d is defined hierarchically as

p(d|A, λ, η) = p(m|A, λ)

m∏
j=1

p(cj |c<j ,A, η)p(aj |a<j , cj ,A).(2.1)

We take the distributions for list length m and antecedent cardinality cj to be Pois-
son with parameters λ and η, respectively, with proper truncation to account for
the finite number of antecedents in A. Specifically, the distribution of m is Poisson
truncated at the total number of preselected antecedents:

p(m|A, λ) = (λm/m!)∑|A|
j=0(λ

j/j !) , m = 0, . . . , |A|.

This truncated Poisson is a proper prior, and is a natural choice because of its sim-
ple parameterization. Specifically, this prior has the desirable property that when
|A| is large compared to the desired size of the decision list, as will generally be
the case when seeking an interpretable decision list, the prior expected decision
list length E[m|A, λ] is approximately equal to λ. The prior hyperparameter λ can
then be set to the prior belief of the list length required to model the data. A Pois-
son distribution is used in a similar way in the hierarchical prior of Wu, Tjelmeland
and West (2007).

The distribution of cj must be truncated at zero and at the maximum antecedent
cardinality C. Additionally, any cardinalities that have been exhausted by point
j in the decision list sampling must be excluded. Let Rj(c1, . . . , cj ,A) be the
set of antecedent cardinalities that are available after drawing antecedent j . For
example, if A contains antecedents of size 1, 2 and 4, then we begin with R0(A) =
{1,2,4}. If A contains only 2 rules of size 4 and c1 = c2 = 4, then R2(c1, c2,A) =
{1,2} as antecedents of size 4 have been exhausted. We now take p(cj |c<j ,A, η)

as Poisson truncated to remove values for which no rules are available with that
cardinality:

p(cj |c<j ,A, η) = (ηcj /cj !)∑
k∈Rj−1(c<j ,A)(η

k/k!) , cj ∈ Rj−1(c<j ,A).

If the number of rules of different sizes is large compared to λ, and η is small
compared to C, the prior expected average antecedent cardinality is close to η.
Thus, η can be set to the prior belief of the antecedent cardinality required to
model the data.
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Once the antecedent cardinality cj has been selected, the antecedent aj must
be sampled from all available antecedents in A of size cj . Here, we use a uniform
distribution over antecedents in A of size cj , excluding those in a<j :

p(aj |a<j , cj ,A) ∝ 1, aj ∈ {
a ∈ A \ a<j : |a| = cj

}
.(2.2)

It is straightforward to sample an ordered antecedent list d from the prior by fol-
lowing the generative model, using the provided distributions.

2.5. The likelihood function. The likelihood function follows directly from
the generative model. Let θ = (θ0, θ1, . . . , θm) be the consequent parameters cor-
responding to each antecedent in d , together with the default rule parameter θ0.
Then, the likelihood is the product of the multinomial probability mass functions
for the observed label counts at each rule:

p(y|x, d, θ) = ∏
j :∑l Nj,l>0

Multinomial(Nj |θj ),

with

θj ∼ Dirichlet(α).

We can marginalize over θj in each multinomial distribution in the above product,
obtaining, through the standard derivation of the Dirichlet-multinomial distribu-
tion,

p(y|x, d,α) =
m∏

j=0

�(
∑L

l=1 αl)

�(
∑L

l=1 Nj,l + αl)
×

L∏
l=1

�(Nj,l + αl)

�(αl)

∝
m∏

j=0

∏L
l=1 �(Nj,l + αl)

�(
∑L

l=1 Nj,l + αl)
.

The prior hyperparameter α has the usual Bayesian interpretation of pseudo-
counts. In our experiments, we set αl = 1 for all l, producing a uniform prior.
Other approaches for setting prior hyperparameters such as empirical Bayes are
also applicable.

