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* A black box machine learning model is a formula that is either too
complicated for any human to understand, or proprietary, so that one
cannot understand its inner workings.




Black box models

* Are hard to troubleshoot while designing them
* “Does the model often predict the right answer for the wrong reason?”
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Black box models

* Are hard to troubleshoot while designing them
* “Does the model often predict the right answer for the wrong reason?”

* Are hard to troubleshoot in practice
e “Will this model predict accurately for my current patient?”
* “Could a typo in the inputs have led to this prediction?”

* Are hard to evaluate with respect to bias and fairness
* “Does this model depend on a variable | don’t want it to?”

e Are hard to “explain”
* Most “explanations” are flawed or incomplete. They often disagree with each other.
* Makes the problem worse by providing false/misleading characterizations.
* Adds unnecessary authority to the black box
» Replacing the black box is almost always the better option.
Black box models turn computer-aided decisions into automated decisions.



* A black box machine learning model is a formula that is either too
complicated for any human to understand, or proprietary, so that one
cannot understand its inner workings.

* An interpretable machine learning model obeys a domain-specific set of
constraints to allow it (or its predictions, or the data) to be more easily
understood by humans. These constraints can differ dramatically
depending on the domain.

* There’s a spectrum.
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Interpretable Machine Learning: Fundamental Principles and
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Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, Chudi Zhong

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In
this work, we provide fundamental principles for interpretable ML, and dispel common
misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical
challenge areas in interpretable machine learning and provide history and background on each
problem. Some of these problems are classically important, and some are recent problems that have
arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as
decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive
models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including
neural networks and matching for causal inference; (5) Complete supervised disentanglement of
neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7)
Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate
physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of
good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting
point for statisticians and computer scientists interested in working in interpretable machine
learning.



1. Sparse Logical Models: Decision Trees,

Decision Lists, and Decision Sets

2. Scoring Systems
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5. Complete Supervised Disentanglement

of Neural Networks
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4. Case-Based Reasoning
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10+ Grand Challenges

6. Unsupervised Disentanglement of
Neural Networks
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10+ Grand Challenges

7. Dimension Reduction for Data Visualization 9. Characterization of the “Rashomon” set of good models
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10+ Grand Challenges

Transformer Encoder

11. Explanations
styles that generalize
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Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In
this work, we provide fundamental principles for interpretable ML, and dispel common
misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical
challenge areas in interpretable machine learning and provide history and background on each
problem. Some of these problems are classically important, and some are recent problems that have
arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as
decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive
models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including
neural networks and matching for causal inference; (5) Complete supervised disentanglement of
neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7)
Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate
physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of
good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting
point for statisticians and computer scientists interested in working in interpretable machine
learning.



Principle 1

* Interpretable ML models are constrained.

1
IfIliJ_{_l — Z Loss(f, z;) + C - InterpretabilityPenalty(f), subjectto InterpretabilityConstraint(f),
€F n

soft hard

“be sparse if it doesn’t sacrifice accuracy” “be sparse”



 Should we rigorously/comprehensively/completely define interpretability
in machine learning?

* Perhaps should rigorously define “predictive performance” first.

* Accuracy, weighted accuracy, precision, average precision, precision@N, recall,
recall@N, DCG, NCDG, AUC, partial AUC, mean-time-to-failure, exponential loss,
logistic loss, ...

* Better to ask what is often relevant: sparsity, linear or logical reasoning,
visual comparisons, 1d or 2d functions, monotonicity, decomposability
into sub-models, ...



Principle 2

Despite common rhetoric, interpretable models do not necessarily
create or enable trust -- they could also enable distrust.

They permit a decision of trust, rather than trust itself.



Principle 3

* Interpretability versus accuracy is, in general, a false dichotomy in
machine learning.

Performancs

From the DARPA XAI BAA, 2016



&he New York Times

OP-ED CONTRIBUTOR

When a Computer

Program Keeps You in Jail

By Rebocca Wexer Glenn Rodriguez was denied parole because
June 13,2017 b ®e]= of a miscalculated “COMPAS” score.

/

How accurate 1s COMPAS? Data
from Florida can tell us...




COMPAS vs. CORELS

71

COMPAS: (Correctional Offender \
Management Profiling for CORELS: (Certifiably Optimal RulE ListS, with Elaine

Alternative Sanctions)

Angelino, Nicholas Larus-Stone, Daniel Alabi, and
Margo Seltzer, KDD 2017 & JMLR 2018)

Here is the machine learning model:

If age=19-20 and sex=male, then predict arrest

else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest

else predict no arrest




Prediction of re-arrest within 2 years
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If age=19-20 and sex=male, then predict arrest

else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest

else predict no arrest




Prediction of re-arrest within 2 years
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If age=19-20 and sex=male, then predict arrest

else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest




Principle 3

* Interpretability versus accuracy is, in general, a false dichotomy in
machine learning.

