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• A black box machine learning model is a formula that is either too 
complicated for any human to understand, or proprietary, so that one 
cannot understand its inner workings. 



Black box models
• Are hard to troubleshoot while designing them

• “Does the model often predict the right answer for the wrong reason?”



Black box models
• Are hard to troubleshoot while designing them

• “Does the model often predict the right answer for the wrong reason?”

• Are hard to troubleshoot in practice
• “Will this model predict accurately for my current patient?”
• “Could a typo in the inputs have led to this prediction?”

• Are hard to evaluate with respect to bias and fairness
• “Does this model depend on a variable I don’t want it to?”

• Are hard to “explain”
• Most “explanations” are flawed or incomplete. They often disagree with each other.
• Makes the problem worse by providing false/misleading characterizations.
• Adds unnecessary authority to the black box
• Replacing the black box is almost always the better option.

Black box models turn computer-aided decisions into automated decisions.



• A black box machine learning model is a formula that is either too 
complicated for any human to understand, or proprietary, so that one 
cannot understand its inner workings. 

• An interpretable machine learning model obeys a domain-specific set of 
constraints to allow it (or its predictions, or the data) to be more easily 
understood by humans. These constraints can differ dramatically 
depending on the domain.

• There’s a spectrum.





10+ Grand Challenges

1. Sparse Logical Models: Decision Trees,      
     Decision Lists, and Decision Sets

2. Scoring Systems

3. Generalized Additive Models

(complex interactions, multiclass tabular data, 
no addition required)

(no interactions, 2-class tabular data)

(no interactions, 2-class tabular data)



10+ Grand Challenges

4. Case-Based Reasoning

5. Complete Supervised Disentanglement 
of Neural Networks

6. Unsupervised Disentanglement of 
Neural Networks



10+ Grand Challenges

7. Dimension Reduction for Data Visualization

MNIST

8. Machine learning models that incorporate physics and other 
generative or causal constraints

9. Characterization of the “Rashomon” set of good models

10. Interpretable Reinforcement Learning



10+ Grand Challenges

11. Explanations 
styles that generalize

12. Explanations for Generative AI 13. Interpretability for NLP





Principle 1

• Interpretable ML models are constrained.

soft hard
“be sparse if it doesn’t sacrifice accuracy” “be sparse”



• Should we rigorously/comprehensively/completely define interpretability 
in machine learning?             

• Perhaps should rigorously define “predictive performance” first.
• Accuracy, weighted accuracy, precision, average precision, precision@N, recall, 

recall@N, DCG, NCDG, AUC, partial AUC, mean-time-to-failure, exponential loss, 
logistic loss, … 

• Better to ask what is often relevant: sparsity, linear or logical reasoning, 
visual comparisons, 1d or 2d functions, monotonicity, decomposability 
into sub-models, …



Principle 2

Despite common rhetoric, interpretable models do not necessarily 
create or enable trust -- they could also enable distrust. 
They permit a decision of trust, rather than trust itself.



Principle 3
• Interpretability versus accuracy is, in general, a false dichotomy in 

machine learning.

From the DARPA XAI BAA, 2016



Glenn Rodriguez was denied parole because 
of a miscalculated “COMPAS” score.

How accurate is COMPAS? Data 
from Florida can tell us…



COMPAS vs. CORELS

CORELS:  (Certifiably Optimal RulE ListS, with Elaine 
Angelino, Nicholas Larus-Stone, Daniel Alabi, and 
Margo Seltzer, KDD 2017 & JMLR 2018)

Here is the machine learning model:

COMPAS: (Correctional Offender 
Management Profiling for 

Alternative Sanctions) 

If age=19-20 and sex=male, then predict arrest
else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest



Prediction of re-arrest within 2 years

If age=19-20 and sex=male, then predict arrest
else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest



Prediction of re-arrest within 2 years

If age=19-20 and sex=male, then predict arrest
else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest



Principle 3
• Interpretability versus accuracy is, in general, a false dichotomy in 

machine learning.

From the DARPA XAI BAA, 2016



Problem spectrum

age   45
congestive heart failure?   yes
takes  aspirin
smoking?  no
gender   M
exercise?  yes
allergies?  no
number of past strokes   2
diabetes? yes

Tabular: All features are interpretable
- many problems in criminal justice, healthcare, 

social sciences, equipment reliability & 
maintenance, etc. 