2.6. Markov chain Monte Carlo sampling. We do Metropolis–Hastings sam-
pling of d , generating the proposed d∗ from the current dt using one of three
options: (1) Move an antecedent in dt to a different position in the list. (2) Add
an antecedent from A that is not currently in dt into the list. (3) Remove an an-
tecedent from dt . Which antecedents to adjust and their new positions are chosen
uniformly at random at each step. The option to move, add or remove is also cho-
sen uniformly. The probabilities for the proposal distribution Q(d∗|dt ) depend on
the size of the antecedent list, the number of pre-mined antecedents, and whether
the proposal is a move, addition or removal. For the uniform distribution that we
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used, the proposal probabilities for a d∗ produced by one of the three proposal
types is

Q
(
d∗|dt ,A

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

(|dt |)(|dt | − 1)
, if move proposal,

1

(|A| − |dt |)(|dt | + 1)
, if add proposal,

1

|dt | , if remove proposal.

To explain these probabilities, if there is a move proposal, we consider the number
of possible antecedents to move and the number of possible positions for it; if there
is an add proposal, we consider the number of possible antecedents to add to the list
and the number of positions to place a new antecedent; for remove proposals we
consider the number of possible antecedents to remove. This sampling algorithm
is related to those used for Bayesian Decision Tree models [Chipman, George and
McCulloch (1998, 2002), Wu, Tjelmeland and West (2007)] and to methods for
exploring tree spaces [Madigan, Mittal and Roberts (2011)].

For every MCMC run, we ran 3 chains, each initialized independently from a
random sample from the prior. We discarded the first half of simulations as burn-
in, and then assessed chain convergence using the Gelman–Rubin convergence
diagnostic applied to the log posterior density [Gelman and Rubin (1992)]. We
considered chains to have converged when the diagnostic R̂ < 1.05.

2.7. The posterior predictive distribution and point estimates. Given the pos-
terior p(d|x,y,A, α,λ, η), we consider estimating the label ỹ of a new observation
x̃ using either a point estimate (a single Bayesian decision list) or the posterior pre-
dictive distribution. Given a point estimate of the antecedent list d , we have that

p(ỹ = l|x̃, d,x,y, α) =
∫
θ
θlp(θ |x̃, d,x,y, α) dθ

= E[θl|x̃, d,x,y, α].
Let j (d, x̃) be the index of the first antecedent in d that applies to x̃. The posterior
consequent distribution is

θ |x̃, d,x,y, α ∼ Dirichlet(α + Nj (d,x̃)).(2.3)

Thus,

p(ỹ = l|x̃, d,x,y, α) = αl + Nj(d,x̃),l∑L
k=1(αk + Nj(d,x̃),k)

.

Additionally, (2.3) allows for the estimation of 95% credible intervals using the
Dirichlet distribution function.
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The posterior mean is often a good choice for a point estimate, but the interpreta-
tion of “mean” here is not clear since the posterior is a distribution over antecedent
lists. We thus look for an antecedent list whose statistics are similar to the posterior
mean statistics. Specifically, we are interested in finding a point estimate d̂ whose
length m and whose average antecedent cardinality c̄ = 1

m

∑m
j=1 cj are close to the

posterior mean list length and average cardinality. Let m̄ be the posterior mean
decision list length and ¯̄c the posterior mean average antecedent cardinality, as es-
timated from the MCMC samples. Then, we choose our point estimate d̂ as the list
with the highest posterior probability among all samples with m ∈ {�m̄�, 	m̄
} and
c̄ ∈ [�¯̄c�, 	¯̄c
]. We call this point estimate BRL-point.

Another possible point estimate is the decision list with the highest posterior
probability—the maximum a posteriori estimate. Given two list lengths, there are
many more possible lists of the longer length than of the shorter length, so prior
probabilities in (2.1) are generally higher for shorter lists. The maximum a posteri-
ori estimate might yield a list that is much shorter than the posterior mean decision
list length, so we prefer the BRL-point.

