
ThunderDome: Discovering Upload Constraints Using
Decentralized Bandwidth Tournaments

John R. Douceur1, James W. Mickens1, Thomas Moscibroda1, Debmalya Panigrahi2
1 Microsoft Research, Redmond, WA, {johndo, mickens, moscitho}@microsoft.com

2 Massachusetts Institute of Technology (MIT), Cambridge, MA, debmalya@mit.edu

ABSTRACT
ThunderDome is a system for collaboratively measuring

upload bandwidths in ad-hoc peer-to-peer systems. It

works by scheduling bandwidth probes between pairs of

hosts, wherein each pairwise exchange reveals the up-

load constraint of one participant. Using the abstraction

of bandwidth tournaments, unresolved hosts are succes-

sively paired with each other until every peer knows its

upload bandwidth. To recover from measurement errors

that corrupt its tournament schedule, ThunderDome ag-

gregates multiple probe results for each host, avoiding

pathological bandwidth estimations that would other-

wise occur in systems with heterogeneous bandwidth dis-

tributions. For scalability, the coordination of probes

is distributed across the hosts. Simulations on empiri-

cal and analytic bandwidth distributions—validated with

wide-area PlanetLab experiments—show that Thunder-

Dome efficiently yields upload bandwidth estimates that

are robust to measurement error.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques;
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous

General Terms
Algorithms, Experimentation, Measurement

1. INTRODUCTION
In peer-to-peer systems, upload constraints are often the

key determinant of scalability and performance. Thus, P2P
systems often try to optimize their usage of the participants’
upload bandwidth. For example, the Donnybrook gaming
framework [1] uses peers with high upload bandwidths to
distribute player updates to poorly connected hosts. More
generally, multicast systems [2, 3] and media streaming ser-
vices [9, 15] can increase delivery rates by buildling dissem-
ination topologies with well-provisioned hosts at the core.
In many of these systems, the most powerful optimizations
require more than a ranking of peers by their upload band-
widths; instead, systems like Donnybrook assign specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

tasks to peers based on the exact upload bandwidth avail-
able to each peer. Since available bandwidth is dynamic, it
must be estimated on demand, at the time of use.

All of these systems assume that the upload constraints
are known a priori. However, actually determining these
constraints is an open research problem. A host can use a
wide variety of tools [10, 13, 17, 19, 20, 21, 25] to mea-
sure the one-way available bandwidth between itself and
another peer. However, this measurement does not reveal
the sender’s maximum upload speed—instead, it reveals the
minimum of the sender’s upload constraint and the receiver’s
download constraint. Disambiguating the two is very im-
portant for constructing bandwidth-aware topologies. For
example, suppose that the one-way transfer rate between
two peers is 30 Kbps. At least one of the peers has a slow
connection, but one of the peers may have a very fast con-
nection. We want to identify and leverage the latter type
of host, but we cannot do so by naively applying one-way
bandwidth estimators.

If the sender could definitively identify a remote endpoint
with a greater download capacity that its (currently undeter-
mined) upload bandwidth, the sender could trivially deter-
mine its upload constraint. Unfortunately, in an ad-hoc P2P
system, hosts usually lack a priori knowledge of such well-
provisioned endpoints. Even if high-bandwidth sinks are
well-known, their utility is diminished if too many senders
initiate concurrent transfers and reduce the available per-
sender download bandwidth.

To address these challenges, we introduce ThunderDome,
a system for collaboratively measuring available upload band-
widths in ad-hoc peer-to-peer environments. ThunderDome’s
measurement primitive is a pairwise bandwidth probe which
measures the transfer rate between two hosts in both di-
rections. Given the asymmetric upload/download speeds of
popular access technologies like DSL, the slower of the two
unidirectional transfers reveals the upload bandwidth of the
sending node. Using bandwidth tournaments, ThunderDome
arranges additional bandwidth probes for unresolved nodes.
An unresolved peer is successively paired with other such
hosts until it encounters a peer whose download bandwidth
is high enough to reveal its upload bandwidth. For scala-
bility, the coordination of the probing activity is distributed
among the peers themselves and requires minimal central-
ized intervention. Analysis shows that the running time of
ThunderDome is logarithmic in the system size.