Performancs

From the DARPA XAI BAA, 2016



Problem spectrum

The Rashomon effect occurs when many different explanations exist for the same phe-
nomenon. In machine learning, Leo Breiman used this term to characterize problems where
many accurate-but-different models exist to describe the same data. In this work, we study
how the Rashomon effect can be useful for understanding the relationship between training
and test performance, and the possibility that simple-yet-accurate models exist for many
problems. We consider the Rashomon set—the set of almost-equally-accurate models for
a given problem—and study its properties and the types of models it could contain. We
present the Rashomon ratio as a new measure related to simplicity of model classes, which

age 4 5 is the ratio of the volume of the sct of accurate models to the volume of the hypothesis
space; the Rashomon ratio is different from standard complexity measures from statisti-

. . cal learning theory. For a hierarchy of hypothesis spaces, the Rashomon ratio can help

C On ge Sthe he art fallure ‘? ye S modelers to navigate the trade-off between simplicity and accuracy. In particular, we find
° empirically that a plot of empirical risk vs. Rashomon ratio forms a characteristic I'-shaped

Rashomon curve, whose elbow seems to be a reliable model selection criterion. When the

takes aspirin ot o 1 e T et g o s o
smoking? no o |
gender M

exercise? yes

allergies? no

number of past strokes 2
diabetes? yes

Tabular: All features are interpretable
- many problems in criminal justice, healthcare, RaW: Features are individually uninterpretable

social sciences, equipment reliability & - pixels/voxels, words, a bit of a sound wave
maintenance, €tc.

- features include counts, categorical data



Problem spectrum

Very sparse models (trees, scoring systems)

Neural networks
With minor pre-processing, all
methods have similar performance

Tabular: Al features are interpretable

- many problems in criminal justice, healthcare, RaW: Features are individually uninterpretable
social sciences, equipment reliability &

maintenance, etc.
- features include counts, categorical data

- pixels/voxels, words, a bit of a sound wave



Principle 4

* As part of the full data science process, one should expect both the
performance metric and interpretability metric to be iteratively refined.

Interpretation
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KDD Process, adapted from Fayyad et al., 1996



Principle 5

* For high stakes decisions, interpretable models should be used, if
possible, rather than “explained” black box models.

PERSPECTIVE machine intelligence

https://doi.org/10.1038/542256-019-0048-x

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin

Black box machine learning models are currently being used for high-stakes decision making througt iety, causing prob-
lems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box
models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are inter-
pretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward
is to desi; dels that are inh ly interpretable. This Perspective clarifies the chasm between explaining black boxes and
using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-
stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where
interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.

here has been an increasing trend in healthcare and criminal  not. There is a spectrum between fully transparent models (where we
justice to leverage machine learning (ML) for high-stakes pre-  understand how all the variables are jointly related to each other) and
diction applications that deeply impact human lives. Many of =~ models that are lightly constrained in model form (such as models



* Black box models still force you to trust the dataset.
* Double trouble: Forces you to rely on two models instead of one.

Those models necessarily disagree with each other

* An explanation that is right 90% of the time is wrong 10% of the time.

* The explanations are not really explanations, they don’t use the same
variables.

(Propublica scandal: They said COMPAS depends on age, criminal history, and race.
But their analysis is wrong.)

* If you can produce an interpretable model, why explain black boxes? Do you
really want to extend the authority of the black box?



Note

* LIME, SHAP, and Grad-CAM are tools that explain black box models.
Not needed for interpretable models.
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Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In
this work, we provide fundamental principles for interpretable ML, and dispel common
misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical
challenge areas in interpretable machine learning and provide history and background on each
problem. Some of these problems are classically important, and some are recent problems that have
arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as
decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive
models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including
neural networks and matching for causal inference; (5) Complete supervised disentanglement of
neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7)
Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate
physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of
good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting
point for statisticians and computer scientists interested in working in interpretable machine
learning.



Note: | will focus on topics that | know well, because | work on them.

Start with exploratory data analysis.



7. Dimension reduction for data visualization

X1, Xy, X3, X4, ... — yl) y29 y39 y49

d dimensions 2 or 3 dimensions

MNIST PCA t-SNE UMAP




7. Dimension reduction for data visualization

Dimension reduction methods:

e can illuminate patterns in high dimensional data
* used often in biology

* PCAis the quintessential DR algorithm

* unsupervised, so no ground truth
* sometimes wildly different results between methods
* dimension reduction plots often lack global structure



Preserve the Mammoth!
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Task: 3d to 2d.
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Local vs Global

- Local structure: local neighborhood graph, nearest neighbors

- Global structure: relationships between clusters, respect relative
distances between points in high-dimensional space.