In addition to point estimates, we can use the entire posterior p(d|x,y,A, α,λ,

η) to estimate y. The posterior predictive distribution for y is

p(y = l|x,x,y,A, α,λ, η) = ∑
d∈D

p(y = l|x, d,x,y,A, α)p(d|x,y,A, α,λ, η)

= ∑
d∈D

αl + Nj(d,x),l∑L
k=1(αk + Nj(d,x),k)

p(d|x,y,A, α,λ, η),

where D is the set of all ordered subsets of A. The posterior samples obtained by
MCMC simulation, after burn-in, can be used to approximate this sum. We call
the classifier that uses the full collection of posterior samples BRL-post. Using
the entire posterior distribution to make a prediction means the classifier is no
longer interpretable. One could, however, use the posterior predictive distribution
to classify, and then provide several point estimates from the posterior to the user
as example explanations for the prediction.

3. Simulation studies. We use simulation studies and a deterministic data set
to show that when data are generated by a decision list model, the BRL (Bayesian
Rule Lists; see Section 1) method is able to recover the true decision list.

3.1. Simulated data sets. Given observations with arbitrary features and a col-
lection of rules on those features, we can construct a binary matrix where the rows
represent observations and the columns represent rules, and the entry is 1 if the
rule applies to that observation and 0 otherwise. We need only simulate this binary
matrix to represent the observations without losing generality. For our simulations,
we generated independent binary rule sets with 100 rules by setting each feature
value to 1 independently with probability 1/2.
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FIG. 2. (a) Average Levenshtein distance from posterior samples to the true decision list, for differ-
ing numbers of observations. The black solid line indicates the median value across the 100 simulated
data sets of each size, and the gray dashed lines indicate the first and third quartiles. (b) The propor-
tion of posterior samples with the specified distance to the true decision list, for a randomly selected
simulation with n = 100 observations and a randomly selected simulation with n = 5000.

We generated a random decision list of size 5 by selecting 5 rules at random, and
adding the default rule. Each rule in the decision list was assigned a consequent
distribution over labels using a random draw from the Beta(1/2,1/2) distribution,
which ensures that the rules are informative about labels. Labels were then as-
signed to each observation using the decision list: For each observation, the label
was taken as a draw from the label distribution corresponding to the first rule that
applied to that observation.

For each number of observations N ∈ {100,250,500,1000,2500,5000}, we
generated 100 independent data sets (x,y), for a total of 600 simulated data sets.
We did MCMC sampling with three chains as described in Section 2 for each data
set. For all data sets, 20,000 samples were sufficient for the chains to converge.

To appropriately visualize the posterior distribution, we binned the posterior
antecedent lists according to their distance from the true antecedent list, using
the Levenshtein string edit distance [Levenshtein (1965)] to measure the distance
between two antecedent lists. This metric measures the minimum number of an-
tecedent substitutions, additions or removals to transform one decision list into the
other. The results of the simulations are given in Figure 2.

Figure 2(a) shows that as the number of observations increases, the posterior
mass concentrates on the true decision list. Figure 2(b) illustrates this concentration
with two choices of the distribution of posterior distances to the true decision list,
for n small and for n large.

3.2. A deterministic problem. We fit BRL to the Tic–Tac–Toe Endgame data
set from the UCI Machine Learning Repository [Bache and Lichman (2013)] of
benchmark data sets. The Tic–Tac–Toe Endgame data set provides all possible
end board configurations for the game Tic–Tac–Toe, with the task of determining
if player “X” won or not. The data set is deterministic, with exactly 8 ways that
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TABLE 1
Mean classification accuracy in the top row, with standard deviation in the second row, for machine

learning algorithms using 5 folds of cross-validation on the Tic–Tac–Toe Endgame data set

BRL C5.0 CART �1-LR SVM RF BCART

Mean accuracy 1.00 0.94 0.90 0.98 0.99 0.99 0.71
Standard deviation 0.00 0.01 0.04 0.01 0.01 0.01 0.04

player “X” can win, each one of the 8 ways to get 3 “X”’s in a row on a 3 × 3 grid.
We split the data set into 5 folds and did cross-validation to estimate test accuracy.
For each fold of cross-validation, we fit BRL with prior hyperparameters λ = 8
and η = 3, and the point estimate decision list contained the 8 ways to win and
thus achieved perfect accuracy. In Table 1, we compare accuracy on the test set
with C5.0, CART, �1-regularized logistic regression (�1-LR), RBF kernel support
vector machines (SVM), random forests (RF) and Bayesian CART (BCART). The
implementation details for these comparison algorithms are in the Appendix. None
of these other methods was able to achieve perfect accuracy. Decision trees in
particular are capable of providing a perfect classifier for this problem, but the
greedy learning done by C5.0 and CART did not find the perfect classifier.