In practice, unidirectional bandwidth probes are subject
to measurement errors [11, 17, 23, 26]. These errors can in-
terfere with the determination of which host was resolved in
a pairwise bandwidth probe. To prevent these errors from
cascading throughout the tournament, ThunderDome uses
additional “tightening” probes that do not add to the run-

ning time of the algorithm. ThunderDome then uses statis-
tical techniques to aggregate the probe results for a given
host and eliminate outliers.

Since ThunderDome relies on active network probing, a
natural concern is whether a real deployment would gen-
erate excessive traffic. Fortunately, a ThunderDome host
is involved in at most one transfer at any time, and mod-
ern one-way bandwidth estimators do not produce an over-
whelming amount of taffic. For example, the Spruce tool [25]
generates 300 KB of traffic per measurement, and IGI [10]
produces 130 KB. Given that an average web page is 300
KB [27], this volume of probing traffic is quite reasonable.

We evaluate ThunderDome with extensive simulations on
a real, empirically measured bandwidth distribution, as well
as an analytic distribution that allows us to parametrically
consider a wide range of alternative network environments.
Our experiments show that, in a small number of tourna-
ment rounds, ThunderDome produces upload bandwidth es-
timates with accuracy comparable to the inherent measure-
ment error in the network. We validate our simulations with
wide-area experiments using PlanetLab [24].

In summary, we make the following contributions:

• We describe how bandwidth tournaments can determine
upload constraints in ad-hoc P2P systems in an efficient
and scalable manner.

• We identify problems arising from measurement errors,
and propose statistical techniques to mitigate the effects
of such errors.

• We propose a fully distributed implementation for band-
width tournaments.

• We validate the accuracy of ThunderDome by means of
extensive simulations using empirical and analytic band-
width distributions. We also describe an experimental
validation on PlanetLab.

2. BACKGROUND AND RELATED WORK
An Internet path connecting two hosts consists of multi-

ple routers and physical links. The capacity of an individual
link is the maximum rate at which it can transmit packets.
At any given time, the link’s available bandwidth is its un-
used residual capacity. The capacity of an end-to-end path
is the minimum capacity among its constituent links. The
path’s available bandwidth is defined in a similar way. In
this paper, we focus on determining available bandwidths in
ad-hoc distributed groups. We defer a discussion of capacity
estimation to other work [5, 7, 16].

There are many tools for estimating the unidirectional
available bandwidth along an Internet path [10, 11, 13, 19,
21, 20, 25, 17]. At a high-level, these tools use one of two
techniques. Packet rate tools [10, 13, 19, 21] gradually in-
crease the packet generation rate at the sender, defining the
available bandwidth as the highest send rate that experi-
ences no losses at the receiver. Packet gap tools [10, 20,
25] issue pairs of packets with carefully chosen inter-packet
spacings. This gap will increase as each pair traverses the
path and the trailing packet is queued behind cross-traffic
that arrives after the lead packet hits each router. Using
mathematical models, the receiver can determine the vol-
ume of this cross-traffic and the remaining available band-
width. ThunderDome’s pairwise bandwidth probes require
some way of determining unidirectional transfer speeds, but
ThunderDome is agnostic as to which tool is used.

BRoute [11] minimizes probing traffic by exploiting two
observations: most bottleneck links reside at the edge of the
network, and in large systems, each edge link is likely to be
shared by multiple end-to-end paths. By only probing edge
links, BRoute can identify most sources of congestion with-
out exhaustive introspection of each link in a path. Further-
more, the probing cost for each edge segment is amortized
across the set of peers which use that segment.

Unlike the other tools described above, BRoute uses dedi-
cated network infrastructure—hosts discover their edge links
by issuing traceroutes to well-known landmark nodes. BRoute
also requires BGP data to determine which edge segments
connect end hosts. In our problem domain, groups are ad-
hoc, meaning that dedicated infrastructure is unlikely to ex-
ist. Our groups are also composed of “regular” end-users
who lack access to privileged BGP feeds.