PCA

(mainly global)

t-SNE

(mainly local)
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Global Methods
* PCA (Pearson, 1901)
* MDS (Torgerson, 1952)

PR )

SR :“*

Local Methods TN

 LLE (Roweis and Saul, 2000), %Mﬁwg%
"y,

* Isomap (Tenenbaum et al., 2000) *%%

* Hessian Local Linear Embedding (Donoho and Grimes, 2003) ,
* Laplacian Eigenmaps (Belkin and Niyogi, 2001) s
 Stochastic Neighborhood Embedding (SNE) (Hinton and Roweis, 2003)
* t-SNE (van der Maaten and Hinton, 2008) ~

* LargeVis (Tang et al., 2016)
« UMAP (Mclnnes et al., 2018)

Crowding problem

* PacMAP is both local and global.



GIObaI MethOdS Article | Open Access | Published: 28 November 2019
The art of using t-SNE for single-cell transcriptomics
* PCA (Pearson, 1901)

* MDS (Torgerson, 1952)

Dmitry Kobak & & Philipp Berens

Nature Communications 10, Article number: 5416 (2019) | Cite this article

36k Accesses | 67 Citations | 269 Altmetric | Metrics

Local Methods How to Use t-SNE Effectively
e LLE (Roweis and Saul, 2000),
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Automatic Selection of t-SNE Perplexity

¢ t_SNE (Van der Maat‘ Yanshuai Cao, Luyu Wang

° : t-Distributed Stoch Automated optimal parameters for T-distributed stochastic neighbor embedding improve
La rgeVI S (Ta ng et d I ¢y  dimensionality redt yvigyglization and allow analysis of large datasets
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N“-R Understanding How Dimension Reduction Tools Work: An Empirical Approach to
J Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization
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Abstract
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Dimension reduction (DR) techniques such as t-SNE, UMAP, and TriMap have demonstrated impressive visualization performance
News on many real-world datasets. One tension that has always faced these methods is the trade-off between preservation of global
structure and preservation of local structure: these methods can either handle one or the other, but not both. In this work, our main
goal is to understand what aspects of DR methods are important for preserving both local and global structure: it is difficult to design
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reduction methods for transcriptomic data visualization
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Algorithm | Graph components and Loss function
Graph components: Edges (,7)
va2) 7t
t-SNE Loss;; ONE — 9,5 log , where g;; = (tlyi—y, )

(van der Maaten
& Hinton, 2008)

Zk;ﬁl(1+||Yk—YI”2)_l
where p;; is a functlon of x;, x; and other x;’s.

UMAP

(Mclnnes et al., 2018)

Graph components: Edges (i, j)

_ b S
UMAP _ w; ; log (1 +a(lyi —y;l3) ) 1 i, j neighbors
" (1 —w; ;) log (1 - (1 +a (lyi — yj||§)b) ) otherwise,

where w; ; is a function of x;, x; and nearby x,’s.

Loss

TriMAP

(Amid & Warmuth, 2019)

Graph components: Triplets (7, j, k) where Distance; ; < Distance; j

T™ is -1
Loss;jr = wijiksmr y53)1+§8@ v where s(yi, y;) = (1+ llyi - y;ll°)

and w; ;. is a function of x;, x;, x; and nearby points.

Hard to understand what’s important here...




Z Weight™ (C/?) - Loss¥ (CF)

Subset of graph components {7}

After a huge amount of experimentation, we found that:

* Certain specific properties of the loss function are |mportant for
local structure.

* The choice of which graph components to exert forces on is
important for global structure.

R,

iy,
s

Yingfan Wang, Haiyang Huang, Cynthia Rudin, Yaron Shaposhnik. Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-
SNE, UMAP, TriMAP, and PaCMAP for Data Visualization. Journal of Machine Learning Research, 2021.



Some demos
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Challenges for DR

* Scalability — Huge datasets

* Global structure isn’t perfect (still! Is it possible that there
are multiple equally good DR plots?)

* Interacting with DR plots to find out more about the data



t-SNE (Mammoth)

Take-Aways on Dimension Reduction

* DR algorithms help you see into high-dimensional
data.

* They cannot always be trusted.

 PacMAP takes advantage of separate ways to preserve

PaCMAP (M th
local and global structure. aC (Mammoth)

e Evaluation metrics for DR are listed in our paper.