4. Stroke prediction. We used Bayesian Rule Lists to derive a stroke pre-
diction model using the MarketScan Medicaid Multi-State Database (MDCD).
MDCD contains administrative claims data for 11.1 million Medicaid enrollees
from multiple states. This database forms part of the suite of databases from
the Innovation in Medical Evidence Development and Surveillance (IMEDS,
http://imeds.reaganudall.org/) program that have been mapped to a common data
model [Stang et al. (2010)].

We extracted every patient in the MDCD database with a diagnosis of atrial
fibrillation, one year of observation time prior to the diagnosis and one year of
observation time following the diagnosis (n = 12,586). Of these, 1786 (14%) had
a stroke within a year of the atrial fibrillation diagnosis.

As candidate predictors, we considered all drugs and all conditions. Specifically,
for every drug and condition, we created a binary predictor variable indicating
the presence or absence of the drug or condition in the full longitudinal record
prior to the atrial fibrillation diagnosis. These totaled 4146 unique medications
and conditions. We included features for age and gender. Specifically, we used
the natural values of 50, 60, 70 and 80 years of age as split points, and for each
split point introduced a pair of binary variables indicating if age was less than or
greater than the split point. Considering both patients and features, here we apply
our method to a data set that is over 6000 times larger than that originally used to
develop the CHADS2 score (which had n = 1733 and considered 5 features).

http://imeds.reaganudall.org/
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if hemiplegia and age > 60 then stroke risk 58.9% (53.8%–63.8%)
else if cerebrovascular disorder then stroke risk 47.8% (44.8%–50.7%)
else if transient ischaemic attack then stroke risk 23.8% (19.5%–28.4%)
else if occlusion and stenosis of carotid artery without infarction then stroke
risk 15.8% (12.2%–19.6%)
else if altered state of consciousness and age > 60 then stroke risk 16.0%
(12.2%–20.2%)
else if age ≤ 70 then stroke risk 4.6% (3.9%–5.4%)
else stroke risk 8.7% (7.9%–9.6%)

FIG. 3. Decision list for determining 1-year stroke risk following diagnosis of atrial fibrillation
from patient medical history. The risk given is the mean of the posterior consequent distribution, and
in parentheses is the 95% credible interval.

We did five folds of cross-validation. For each fold, we pre-mined the collection
of possible antecedents using frequent itemset mining with a minimum support
threshold of 10% and a maximum cardinality of 2. The total number of antecedents
used ranged from 2162 to 2240 across the folds. We set the antecedent list prior
hyperparameters λ and η to 3 and 1, respectively, to obtain a Bayesian decision
list of similar complexity to the CHADS2 score. For each fold, we evaluated the
performance of the BRL point estimate by constructing a receiver operating char-
acteristic (ROC) curve and measuring area under the curve (AUC) for each fold.

In Figure 3 we show the BRL point estimate recovered from one of the folds.
The list indicates that past history of stroke reveals a lot about the vulnerability
toward future stroke. In particular, the first half of the decision list focuses on a
history of stroke, in order of severity. Hemiplegia, the paralysis of an entire side of
the body, is often a result of a severe stroke or brain injury. Cerebrovascular disor-
der indicates a prior stroke, and transient ischaemic attacks are generally referred
to as “mini-strokes.” The second half of the decision list includes age factors and
vascular disease, which are known risk factors and are included in the CHA2DS2-
VASc score. The BRL-point lists that we obtained in the 5 folds of cross-validation
were all of length 7, a similar complexity to the CHADS2 and CHA2DS2-VASc
scores which use 5 and 8 features, respectively.