Like all measurement tools, one-way bandwidth estima-
tors do not generate perfectly accurate results. Some of the
measurement error arises from the simplifying assumptions
that these tools make; for example, tools often assume that
all routers use a FIFO queuing discipline, and that the vol-
ume of cross-traffic is stationary. Resource constraints on
the measurement hosts can also cause poor estimations. In
particular, many tools require fine-grained timers to control
the rate at which packets are sent. They also require ac-
curate timestamps for received packets. On highly loaded
machines, the OS may be unable to provide the necessary
fidelity [24]. Even a lightly loaded machine may underesti-
mate a high bandwidth link if the native timestamp resolu-
tion is too coarse [23].

Because of these issues, the output of a bandwidth estima-
tion tool should not be taken as ground truth. For example,
pathchirp [21] underestimates available bandwidth when the
volume of cross-traffic is low, but overestimates when cross-
traffic is high [26]. Bandwidth estimates are also sensitive
to the size of probe packets [10, 17, 21, 23], but different
paths may be optimally measured with different packet sizes,
and generating this mapping is not straightforward. Thus,
measurement jitter is often non-trivial—in controlled set-
tings, the standard deviation of measurement can be 30%
or more [11, 17, 23, 26]. In Sections 4 and 6, we show how
measurement noise can lead to dramatic underestimates of
upload bandwidth.

3. ALGORITHMIC FOUNDATIONS
In this section, we formally define the bandwidth estima-

tion problem in P2P networks and present basic algorithms
to solve it. Throughout this section, we use an abstract
model that ignores several important issues like measure-
ment error. However, the practical algorithms that we de-
scribe later are derived from these basic techniques.

3.1 Participant Model
ThunderDome is designed for online gaming or collabo-

rative streaming applications in which users gather to par-
ticipate in a service and then use the service for tens of
minutes or longer. At a minimum, ThunderDome runs at
initialization time, providing the service with peer upload
constraints that can guide the construction of bandwidth-
aware communication topologies. Subsets of the peers may
run the ThunderDome protocol later if they believe that
their available upload bandwidths have changed.

Figure 1: Bandwidth probe h1 ↔ h3 reveals only
h1’s upload bandwidth, since P (h3 → h1) = d1. In
contrast, h2 ↔ h3 reveals both uploads (i.e., P (h2 →
h3) = u2 and P (h3 → h2) = u3), but h3 cannot be sure
that the measurement P (h3 → h2) is indeed u3.

ThunderDome assumes that hosts accurately report the
results of bandwidth probes and do not try to attack the
distributed measurement protocol. It also assumes that each
host has a public IP address, or resides behind a cone NAT
[22] that allows outside parties to initiate communication
with the host. If a peer relies on a relay node to communicate
with the outside world, the relay node acts as the peer’s
representative in the ThunderDome protocol.

3.2 Network Model & Problem Definition
Our network model is based on two primary assumptions.

• Hub-and-Spoke Model: We assume that bandwidth bot-
tlenecks occur on last mile edge links, and that the core
of the Internet has essentially unlimited bandwidth. Al-
though “middle mile” congestion between adjacent ISPs
can sometimes induce packet losses [18], the Internet core
is generally much better provisioned than the edge. In
Section 6.2, we validate this assumption for target trans-
fer bandwidths of up to 768 Kbps.

• Directional Asymmetry: We assume that for each host
hi, hi’s download bandwidth is greater than or equal to
its upload bandwidth. This asymmetry is inherent for
the vast majority of network access technologies.

For now, we assume that there are no measurement errors,
i.e., we can determine one-way path bandwidths with perfect
accuracy. We will relax this assumption in Section 4. For
now, our goal is to develop basic algorithms that allow ev-
ery node to quickly determine its upload speed. Bandwidth
probes are the building blocks for these algorithms.