Stop here for £2 questions



1 Logical models



priors > 3

Trmse

Yes age < 26

1. Sparse Logical Models: Decision Trees,
Decision Lists, and Decision Sets Twe

Juvenile crimes = 0 No

TrWIse

priors =2 —3 Yes

Tru%\alse
Yes No




1. Sparse Logical Models: Decision Trees,
Decision Lists, and Decision Sets

Logical models:

e arose from expert systems, first
algorithms ~1960’s

e are nonlinear and powerful

 are robust to outliers

* handle missing data well

 easily handle multiclass

* non-smooth
* hard to optimize



priors > 3

If age=19-20 and sex=male, then predict arrest Trmse

else if age=21-22 and priors=2-3 then predict arrest PE—TY
else if priors >3 then predict arrest Yes g

else predict no arrest TME

Juvenile crimes = 0 No

Trmllse

priors =2 —3 Yes

Tru%\alse
Yes No

CORELS (Angelino et al., JMLR, 2018) GOSDT (Lin et al. ICML, 2020)



IF user:

/
goes to coffee houses > once per month

AND destination # Urgent Place AND Passenger # Kids

OR goes to coffee houses > once per month
AND Coupon expires in one day

Then predict user will claim the coupon.

Bayesian Rule Sets, Wang et al., JMLR 2017



Optimal Sparse Decision Trees

1
min = — Z Loss(f, z;) + C' - Number of leaves (f),

f € set of trees

Depth(f) < D

priors > 3

Tfmse

Yes age < 26

Twe

juvenile crimes = 0 No

Trmlse

priors =2 —3 Yes

Tru/Nalse
Yes No




Optimal Sparse Decision Trees

no traffic  traffic



THeta Automatic Interaction Detection (THAID) (Messenger & Mandell, 1972)

rain?
construction? rush hour?
w y\N\
traffic  no traffic construction? no traffic
N
traffic Friday?
LN
Optimal sparse decision trees is NP hard. no traffic  traffic

Factorial in the number of variables.



Approaches for optimal sparse trees that are not greedy:

- Genetic Programming (e.g., Fan & Gray, 2005, Janikow & Malatkar, 2011), Neural
Networks (Zantedeschi et al, 2020), no optimality gap

- Mathematical Programming Solvers, SAT solvers (Bennett mid-1990’s,.., Blanquero et al.,
2018, 2020, Menickelly et al., 2018; Vilas Boas et al., 2019, Verwer & Zhang BinOCT,
2019, Aghaei et al., 2021, Gunluk et al., 2021,..)

- Dynamic Programming / Branch and Bound
- Garofalakis et al., DTC, 2003
- Nijssen & Fromont, DL8, 2007, 2010, Aglin et al., DL8.5, 2020, Demirovic et al., 2022
- Angelino et al, CORELS, 2018, Hu et al., OSDT 2019, Lin et al., GOSDT, 2020,
McTavish et al. 2022



Generalized Optimal Sparse Decision Trees (GOSDT)

Prior offenses > 3

To figure out the optimal split at the top V W

Age< 26 Predict Arrest

no
Prior offenses > 1
Predict No Arrest
And the one below that. / ws
i i Predict A
Which eventually is a leaf. redict Arrest

Figure out the optimal split beneath it.

Any juvenile crimes

v \C

Predict No Arrest Predict Arrest



GOSDT + Guesses (McTavish et al., AAAI 2022)

“Guessing” techniques improve speed without losing performance:
- Guess the depth. Don’t search below that.

Depth(f) < D

- Use a black box model to “guess” a lower bound on the optimal loss.
Use it to prune parts of the search space.

- Use a random forest or boosted tree, only use its splits for the GOSDT tree.



Explainable ML Challenge (FICO dataset) tree:

External Risk Estimate < 70.5

True alse
Predict default External Risk Estimate < 78.5
T
Months Since Most Recent Inquiry Predict no
Excluding the Last 7days < 0.5 default
T
Percent of Trades w Balance < 73.5 Predict no default
T
Average Months in File < 63.5 Months Since Most Recent Inquiry
Has no Valid Trades

Predict Predict no Predict no  Predict
default default default default

* 10K data points, >1900 binary features

* training & test accuracy 72% (best black box is 73%)
7 leaves

* 8.1sec




Challenges that were solved recently

Can we create trees almost as fast as CART/CA4.5 create greedy trees? (Handled by
GOSDT)

Can we efficiently handle continuous input variables in optimal decision trees?
(Handled by “Guessing”)

Can we handle constraints more gracefully? (Handled by Rashomon set work, coming
up)

Can we do regression with sparse trees? (Solved by OSRT algorithm, AAAI 2023)

New Challenges: Multivariate regression. (See Jeff Simonoff). Combining trees.