The point estimate lists for all five of the folds of cross-validation are given
in the supplemental material [Letham et al. (2015)]. There is significant overlap
in the antecedents in the point estimates across the folds. This suggests that the
model may be more stable in practice than decision trees, which are notorious for
producing entirely different models after small changes to the training set [Breiman
(1996a, 1996b)].

In Figure 4 we give ROC curves for all 5 folds for BRL-point, CHADS2 and
CHA2DS2-VASc, and in Table 2 we report mean AUC across the folds. These
results show that with complexity and interpretability similar to CHADS2, the
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FIG. 4. ROC curves for stroke prediction on the MDCD database for each of 5 folds of cross-vali-
dation, for the BRL point estimate, CHADS2 and CHA2DS2-VASc.

BRL point estimate decision lists performed significantly better at stroke predic-
tion than both CHADS2 and CHA2DS2-VASc. Interestingly, we also found that
CHADS2 outperformed CHA2DS2-VASc despite CHA2DS2-VASc being an ex-
tension of CHADS2. This is likely because the model for the CHA2DS2-VASc
score, in which risk factors are added linearly, is a poor model of actual stroke
risk. For instance, the stroke risks estimated by CHA2DS2-VASc are not a mono-
tonic function of score. Within the original CHA2DS2-VASc calibration study, Lip
et al. (2010a) estimate a stroke risk of 9.6% with a CHA2DS2-VASc score of 7,
and a 6.7% risk with a score of 8. The indication that more stroke risk factors can

TABLE 2
Mean, and in parentheses standard deviation, of AUC and training time across 5 folds of

cross-validation for stroke prediction. Note that the CHADS2 and CHA2DS2-VASc models are fixed,
so no training time is reported

AUC Training time (mins)

BRL-point 0.756 (0.007) 21.48 (6.78)

CHADS2 0.721 (0.014) no training
CHA2DS2-VASc 0.677 (0.007) no training
CART 0.704 (0.010) 12.62 (0.09)

C5.0 0.704 (0.011) 2.56 (0.27)

�1 logistic regression 0.767 (0.010) 0.05 (0.00)

SVM 0.753 (0.014) 302.89 (8.28)

Random forests 0.774 (0.013) 698.56 (59.66)

BRL-post 0.775 (0.015) 21.48 (6.78)
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correspond to a lower stroke risk suggests that the CHA2DS2-VASc model may
be misspecified, and highlights the difficulty in constructing these interpretable
models manually.

The results in Table 2 give the AUC for BRL, CHADS2, CHA2DS2-VASc,
along with the same collection of machine learning algorithms used in Section 3.2.
The decision tree algorithms CART and C5.0, the only other interpretable clas-
sifiers, were outperformed even by CHADS2. The BRL-point performance was
comparable to that of SVM, and not substantially worse than �1 logistic regression
and random forests. Using the full posterior, BRL-post matched random forests for
the best performing method.

All of the methods were applied to the data on the same, single Amazon Web
Services virtual core with a processor speed of approximately 2.5 GHz and 4 GB
of memory. Bayesian CART was unable to fit the data since it ran out of memory,
and so it is not included in Table 2.

The BRL MCMC chains were simulated until convergence, which required
50,000 iterations for 4 of the 5 folds, and 100,000 for the fifth. The three chains
for each fold were simulated in serial, and the total CPU time required per fold is
given in Table 2, together with the CPU times required for training the comparison
algorithms on the same processor. Table 2 shows that the BRL MCMC simulation
was more than ten times faster than training SVM, and more than thirty times faster
than training random forests, using standard implementations of these methods as
described in the Appendix.

4.1. Additional experiments. We further investigated the properties and per-
formance of the BRL by applying it to two subsets of the data, female patients
only and male patients only. The female data set contained 8368 observations, and
the number of pre-mined antecedents in each of 5 folds ranged from 1982 to 2197.
The male data set contained 4218 observations, and the number of pre-mined an-
tecedents in each of 5 folds ranged from 1629 to 1709. BRL MCMC simulations
and comparison algorithm training were done on the same processor as the full
experiment. The AUC and training time across five folds for each of the data sets
is given in Table 3.