- features include counts, categorical data

Raw: Features are individually uninterpretable
- pixels/voxels, words, a bit of a sound wave



Neural networks
With minor pre-processing, all 
methods have similar performance

Very sparse models (trees, scoring systems)

Problem spectrum

Raw: Features are individually uninterpretable
- pixels/voxels, words, a bit of a sound wave

Tabular: All features are interpretable
- many problems in criminal justice, healthcare, 

social sciences, equipment reliability & 
maintenance, etc. 

- features include counts, categorical data



Principle 4
• As part of the full data science process, one should expect both the 

performance metric and interpretability metric to be iteratively refined.

KDD Process, adapted from Fayyad et al., 1996



Principle 5
• For high stakes decisions, interpretable models should be used, if 

possible, rather than “explained” black box models.



• Black box models still force you to trust the dataset.

• Double trouble: Forces you to rely on two models instead of one.

   Those models necessarily disagree with each other
• An explanation that is right 90% of the time is wrong 10% of the time.

• The explanations are not really explanations, they don’t use the same 
variables.

(Propublica scandal: They said COMPAS depends on age, criminal history, and race.  
But their analysis is wrong.)

• If you can produce an interpretable model, why explain black boxes? Do you 
really want to extend the authority of the black box?



Note

• LIME, SHAP, and Grad-CAM are tools that explain black box models. 
Not needed for interpretable models.





Note: I will focus on topics that I know well, because I work on them.
Start with exploratory data analysis.



MNIST

7. Dimension reduction for data visualization

x1, x2, x3, x4, … y1, y2, y3, y4, …
d dimensions 2 or 3 dimensions



Dimension reduction methods:
• can illuminate patterns in high dimensional data
• used often in biology
• PCA is the quintessential DR algorithm

• unsupervised, so no ground truth
• sometimes wildly different results between methods
• dimension reduction plots often lack global structure

7. Dimension reduction for data visualization



Task: 3d to 2d.

Preserve the Mammoth! 







Local vs Global
- Local structure: local neighborhood graph, nearest neighbors
- Global structure: relationships between clusters, respect relative 

distances between points in high-dimensional space.

(mainly global) (mainly local) (mainly local) (both, actually)



Global Methods
• PCA (Pearson, 1901)
• MDS (Torgerson, 1952)
:
Local Methods
• LLE (Roweis and Saul, 2000), 
• Isomap (Tenenbaum et al., 2000)
• Hessian Local Linear Embedding (Donoho and Grimes, 2003)
• Laplacian Eigenmaps (Belkin and Niyogi, 2001) 
• Stochastic Neighborhood Embedding (SNE) (Hinton and Roweis, 2003) 
• t-SNE (van der Maaten and Hinton, 2008)
• LargeVis (Tang et al., 2016)
• UMAP (McInnes et al., 2018)
:
• PacMAP is both local and global.

Preserve distances, 
not neighborhoods

Preserve neighborhoods

Crowding problem



Global Methods
• PCA (Pearson, 1901)
• MDS (Torgerson, 1952)
:
Local Methods
• LLE (Roweis and Saul, 2000), 
• Isomap (Tenenbaum et al., 2000)
• Hessian Local Linear Embedding (Donoho and Grimes, 2003)
• Laplacian Eigenmaps (Belkin and Niyogi, 2001) 
• Stochastic Neighborhood Embedding (SNE) (Hinton and Roweis, 2003) 
• t-SNE (van der Maaten and Hinton, 2008)
• LargeVis (Tang et al., 2016)
• UMAP (McInnes et al., 2018)
:
• PacMAP is both local and global.



*Winner of the 2023 John M. Chambers 
Statistical Software Award from the 
American Statistical Association



Hard to understand what’s important here…

(van der Maaten
& Hinton, 2008)

(McInnes et al., 2018)

(Amid & Warmuth, 2019)



After a huge amount of experimentation, we found that:

• Certain specific properties of the loss function are important for 
local structure.
• The choice of which graph components to exert forces on is 

important for global structure.