Note that code is public for GOSDT. (pip install GOSDT)



Stop here for £2 questions

3 GAMs
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3. Generalized additive models (GAMs)

GAMs:

» very powerful, nonlinear

 uses visualization to convey contributions from each
feature

e (Can be trained using boosting or other ML
techniques #7

» generally, few interaction terms
* doesn’t easily handle missing data or multiclass
» great for continuous features, not good for categorical features



Additive Model
D
y(x) o ij(xj)
j=1
f1(x1) f2(x3) f3(x3) fa(x4)

_ + + +




Additive Model
p

9() < ) fi(x)
j=1

f1(x1)

= +

f2(x3)

f3(x3)

+

fa(x4)

+




Boosted Stumps

At each iteration, the algorithm picks a feature and a threshold.

a4'




CZ4'

Boosted Stumps

Sort the stumps by feature

+ dq1o + (g4 -
X1 X1 X1
.‘ + alO + a16 .|\ + a64
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+ dg - + Qg |
L
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Boosted Stumps

Sort the stumps by feature

X2 X2
+ dg - + Qg |
L
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Boosted Stumps

Sort the stumps by feature

CZ4'




Boosted Stumps

Sort the stumps by feature

f1 (xl) “— increases

f (xz) <«— decreases
Use step functions that face

X2 different ways.

f3(x3) |
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Additive Model
p

9() < ) fi(x)
j=1

f1(x1)

= +

f2(x3)

f3(x3)

+

fa(x4)

+
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Accurate Intelligible Models with Pairwise Interactions
(Lou, Caruana, et al. 2013)

GA’M — Generalized Additive Models plus Interactions

p
9O =Y fi(5)+ ) fii o)
j=1 k%)
Algorithm for fitting GA’M

Fit an additive model first (without any interactions)

Until convergence T
- Add interaction term (chosen to minimize the residual) «—

- Refit the model y with the new interaction term.




GA’M are expressive, not sparse.



;» The FastSparse Algorithm
Liu et al, AISTATS, 2022



Sparse Logistic Regression

, e n
= min Y Cw, @i, 1) + Aoflw]o-

=i
where {(w,x;,y;) = log <1 + e‘yi(wT‘”i)) ¢ )
Y -
f(a;) — w!r age — age>16, age>17,..., age>90

contribution to f

of (@) |

\\\1137-1819 20 ~ age
T

plogistic(y — 1|£IJ) =

ib

- coordinate descent (often setting coeffs to 0)



Sparse Exponential Loss Classification

= min > 0w, @, y1) + Aofwllo

i=1
where {(w,x;,y;) = e vi(wh )
B 1e) = wre
-
e2f (@)

Pexp loss(y — 1|£13) = 14e2f(x)

- coordinate descent (often setting coeffs to 0)



Exponential loss

e—yi(wTwi)

(1) Suppose w} =0. Let d_ = Zi:zij:_lci/zz;lci,
with ¢; = exp(—(w?)Tz;). If d_ is within the interval:

1 1 1 1

5~ 5 VACRH = X0), 5+ 57 VA0 (2H! = o) |
then set w;-H to 0. Otherwise set w;.“ = %ln 1;‘_1_ .

(2) Suppose wt # 0. Let D_ = Zi;zij:_1ci/2?:1ci;
with ¢; = exp(—(wt — wte;)Tz;). Let Ht, = H(w? —

wte;). If D_ is within the interval:

11 11
S ho(2HE .~ o), —+—,/>\0(2Hij—>\0)] ,
l2 2H j 2 2H',

then set wj-“ to 0. Otherwise, set w§-+1 =1ln IE,L_)_ .

Coeffic‘ient w;

»




Sparse Exponential Loss Classification

= min > 0w, @, y1) + Aofwllo

i=1
where {(w,x;,y;) = e vi(wh )
B 1e) = wre
-
e2f (@)

Pexp loss(y — 1|£13) = 14e2f(x)

- coordinate descent (often setting coeffs to 0)
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Home Equity Line of Credit (HELOC) Dataset

This competition focuses on an anonymized dataset of Home Equity Line of Credit (HELOC) applications made by real homeowners. A
HELOC is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of
a home and its purchase price). The customers in this dataset have requested a credit line in the range of $5,000 - $150,000. The
fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC
account within 2 years. This prediction is then used to decide whether the homeowner qualifies for a line of credit and, if so, how much

dit should b ded. . .
credit should be extende This dataset = 1917 binary features




0.5
0.0

0.2

0.0

0.2

0.0

0.0

-0.2

0.0

-0.5

0.00

-0.25

Generalized Additive Model on the FICO Dataset

0.5
'—\_\_\— |
0.0 |
20 40 60 80 100 0 100 200 300 400 500 600 700 800
ExternalRiskEstimate MSinceOldestTradeOpen
0.5
0.0 I
50 100 150 200 250 300 0 10 20 30 40 50 60 70 80
AverageMInFile NumSatisfactoryTrades
0.2
|— 0.0
20 40 60 80 100 0 2 4 6 8
PercentTradesNeverDelq MaxDelq2PublicRecLast12M
0.5 1
0.0
-0.5 misgi_nlg
20 40 60 80 100 —-10 -5 0 5 10 15 20 25
PercentlInstallTrades MSinceMostRecentingexcl7days
0.0
—0.5 missing‘l_,_,—l
10 20 30 40 50 —25 0 25 50 75 100 125 150 175
NumingLast6M NetFractionRevolvingBurden
Model has 21 total step features
5 10 15 20 25 30

NumRevolvingTradesWBalance

created in 3.85 seconds




Challenges that were tackled recently

If a GAM shows counterintuitive relationships between
features and outcomes, can we use this to troubleshoot?