The BRL point estimate again outperformed the other interpretable models
(CHADS2, CHA2DS2-VASc, CART and C5.0), and the BRL-post performance
matched that of random forests for the best performing method. As before, BRL
MCMC simulation required significantly less time than SVM or random forests
training. Point estimate lists for these additional experiments are given in the sup-
plemental materials [Letham et al. (2015)].

5. Related work and discussion. Most widely used medical scoring systems
are designed to be interpretable, but are not necessarily optimized for accuracy,
and generally are derived from few factors. The Thrombolysis In Myocardial In-
farction (TIMI) Score [Antman et al. (2000)], Apache II score for infant mortality
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TABLE 3
Mean, and in parentheses standard deviation, of AUC and training time (mins) across 5 folds of

cross-validation for stroke prediction

Female patients Male patients

AUC Training time AUC Training time

BRL-point 0.747 (0.028) 9.12 (4.70) 0.738 (0.027) 6.25 (3.70)

CHADS2 0.717 (0.018) no training 0.730 (0.035) no training
CHA2DS2-VASc 0.671 (0.021) no training 0.701 (0.030) no training
CART 0.704 (0.024) 7.41 (0.14) 0.581 (0.111) 2.69 (0.04)

C5.0 0.707 (0.023) 1.30 (0.09) 0.539 (0.086) 0.55 (0.01)

�1 logistic regression 0.755 (0.025) 0.04 (0.00) 0.739 (0.036) 0.01 (0.00)

SVM 0.739 (0.021) 56.00 (0.73) 0.753 (0.035) 11.05 (0.18)

Random forests 0.764 (0.022) 389.28 (33.07) 0.773 (0.029) 116.98 (12.12)

BRL-post 0.765 (0.025) 9.12 (4.70) 0.778 (0.018) 6.25 (3.70)

in the ICU [Knaus et al. (1985)], the CURB-65 score for predicting mortality in
community-acquired pneumonia [Lim et al. (2003)] and the CHADS2 score [Gage
et al. (2001)] are examples of interpretable predictive models that are very widely
used. Each of these scoring systems involves very few calculations and could be
computed by hand during a doctor’s visit. In the construction of each of these mod-
els, heuristics were used to design the features and coefficients for the model; none
of these models was fully learned from data.

In contrast with these hand-designed interpretable medical scoring systems, re-
cent advances in the collection and storing of medical data present unprecedented
opportunities to develop powerful models that can predict a wide variety of out-
comes [Shmueli (2010)]. The front-end user interface of medical risk assessment
tools are increasingly available online (e.g., http://www.r-calc.com). At the end of
the assessment, a patient may be told he or she has a high risk for a particular
outcome but without understanding why the predicted risk is high, particularly if
many pieces of information were used to make the prediction.

In general, humans can handle only a handful of cognitive entities at once
[Jennings, Amabile and Ross (1982), Miller (1956)]. It has long since been hy-
pothesized that simple models predict well, both in the machine learning literature
[Holte (1993)] and in the psychology literature [Dawes (1979)]. The related con-
cepts of explanation and comprehensibility in statistical modeling have been ex-
plored in many past works [Bratko (1997), Freitas (2014), Giraud-Carrier (1998),
Huysmans et al. (2011), Madigan, Mosurski and Almond (1997), Rüping (2006),
Vellido, Martín-Guerrero and Lisboa (2012), e.g.].

Decision lists have the same form as models used in the expert systems liter-
ature from the 1970s and 1980s [Leondes (2002)], which were among the first
successful types of artificial intelligence. The knowledge base of an expert system
is composed of natural language statements that are if. . . then. . . rules. Decision

http://www.r-calc.com
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lists are a type of associative classifier, meaning that the list is formed from associ-
ation rules. In the past, associative classifiers have been constructed from heuristic
greedy sorting mechanisms [Liu, Hsu and Ma (1998), Marchand and Sokolova
(2005), Rivest (1987), Rudin, Letham and Madigan (2013)]. Some of these sorting
mechanisms work provably well in special cases, for instance, when the decision
problem is easy and the classes are easy to separate, but are not optimized to handle
more general problems. Sometimes associative classifiers are formed by averaging
several rules together, or having the rules each vote on the label and then combin-
ing the votes, but the resulting classifier is not generally interpretable [Friedman
and Popescu (2008), Li, Han and Pei (2001), Meinshausen (2010), Yin and Han
(2003)].