Yingfan Wang, Haiyang Huang, Cynthia Rudin, Yaron Shaposhnik. Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-
SNE, UMAP, TriMAP, and PaCMAP for Data Visualization. Journal of Machine Learning Research, 2021. 



Some demos



COIL-20 Data

COIL-100 Data

MNIST Data

Fashion MNIST



USPS Data

20Newsgroups 

Mouse RNA Seq





Challenges for DR

• Scalability – Huge datasets
• Global structure isn’t perfect (still! Is it possible that there 

are multiple equally good DR plots?)
• Interacting with DR plots to find out more about the data



Take-Aways on Dimension Reduction
• DR algorithms help you see into high-dimensional 

data.
• They cannot always be trusted. 
• PacMAP takes advantage of separate ways to preserve 

local and global structure.
• Evaluation metrics for DR are listed in our paper. 

Stop here for ≤2 questions



5 principles, 
Grand challenges:

7 DR
1 Logical models



1. Sparse Logical Models: Decision Trees,  
    Decision Lists, and Decision Sets



1. Sparse Logical Models: Decision Trees,  
    Decision Lists, and Decision Sets

Logical models:
• arose from expert systems, first 

algorithms ~1960’s
• are nonlinear and powerful
• are robust to outliers
• handle missing data well
• easily handle multiclass

• non-smooth
• hard to optimize



If age=19-20 and sex=male, then predict arrest
else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest

CORELS (Angelino et al., JMLR, 2018) GOSDT (Lin et al. ICML, 2020)



Bayesian Rule Sets, Wang et al., JMLR 2017 

IF user:

Then predict user will claim the coupon.



Optimal Sparse Decision Trees



rain?

Y N

no traffic

rush hour?

NY
construction?

no traffictraffic

NY

Friday?

trafficno traffic
NY

traffic

construction?

Y N

Wrong split? Too bad!

Optimal Sparse Decision Trees



rain?

Y N

no traffic

rush hour?

NY
construction?

no traffictraffic

NY

Friday?

trafficno traffic
NY

traffic

construction?

Y N

Optimal sparse decision trees is NP hard. 
Factorial in the number of variables.

THeta Automatic Interaction Detection (THAID) (Messenger & Mandell, 1972)



Approaches for optimal sparse trees that are not greedy:

- Genetic Programming (e.g., Fan & Gray, 2005, Janikow & Malatkar, 2011), Neural 
Networks (Zantedeschi et al, 2020), no optimality gap

- Mathematical Programming Solvers, SAT solvers (Bennett mid-1990’s,.., Blanquero et al., 
2018, 2020, Menickelly et al., 2018; Vilas Boas et al., 2019, Verwer & Zhang BinOCT, 
2019, Aghaei et al., 2021, Gunluk et al., 2021,..) 

- Dynamic Programming / Branch and Bound 
- Garofalakis et al., DTC, 2003
- Nijssen & Fromont, DL8, 2007, 2010, Aglin et al., DL8.5, 2020, Demirovic et al., 2022
- Angelino et al, CORELS, 2018, Hu et al., OSDT 2019, Lin et al., GOSDT, 2020, 

McTavish et al. 2022



To figure out the optimal split at the top
Figure out the optimal split beneath it. 

And the one below that.
Which eventually is a leaf.

Generalized Optimal Sparse Decision Trees (GOSDT)



GOSDT + Guesses (McTavish et al., AAAI 2022)

“Guessing” techniques improve speed without losing performance:

- Guess the depth. Don’t search below that.

- Use a black box model to ”guess” a lower bound on the optimal loss.  
   Use it to prune parts of the search space. 

- Use a random forest or boosted tree, only use its splits for the GOSDT tree.



Explainable ML Challenge (FICO dataset) tree:

• 10K data points, >1900 binary features
•  training & test accuracy 72% (best black box is 73%)
•  7 leaves
•  8.1 sec



Challenges that were solved recently
Can we create trees almost as fast as CART/C4.5 create greedy trees? (Handled by 
GOSDT)

Can we efficiently handle continuous input variables in optimal decision trees? 
(Handled by “Guessing”)

Can we handle constraints more gracefully? (Handled by Rashomon set work, coming 
up)

Can we do regression with sparse trees? (Solved by OSRT algorithm, AAAI 2023)

New Challenges: Multivariate regression. (See Jeff Simonoff). Combining trees.