Chen et al., Missing Values and Imputation in Healthcare Data: Can Interpretable Machine
Learning Help? CHIL, 2023

User interaction with GAMs (more later).

Still a Challenge: user-specified shape functions

Note that GA2M is available in the interpML package, and FastSparse is also public.



Stop here for <2 questions and a quick break



Warning (before | move into neural networks)

* One does not need neural networks for tabular data.
* There are lots of papers on neural networks for tabular data

* The meaning of interpretability needs to be defined for non-tabular data.

* The neural networks people use the words “interpretable” and
“explainable” interchangeably.

* There are a lot of papers and websites claiming “interpretability” when they are
explaining neural networks.

* Even papers called “Interpretable CNNs” are not necessarily interpretable.

* In my view, “saliency” is not sufficient for interpretability.



"Explaining” deep NN’s with saliency maps doesn’t work

Test Image

Evidence for Animal Being a

Siberian Husky

Evidence for Animal Being a

Transverse Flute

Explanations Using

Attention Maps

“Explanation”

Do you trust the network now?

Lots of work in radiology on attention maps now...




Switch speakers

11 Generalizable NN methods
4 Case-based reasoning



Provide methods that generalize to new

architectures

RNN Unit

LSTM Unit

Real
Samples Discriminator
Random %\,
noise
B
Generated
Sample

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder

| |
e = P

Extra learnable - .
[class] embedding [ Linear Projection of Flattened Patches ]

I
N I

hy=z,

Embedded
Patches



Open questions

11.1 Can we produce interpretable methods that can apply to both old
and new architectures?

11.2 Can we produce explanations that are useful in multiple domains?

Case-based reasoning



Provide explanations that generalize across
domains

Case-based reasoning

e can be used for any data type
‘ * extremely powerful, can even be used for
images
» dates to the beginning of Al, K-nearest
neighbors

Nearest neighbour



» (Case-based reasoning is a paradigm that involves solving a new problem using known solutions to similar
past problems (Aamodt and Plaza, 1994)

* k-nearest neighbors (kNN) (Fix and Hodges, 1951; Cover and Hart, 1967). No training required
* Weinberger and Saul (2009) adaptive k-NN

 Salakhudinov & Hinton (2017) Deep k-NN
* Papernot & McDaniel (2018) Deep k-NN where neighbors from every layer in the network are used.
* Card et al. (2019) Deep weighted averaging classifier — classification based on latent space distances

k-NN here!



Introducing prototype models

Case-based reasoning

Nearest neighbour

n comparisons



Nearest neighbors

* Computationally expensive

* Can show a bad neighbour
(misclassified, not
representative)

W

Prototype models

* Need to learn the prototypes as
well as distance metric

* Global interpretability

* Prototype editing



Case granularity

test

image prototype

looks like

looks like

Whole image

ProtoPNet (Chen et al. 2019)

same test image with training image

box showing part that ~ prototype where
looks like prototype prototype
comes from

Image part

Time segment




How would you describe why this bird is a
clay-colored sparrow?




Compare parts of the bird to typical parts
from the class

+ 2 ptsto Class 1




Add evidence from many parts to make a

prediction
w2 looks like =
E_.QM_ + 1 ptsto Class 1
G N

+ 2 ptsto Class 1

+ 1 ptsto Class 1

.- looks like |
looks like

+ 0.5 ptsto Class 1




Take any “standard” black box CNN...

Common yellowthroat

Similarity score

b A J
T T

rgp Fully connected layer Output logits

.
Convolutional layers



And transform it to be interpretable

NN
}g«
NNV
\":

AlexNet, VGG,
ResNet, ViT

‘é Clay colored sparrow

Hand-coded
features

Similarity score
A A J

.
onvolutional layers /

T T RS
Prototype layer g, Fully connected layer 4 Output logits



Semi-ProtoPNet Deep Neural Network for the Classification of
Defective Power Grid Distribution Structures

by @ Stefano Frizzo Stefenon 12" 8 © & Gurmail Singh 3 8© @) Kin-Choong Yow 3 &© and
) Alessandro Cimatti 1 &

1 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy

2 Department of Mathematics, Informatics and Physical Sciences, University of Udine, Vi XPI"OtONet: DlagnOSIS In CheSt Radlography
33100 Udine, Italy With Global and Local Explanations