In a previous paper we proved that the VC dimension of decision list classifiers
equals |A|, the number of antecedents used to learn the model [Theorem 3, Rudin,
Letham and Madigan (2013)]. This result leads to a uniform generalization bound
for decision lists [Corollary 4, Rudin, Letham and Madigan (2013)]. This is the
same as the VC dimension obtained by using the antecedents as features in a lin-
ear model, thus we have the same prediction guarantees. We then expect similar
generalization behavior for decision lists and weighted linear combination models.

BRL interacts with the feature space only through the collection of antecedents
A. The computational effort scales with the number of antecedents, not the number
of features, meaning there will generally be less computation when the data are
sparse. This means that BRL tends to scale with the sparsity of the data rather than
the number of features.

Decision trees are closely related to decision lists, and are in some sense equiv-
alent: any decision tree can be expressed as a decision list, and any decision list
is a one-sided decision tree. Decision trees are almost always constructed greed-
ily from the top down, and then pruned heuristically upward and cross-validated
to ensure accuracy. Because the trees are not fully optimized, if the top of the
decision tree happened to have been chosen badly at the start of the procedure,
it could cause problems with both accuracy and interpretability. Bayesian deci-
sion trees [Chipman, George and McCulloch (1998, 2002), Denison, Mallick and
Smith (1998)] use Markov chain Monte Carlo (MCMC) to sample from a poste-
rior distribution over trees. Since they were first proposed, several improvements
and extensions have been made in both sampling methods and model structure
[Chipman, George and McCulloch (2010), Taddy, Gramacy and Polson (2011),
Wu, Tjelmeland and West (2007)]. The space of decision lists using pre-mined
rules is significantly smaller than the space of decision trees, making it substan-
tially easier to obtain MCMC convergence and to avoid the pitfalls of local optima.
Moreover, rule mining allows for the rules to be individually powerful. Construct-
ing a single decision tree is extremely fast, but sampling over the space of decision
trees is extremely difficult (unless one is satisfied with local maxima). To contrast
this with our approach, the rule mining step is extremely fast, yet sampling over
the space of decision lists is very practical.



1366 LETHAM, RUDIN, MCCORMICK AND MADIGAN

There is a subfield of artificial intelligence, Inductive Logic Programming
[Muggleton and De Raedt (1994)], whose goal is to mine individual conjunctive
rules. It is possible to replace the frequent itemset miner with an inductive logic
programming technique, but this generally leads to losses in predictive accuracy;
ideally, we would use a large number of diverse rules as antecedents, rather than
a few (highly overlapping) complex rules as would be produced by an ILP algo-
rithm. In our experiments to a follow-up work [Wang and Rudin (2015)], the use
of an ILP algorithm resulted in a substantial loss in performance.

Interpretable models are generally not unique (stable), in the sense that there
may be many equally good models, and it is not clear in advance which one will be
returned by the algorithm. For most problems, the space of high quality predictive
models is fairly large [called the “Rashomon Effect” Breiman (2001b)], so we
cannot expect uniqueness. In practice, as we showed, the rule lists across test folds
were very similar, but if one desires stability to small perturbations in the data
generally, we recommend using the full posterior rather than a point estimate. The
fact that many high performing rule lists exist can be helpful, since it means the
user has many choices of which model to use.

This work is related to the Hierarchical Association Rule Model (HARM),
a Bayesian model that uses rules [McCormick, Rudin and Madigan (2012)].
HARM estimates the conditional probabilities of each rule jointly in a conservative
way. Each rule acts as a separate predictive model, so HARM does not explicitly
aim to learn an ordering of rules.

There are related works on learning decision lists from an optimization per-
spective. In particular, the work of Rudin and Ertekin (2015) uses mixed-integer
programming to build a rule list out of association rules, which has guarantees on
optimality of the solution. Similarly to that work, Goh and Rudin (2014) fully learn
sparse disjunctions of conjunctions using optimization methods.