Note that code is public for GOSDT. (pip install GOSDT)



Stop here for ≤2 questions

5 principles, 
Grand challenges:

7 DR
1 Logical models
3 GAMs



3. Generalized Additive Models

Credit: Slides of Rich Caruana



GAMs:
• very powerful, nonlinear
• uses visualization to convey contributions from each 

feature
• Can be trained using boosting or other ML 

techniques

3. Generalized additive models (GAMs)

• generally, few interaction terms
• doesn’t easily handle missing data or multiclass
• great for continuous features, not good for categorical features



Additive Model
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Additive Model
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Boosted Stumps
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At each iteration, the algorithm picks a feature and a threshold.  
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Boosted Stumps

𝑥!

Sort the stumps by feature
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Boosted Stumps
Sort the stumps by feature
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Boosted Stumps
Sort the stumps by feature
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Boosted Stumps
Sort the stumps by feature

𝑓# 𝑥#

𝑓% 𝑥%

𝑓& 𝑥&

+

+

increases

decreases
Use step functions that face 
different ways. 

𝑥!

𝑥#



Additive Model
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Caruana et al. KDD 2015. Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission



Accurate Intelligible Models with Pairwise Interactions
(Lou, Caruana, et al. 2013)

𝑔 (𝑦(𝑥) = +
*+!

,

𝑓* 𝑥* ++
-.*

𝑓-*(𝑥- , 𝑥*)

Algorithm for fitting GA2M

GA2M – Generalized Additive Models plus Interactions

Until convergence
  -  Add interaction term 
  -  Refit the model     with the new interaction term. 

Fit an additive model first (without any interactions)

(chosen to minimize the residual)
(𝑦



GA2M are expressive, not sparse.



Liu et al, AISTATS, 2022
The FastSparse Algorithm



Sparse Logistic Regression

- coordinate descent (often setting coeffs to 0)

where

age≥16, age≥17,…, age≥90age

age

contribution to f

16   17   18  19   20



where

Sparse Exponential Loss Classification

- coordinate descent (often setting coeffs to 0)



Coefficient wj

Exponential loss



where

Sparse Exponential Loss Classification

- coordinate descent (often setting coeffs to 0)



This dataset → 1917 binary features



Generalized Additive Model on the FICO Dataset

On the next slide…
       Model has 21 total step features
 created in 3.85 seconds



Challenges that were tackled recently

If a GAM shows counterintuitive relationships between 
features and outcomes, can we use this to troubleshoot?

User interaction with GAMs (more later).

Still a Challenge: user-specified shape functions

Note that GA2M is available in the interpML package, and FastSparse is also public.

Chen et al., Missing Values and Imputation in Healthcare Data: Can Interpretable Machine 
Learning Help? CHIL, 2023



Stop here for ≤2 questions and a quick break

5 principles, 
Grand challenges:

7 DR
1 Logical models
3 GAMs



Warning (before I move into neural networks)
• One does not need neural networks for tabular data. 

• There are lots of papers on neural networks for tabular data

• The meaning of interpretability needs to be defined for non-tabular data.

• The neural networks people use the words “interpretable” and 
”explainable” interchangeably.
• There are a lot of papers and websites claiming “interpretability” when they are 

explaining neural networks.
• Even papers called “Interpretable CNNs” are not necessarily interpretable.

• In my view, “saliency” is not sufficient for interpretability.



”Explaining” deep NN’s with saliency maps doesn’t work

Evidence for Animal Being a

Siberian Husky

Evidence for Animal Being a

Transverse Flute 

Explanations Using
Attention Maps

Test Image

Do you trust the network now?