3 Faculty of Engineering and Applied Science, University of Regina, Wascana Parkway 2
0A2, Canada

Eunji Kim, Siwon Kim, Minji Seo, Sungroh Yoon; Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2021, pp. 15719-15728
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An Example Application of ProtoPNet:
Computer-Aided Mammography

* For domains where deep learning dominates

* High-stakes decisions

* Constrain logic

* Model decision is based on similarity to “prototypical”
cases

* Prototypes relate to known medical feature




a: Uninterpretable Approach

Probability of
malignancy: Low

Predict: Benign

v

Because: n/a




a: Uninterpretable Approach

Probability of
malignancy: Low

Predict: Benign

v

Because: n/a

b: Attention only approaches

v

Probability of
malignancy: Low

Predict: Benign

Because:

\.

No other context provided



Interpretable Al algorithm for Breast Lesions (lIAIA-BL)

Model decomposes to predict
margins before malignancy

c: Our approach (IAIA-BL) Prototypes Probability of

) malignancy:
Q looks . Lds’ +0.5 to Low
like malignancy score

Ind|st'|nct >__> Predict: Benign
margin

looks it adds Because: mass
—p I ———> - 1.3 to .
like y has primarily
. . malignancy score ; :
Circumscribed & y y, circumscribed

margin margin




Open questions

* 4.1: How to integrate prior knowledge or human supervision into
prototype learning?

* humans may want to prune prototypes, design them, or specify a
region/feature of interest where the prototypes should focus.

* How to make this generalizable to many domains? (Challenge 11.2)

* 4.2: How to troubleshoot a trained prototype-based model to
improve the quality of prototypes?
* How can we replace a “bad” prototype?

* Posthoc pooling of prototypes (Rymarczyk et al., 2022) (Rymarczyk et al.,
2021)



Open questions

* 4.3: Representations are linked to context, how to represent that
context?

* Prototype shows a part of an image, but the area around that affect the
representation as well

* Donnelly et al., 2022



Stop here for £2 questions

5 principles,
Grand challenges:
7 DR
1 Logical models
3 GAMs
11 Generalizable NN methods
4 Case-based reasoning
12 Generative models
13 NLP



State of generative models

 Generative models
* GANs (Goodfellow et al., 2014)
* Generative Adversarial Nets

» Stable diffusion
* DALL-E 2
* Midjourney

* Interpretability in this space
* Ross et al., 2021 Interactive
Reconstruction

e Sahiner et al., 2021 Replace the
deep NNs




Open problems

e 12.1 What constitutes an explanation for this type of task?
* An exhaustive list of source material is impractical
* Unified rubric for explanations of this task

* 12.2 Can you have one true explanation when you have multiple
outputs?
* How can you quantify variability in the output?



Interpretability in natural language
processing (NLP) %

e Classification of text segments
 Extraction of key information / summarization %
* Information retrieval

e Generating text from prompts

Eric Chong's Toronto Restaurant: R&D

i ¥= Eric Chong wins Masterfchef Canada and opens which
Toronto restaurant?

g

@ As of my last knowledge update in September 2021, Erié




s self-explanation interpretable enough?

User Can you explain this meme?
Sometimes | just look at pictures of
the earth from space and | marvel at
how beautiful it all is.

GPT-4

This meme is a joke that combines two unrelated things: pictures of the earth from
space and chicken nuggets.

The text of the meme suggests that the image below is a beautiful picture of the earth
from space. However, the image is actually of chicken nuggets arranged to vaguely
resemble a map of the world.

The humor in this meme comes from the unexpected juxtaposition of the text and the
image. The text sets up an expectation of a majestic image of the earth, but the image is
actually something mundane and silly.



Some existing approaches for interpretability
In NLP

» Keyphrase extraction / keyword extraction
e Hasan et al., 2014 survey paper

Rationale extraction
 EMNLP (Lei, Barzilay, Jaakkola, 2016)
* SPECTRA (Guerreiro and Martins, 2021)

Prototype-based methods for classification
* ProSeNet (Ming et al., 2019)

Ask the Al to generate its own explanation of itself

Pre-prompt the LLM with correct/verified information
* Retrieval-Augmented Generation (Lewis et al., 2020) LLaVA-Med (Li et al., 2023)
» Esteva et al., 2021 retrieves specific paragraphs of source database
* Qiao et al., 2023 have a survey paper of 100s of these



Open Questions

* 13.1 What quality of explanation is good enough?

* | would argue that the generation of plausible looking explanations with no
guarantee of their truthfulness will be insufficient.