There have been several follow-up works that directly extend and apply
Bayesian Rule Lists. The work of Wang and Rudin (2015) on Falling Rule Lists
provides a nontrivial extension to BRL whereby the probabilities for the rules are
monotonically decreasing down the list. Wang et al. (2015) build disjunctions of
conjunctive rules using a Bayesian framework similar to the one in this work.
Zhang et al. (2015) have taken an interesting approach to constructing optimal
treatment regimes using a BRL-like method, where, in addition to the criteria of
accuracy, the rule list has a decision cost for evaluating it. It is possible to use
BRL itself for that purpose as well, as one could give preference to particular
antecedents that cost less. This sort of preference could be expressed in the an-
tecedent prior distribution in (2.2). King, Lam and Roberts (2014) have taken a
Bayesian Rule List approach to handle a challenging problem in text analysis,
which is to build a keyword-based classifier that is easier to understand in order to
solicit high quality human input. Souillard-Mandar et al. (2015) applied Bayesian
Rule Lists and Falling Rule Lists to the problem of screening for cognitive dis-
orders such as Alzheimer’s disease based on the digitized pen strokes of patients
during the Clock Drawing test.
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Shorter preliminary versions of this work are those of Letham et al. (2013,
2014). Letham et al. (2013) used a different prior and called the algorithm the
Bayesian List Machine.

6. Conclusion. We are working under the hypothesis that many real data sets
permit predictive models that can be surprisingly small. This was hypothesized
over two decades decade ago [Holte (1993)]; however, we now are starting to have
the computational tools to truly test this hypothesis. The BRL method introduced
in this work aims to hit the “sweet spot” between predictive accuracy, interpretabil-
ity and tractability.

Interpretable models have the benefits of being both concise and convincing.
A small set of trustworthy rules can be the key to communicating with domain ex-
perts and to allowing machine learning algorithms to be more widely implemented
and trusted. In practice, a preliminary interpretable model can help domain experts
to troubleshoot the inner workings of a complex model, in order to make it more
accurate and tailored to the domain. We demonstrated that interpretable models
lend themselves to the domain of predictive medicine, and there is a much wider
variety of domains in science, engineering and industry, where these models would
be a natural choice.

APPENDIX

Comparison algorithm implementations. Support vector machines: LIB-
SVM [Chang and Lin (2011)] with a radial basis function kernel. We selected
the slack parameter CSVM and the kernel parameter γ using a grid search over
the ranges CSVM ∈ {2−2,20, . . . ,26} and γ ∈ {2−6,2−4, . . . ,22}. We chose the set
of parameters with the best 3-fold cross-validation performance using LIBSVM’s
built-in cross-validation routine. C5.0: The R library “C50” with default settings.
CART: The R library “rpart” with default parameters and pruned using the com-
plexity parameter that minimized cross-validation error. Logistic regression: The
LIBLINEAR [Fan et al. (2008)] implementation of logistic regression with �1 reg-
ularization. We selected the regularization parameter CLR from {2−6,2−4, . . . ,26}
as that with the best 3-fold cross-validation performance, using LIBLINEAR’s
built-in cross-validation routine. Random forests: The R library “randomForest.”
The optimal value for the parameter “mtry” was found using “tuneRF,” with its
default 50 trees. The optimal “mtry” was then used to fit a random forests model
with 500 trees, the library default. Bayesian CART: The R library “tgp,” function
“bcart” with default settings.

Acknowledgments. The authors thank Zachary Shahn and the OMOP team
for help with the data.
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SUPPLEMENTARY MATERIAL

Computer code (DOI: 10.1214/15-AOAS848SUPPA; .zip). Our Python code
used to fit decision lists to data, along with an example data set.

BRL point estimates (DOI: 10.1214/15-AOAS848SUPPB; .pdf). The BRL
point estimates for all of the cross-validation folds for the stroke prediction exper-
iment, and BRL-point estimates for the female-only and male-only experiments.
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