Bandwidth Probe: A bandwidth probe is a pairing of
two hosts hi and hj such that hi transmits data to hj at
full speed and then vice versa. We denote such a bandwidth
probe as hi ↔ hj . The result of a bandwidth probe hi ↔ hj

is two measurements, denoted by P (hi → hj) and P (hj →
hi). P (hi → hj) is the speed at which data was transmitted
from hi to hj . This is the minimum of hi’s upload and hj ’s
download, i.e.,

P (hi → hj) = min{ui, dj}.
Similarly, the transfer speed in the opposite direction reveals
the minimum of hj ’s upload and hi’s download, i.e.,

P (hj → hi) = min{uj , di}.
For each bandwidth probe, one of the two hosts is the win-
ner, denoted by W (hi ↔ hj). The other peer is the loser
L(hi ↔ hj). Specifically, if P (hi → hj) > P (hj → hi),
then hi is the winner and hj is the loser. If P (hj → hi) >

P (hi → hj), then W (hi ↔ hj) = hj and L(hi ↔ hj) = hi

(see Figure 1).
Given P (hi → hj) and P (hj → hi), and our assumption

that di ≥ ui and dj ≥ uj , we can derive the following infor-
mation from a pairwise exchange hi ↔ hj :

• If P (hi → hj) ≥ P (hj → hi), it follows that uj =
P (hj → hi). If P (hi → hj) ≤ P (hj → hi) then ui =
P (hi → hj). In other words, in the absence of measure-
ment error, a pairwise bandwidth probe reveals (at least)
the upload bandwidth of the loser.

• While the smaller of the two directional probes corre-
sponds to the upload bandwidth of the loser, the larger
probe can either be the loser’s download bandwidth or
the winner’s upload bandwidth.

Disambiguating the latter condition is difficult. For ex-
ample, if ui < uj , then a bandwidth probe will reveal that
ui = P (hi → hj). If we also knew that di ≥ uj , the probe
could additonally reveal uj = P (hj → hi). Unfortunately,
there is no a priori way for the hosts to determine whether
di ≥ uj is true, i.e., whether the bottleneck in the transfer
from hj to hi is hj ’s upload speed or hi’s download speed (see
Figure 1). This missing information is the primary motiva-
tion for the use of bandwidth tournaments to resolve each
host’s upload constraint. By employing a series of band-
width probes, we can eliminate this uncertainty.

With these definitions, we can now formally define the
bandwidth estimation problem in P2P networks.

Bandwidth Estimation Problem: Let H denote the
set of n participating hosts H = {h1, . . . , hn}. Each host is
connected to the Internet via an access link with download
bandwidth di and upload bandwidth ui, such that di ≥ ui for
all i. Let hmax ui be the host with the highest upload band-
width. Initially, no host knows its upload or download band-
width. The goal is to employ a series of bandwidth probes
such that in the end, all nodes but hmax ui know their ui.

1

We assume that time is divided into rounds, where a round
is the unit of time required to conduct one pairwise band-
width probe. In each round, every host can participate in
one pairwise probe with another peer; thus, up to n/2 ex-
changes can be done in parallel. When comparing various
algorithms for solving the bandwidth estimation problem,
the key evaluation metric is running time.
Time Complexity: The time complexity TC(A) of an
algorithm A is the maximum number of rounds during which
there is at least one bandwidth probe.

3.3 Simple Approaches
Centralized Server (CS): In small-scale systems, a com-

mon way to determine upload speeds is to have nodes send
a bandwidth probe to a central server that is known to have
very high download bandwidth. This approach does not ex-
ploit the upstream and downstream bandwidths of the other
hosts in the system, but it has the benefit of being simple and
easy to implement. Unfortunately, as n gets larger, the time
complexity of such an approach scales poorly. Specifically,
given a server with download speed ds, the time complexity

1hmax ui will never lose a pairwise exchange, so it can never
definitively determine its upload bandwidth. However, it can de-
termine a lower bound for this bandwidth as the highest upload
speed that it observed across all pairwise exchanges. This lower
bound will be an exact estimate if there exists dj greater than
hmax ui ’s upload speed, and hmax ui is ever paired with hj .

h2(0)

h1(0)

h4(0)

h3(0)

h6(0)

h5(0)

h8(0)

h7(0)

h2(10)

h1(5)

h4(20)

h3(15)

h6(20)

h5(15)

h8(30)

h7(25)

h6(30)

h5(25)

h7(35) h8(45)

h7(35)

h2(10)

h1(5)

h4(20)

h3(15)

h2(10)

h1(5)

h4(20)

h3(15)

h6(30)

h5(25)

T(1)

T(2)

T(4)

T(3)

T(5)

T(6)

T(7)

T(8)

1 2 3round:

h8(45)