* Is looking at most recent sources and prompts enough?
» Concerns about explanation faithfulness (Lyu et al., 2023)

* 13.2 Generalizing methods that worked on RNN+LSTM architecture to
a transformer-based model

* Some flavour of 11.1, the development of methods that generalize to new
architectures



Stop here for £2 questions

5 principles,
Grand challenges:
7 DR
1 Logical models
3 GAMs
11 Generalizable NN methods
4 Case-based reasoning
12 Generative models
13 NLP
9 Rashomon sets



9. Characterization of the “Rashomon” set of good models

RASHOMON

GRAND PRIX I.EGNE DI SAN MARCD
FEQTI%DE VE

Many realities, no one truth.
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9. Characterization of the “Rashomon” set of good models

e The Rashomon set has models with low loss:

R(F, f*,€) = {f € F such that Loss(f) < Loss(f*) + €}

Could the Rashomon set be the key to everything?

e Can the Rashomon set explain why simple-yet-
accurate models exist for tabular data?

Loss

e Can the Rashomon set help us with a key
Hypothesis space

challenge in ML, namely interacting with users? (a)

e (Can the Rashomon set help us understand
variable importance?




9. Characterization of the “Rashomon” set of good models

e The Rashomon set has models with low loss:

R(F, f*,e) = {f € F such that Loss(f) < Loss(f*) + ¢}

W

“Rashomon Set” Theory

On the Existence of Simpler Machine Learning Models

Loss

Lesia Semenova, Cynthia Rudin, and Ronald Parr

ACM Conference on Fairness, Accountability, and Transparency, 2022

Hypothesis space
* Many datasets have large Rashomon sets (@

e If the Rashomon set is large, it is likely to contain
interpretable yet accurate models.
* Thus, many datasets yield interpretable models.



The “Rashomon Set” Theory

Rashomon Set

All models

Simple Models



The “Rashomon Set” Theory

Rashomon Set
Large Rashomon sets are correlated with:

The existence of simpler models.

More label/feature “noise”.

Implication:

Optimizing for simplicity

All models ; ;
Simple Models | won’t sacrifice accuracy.

For details, see “On the existence of Simpler Machine Learning Models,” Semenova, Rudin & Parr, ACM FAccT, 2022



9. Characterization of the “Rashomon” set of good models

e The Rashomon set has models with low loss:

R(F, f*,€) = {f € F such that Loss(f) < Loss(f*) + €}

Could the Rashomon set be the key to everything?

e Can the Rashomon set explain why simple-yet-
accurate models exist for tabular data?

Loss

e Can the Rashomon set help us with a key
Hypothesis space

challenge in ML, namely interacting with users? (a)

e (Can the Rashomon set help us understand
variable importance?




A New Paradigm of Machine Learning .z )

V 4 %
g hd

W

Training Set == Algorithm === Many Predictive Models



Exploring the Whole Rashomon Set of Sparse
Decision Trees
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TIMBERTREK: Exploring and Curating Sparse Decision Trees with
Interactive Visualization

Zijie J. Wang!  Chudi Zhong?  Rui Xin> Takuya Takagi®  Zhi Chen?
Duen Horng Chau!  Cynthia Rudin?> Margo Seltzer*

bit.ly/timbertrek /
[EEE Vis 2022 '
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TreeFARMS returns all -
almost-optimal trees o «


http://bit.ly/timbertrek

9. Characterization of the “Rashomon” set of good models

e The Rashomon set has models with low loss:

R(F, f*,€) = {f € F such that Loss(f) < Loss(f*) + €}

Could the Rashomon set be the key to everything?

e Can the Rashomon set explain why simple-yet-
accurate models exist for tabular data?

Loss

e Can the Rashomon set help us with a key
Hypothesis space

challenge in ML, namely interacting with users? (a)

e (Can the Rashomon set help us understand
variable importance?




Challenges that were tackled recently

Can we handle constraints on models?

Just filter the Rashomon set!

e fairness
* monotonicity
* multiple performance objectives



Challenges that were tackled recently

Can we project the Rashomon set onto variable importance axes to
see how often variables are important within the Rashomon set?

Dong and Rudin. Exploring the Cloud of Variable Importance for the Set of All Good Models,
Nature Machine Intelligence, 2020.

Can we get Rashomon sets for other model classes?

Chen et al., 2023. Understanding and
Exploring the Whole Set of Good Sparse
Generalized Additive Models.
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[Submitted on 20 Mar 2021]

Interpretable Machine Learning: Fundamental Principles and
10 Grand Challenges

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, Chudi Zhong

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In
this work, we provide fundamental principles for interpretable ML, and dispel common
misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical
challenge areas in interpretable machine learning and provide history and background on each
problem. Some of these problems are classically important, and some are recent problems that have
arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as
decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive
models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including
neural networks and matching for causal inference; (5) Complete supervised disentanglement of
neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7)
Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate
physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of
good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting Tﬁdn
point for statisticians and computer scientists interested in working in interpretable machine

learning. e./aN