“Explanation”

Lots of work in radiology on attention maps now…



5 principles, 
Grand challenges:

7 DR
1 Logical models
3 GAMs
11 Generalizable NN methods
4 Case-based reasoning

Switch speakers



Provide methods that generalize to new 
architectures



Open questions

11.1 Can we produce interpretable methods that can apply to both old 
and new architectures?

11.2 Can we produce explanations that are useful in multiple domains?

Case-based reasoning



Provide explanations that generalize across 
domains

Nearest neighbour Prototype-based methods

n comparisons p comparisons

Case-based reasoning

• can be used for any data type
• extremely powerful, can even be used for 

images
• dates to the beginning of AI, K-nearest 

neighbors



• Case-based reasoning is a paradigm that involves solving a new problem using known solutions to similar 
past problems (Aamodt and Plaza, 1994) 

• k-nearest neighbors (kNN) (Fix and Hodges, 1951; Cover and Hart, 1967).  No training required
• Weinberger and Saul (2009)  adaptive k-NN
• Salakhudinov & Hinton (2017) Deep k-NN
• Papernot & McDaniel (2018) Deep k-NN where neighbors from every layer in the network are used.
• Card et al. (2019) Deep weighted averaging classifier – classification based on latent space distances

k-NN here!



Introducing prototype models

Nearest neighbour Prototype-based methods

n comparisons p comparisons

Case-based reasoning



Nearest neighbors Prototype models

• Need to learn the prototypes as 
well as distance metric

• Global interpretability

• Prototype editing

• Computationally expensive

• Can show a bad neighbour 
(misclassified, not 
representative)



Case granularity

Whole image Image part Time segment

ProtoPNet (Chen et al. 2019)



How would you describe why this bird is a 
clay-colored sparrow?



Compare parts of the bird to typical parts 
from the class

+ 2 pts to Class 1



Add evidence from many parts to make a 
prediction

+ 2 pts to Class 1

+ 1 pts to Class 1

+ 1 pts to Class 1

+ 0.5 pts to Class 1



Take any “standard” black box CNN…



And transform it to be interpretable

AlexNet, VGG, 
ResNet, ViT

Hand-coded 
features





• For domains where deep learning dominates
• High-stakes decisions

• Constrain logic
• Model decision is based on similarity to “prototypical” 

cases
• Prototypes relate to known medical feature

An Example Application of ProtoPNet:
Computer-Aided Mammography 







Interpretable AI algorithm for Breast Lesions  (IAIA-BL)

Prototypes

Model decomposes to predict 
margins before malignancy



Open questions

• 4.1: How to integrate prior knowledge or human supervision into 
prototype learning?
• humans may want to prune prototypes, design them, or specify a 

region/feature of interest where the prototypes should focus. 
• How to make this generalizable to many domains? (Challenge 11.2)

• 4.2: How to troubleshoot a trained prototype-based model to 
improve the quality of prototypes?
• How can we replace a “bad” prototype?
• Posthoc pooling of prototypes (Rymarczyk et al., 2022) (Rymarczyk et al., 

2021)



Open questions

• 4.3: Representations are linked to context, how to represent that 
context?
• Prototype shows a part of an image, but the area around that affect the 

representation as well
• Donnelly et al., 2022



Stop here for ≤2 questions

5 principles, 
Grand challenges:

7 DR
1 Logical models
3 GAMs
11 Generalizable NN methods
4 Case-based reasoning
12 Generative models
13 NLP



State of generative models

• Generative models
• GANs (Goodfellow et al., 2014)

•  Generative Adversarial Nets
• Stable diffusion

• DALL-E 2
• Midjourney

• Interpretability in this space
• Ross et al., 2021 Interactive 

Reconstruction
• Sahiner et al., 2021 Replace the 

deep NNs



Open problems

• 12.1 What constitutes an explanation for this type of task?
• An exhaustive list of source material is impractical
• Unified rubric for explanations of this task

• 12.2 Can you have one true explanation when you have multiple 
outputs?
• How can you quantify variability in the output?



Interpretability in natural language 
processing (NLP)
• Classification of text segments
• Extraction of key information / summarization
• Information retrieval

• Generating text from prompts 



Is self-explanation interpretable enough?



Some existing approaches for interpretability 
in NLP
• Keyphrase extraction / keyword extraction 

• Hasan et al., 2014 survey paper
• Rationale extraction

• EMNLP (Lei, Barzilay, Jaakkola, 2016)
• SPECTRA (Guerreiro and Martins, 2021)

• Prototype-based methods for classification
• ProSeNet (Ming et al., 2019)

• Ask the AI to generate its own explanation of itself

• Pre-prompt the LLM with correct/verified information
• Retrieval-Augmented Generation (Lewis et al., 2020) LLaVA-Med (Li et al., 2023)
• Esteva et al., 2021 retrieves specific paragraphs of source database
• Qiao et al., 2023 have a survey paper of 100s of these



Open Questions

• 13.1 What quality of explanation is good enough?
• I would argue that the generation of plausible looking explanations with no 

guarantee of their truthfulness will be insufficient.
• Is looking at most recent sources and prompts enough?
• Concerns about explanation faithfulness (Lyu et al., 2023)

• 13.2 Generalizing methods that worked on RNN+LSTM architecture to 
a transformer-based model 
• Some flavour of 11.1, the development of methods that generalize to new 

architectures



5 principles, 
Grand challenges:

7 DR
1 Logical models
3 GAMs
11 Generalizable NN methods
4 Case-based reasoning
12 Generative models
13 NLP
9 Rashomon sets

Stop here for ≤2 questions 



9. Characterization of the “Rashomon” set of good models

Many realities, no one truth.



9. Characterization of the “Rashomon” set of good models

• The Rashomon set has models with low loss:

Could the Rashomon set be the key to everything?

• Can the Rashomon set explain why simple-yet-
accurate models exist for tabular data?

• Can the Rashomon set help us with a key 
challenge in ML, namely interacting with users?

• Can the Rashomon set help us understand 
variable importance?



9. Characterization of the “Rashomon” set of good models

• The Rashomon set has models with low loss:

• Many datasets have large Rashomon sets
• If the Rashomon set is large, it is likely to contain 

interpretable yet accurate models.
• Thus, many datasets yield interpretable models.

“Rashomon Set” Theory

ACM Conference on Fairness, Accountability, and Transparency, 2022



Good Models

All models

The “Rashomon Set” Theory

Simple Models

Rashomon Set



Good Models

All models
Simple Models

     Large Rashomon sets are correlated with:
 
         The existence of simpler models.

         More label/feature “noise”.

For details, see “On the existence of Simpler Machine Learning Models,” Semenova, Rudin & Parr, ACM FAccT, 2022

Rashomon Set

The “Rashomon Set” Theory

Implication:

Optimizing for simplicity 
won’t sacrifice accuracy.



9. Characterization of the “Rashomon” set of good models

• The Rashomon set has models with low loss:

Could the Rashomon set be the key to everything?

• Can the Rashomon set explain why simple-yet-
accurate models exist for tabular data?

• Can the Rashomon set help us with a key 
challenge in ML, namely interacting with users?

• Can the Rashomon set help us understand 
variable importance?



A New Paradigm of Machine Learning

Training Set Algorithm Many Predictive Models



NeurIPS 2022 

TreeFARMS returns all 
almost-optimal trees

TreeFARMS = Trees FAst RashoMon Sets 



bit.ly/timbertrek

IEEE Vis 2022

TreeFARMS returns all 
almost-optimal trees

http://bit.ly/timbertrek


9. Characterization of the “Rashomon” set of good models

• The Rashomon set has models with low loss:

Could the Rashomon set be the key to everything?

• Can the Rashomon set explain why simple-yet-
accurate models exist for tabular data?

• Can the Rashomon set help us with a key 
challenge in ML, namely interacting with users?

• Can the Rashomon set help us understand 
variable importance?



Challenges that were tackled recently

Can we handle constraints on models?

Just filter the Rashomon set!

• fairness
• monotonicity
• multiple performance objectives



Challenges that were tackled recently

Can we project the Rashomon set onto variable importance axes to 
see how often variables are important within the Rashomon set?

Can we get Rashomon sets for other model classes?

Chen et al., 2023. Understanding and 
Exploring the Whole Set of Good Sparse 
Generalized Additive Models.

Dong and Rudin. Exploring the Cloud of Variable Importance for the Set of All Good Models, 
Nature Machine Intelligence, 2020.

“Variable Importance Clouds”



5 principles, 
Grand challenges:

7 DR
1 Logical models
3 GAMs
11 Generalizable NN methods
4 Case-based reasoning
12 Generative models
13 NLP
9 Rashomon sets

Done!



Thanks