Figure 2: Example progression of basic algorithm
(n = 8, ui = 5 ∗ i, di = ui + 10). Estimates are in
parentheses, and are gray when correct. After round
2, h7 and h8 are correct but not yet known to be so.

is at least T (CS) ≥ ∑
hi∈H ui/ds, i.e., even with optimal

coordination, the time complexity grows linearly.
Random Sampling (RS): A more clever idea is to in-

crease parallelism by making use of the available download
bandwidth of all participating hosts, not just that of the
server. Indeed, if every hosts’ download bandwidth was
higher than every host’s upload bandwidth (di ≥ uj ,∀i, j),
the problem would be trivial in the absence of measurement
errors. After a single round of probing with random host
pairs, every host would know its upload bandwidth. In prac-
tice, of course, some downloads will be lower than some of
the uploads, rendering the above scheme unusable.

A multi-round peer-to-peer approach would partially al-
leviate the problem. In each round, every host is randomly
paired with another host, resulting in n/2 independent par-
allel bandwidth probes in each round. Once a host loses a
pairwise exchange, it knows its upload bandwidth.

Assume hosts h1, . . . , hn are ordered in non-decreasing or-
der of their upload bandwidth u1 ≤ u2 ≤, . . . ,≤ un. In
worst-case bandwidth distributions, the random sampling
approach performs poorly.

Theorem 3.1. There are bandwidth distributions for which
random sampling achieves an expected time complexity of
TC(RS) = n/2.

Proof. If un > di for all i = 1, . . . n−2, host hn can only
determine its upload bandwidth if it is paired with host hn−1

which, in expectation, takes time n/2.

3.4 ThunderDome: Bandwidth Tournaments
We now present our basic algorithm, which achieves bet-

ter guarantees than the simple approaches discussed in the
previous section. In the absence of measurement errors, this
algorithm has time complexity of O(log n) for any band-
width distribution.

In the absence of measurement errors, the idea of Thun-
derDome is very simple. Every bandwidth probe reveals
the upload speed of the loser, so only the winners need to
continue being paired with each other. As described in Al-
gorithm 1, ThunderDome pairs winners with each other. As
soon as a node loses a bandwidth probe, it no longer par-
ticipates in the subsequent rounds. Whereas random sam-
pling had bad worst-case performance, it is easy to see that
ThunderDome has a time complexity of log n regardless of
the bandwidth distribution, because in every round, at least
half of the remaining hosts resolve their upload bandwidth.
Figure 2 demonstrates the operation of the algorithm.

Algorithm 1 Basic ThunderDome Algorithm

Input: Set of n hosts {hi|i ∈ [1..n]}
Count k of rounds to run

Output: None; hosts accumulate data as a side effect
1: Set T (i) := hi for each i ∈ [1..n]
2: for r := 1 to k do
3: for all i ∈ [1..n/2r] do
4: Set j := n/2r + i
5: Perform probes T (i) ↔ T (j)
6: if host T (j) wins then
7: Swap T (i) and T (j)
8: end if
9: end for

10: end for

Theorem 3.2. In the absence of measurement errors, it
holds for every bandwidth distribution that after k rounds,
at least n/2k hosts know their upload bandwidth. Therefore,
TC(TD) = log n.

Given this theorem, we see that with respect to random
sampling, ThunderDome provides an exponentially improved
time complexity for worst-case bandwidth distributions (from
Ω(n) to O(log n)).

4. DEALING WITH PROBING ERRORS
Up to this point, we have assumed that bandwidth probes

yield accurate results. However, bandwidth estimation tools
can produce significantly erroneous results, with individual
measurements deviating from true bandwidths by 30% or
more [11, 17, 23, 26]. These errors arise because the behav-
ior of the routing core is largely opaque to end hosts, and
behavioral assumptions made by end-host tools are often vi-
olated (§2). The resulting errors can alter the control flow
of bandwidth-aware systems and degrade performance.

For reference, we define the terms:

• fractional probing error:
BWprobe

BWtrue
− 1.0

• fractional estimation error: BWestimate
BWtrue

− 1.0

Since a bandwidth estimate is merely a result from one of
two bandwidth probes, one might think that the estimation
error will not exceed the probing error. Surprisingly, this
is not correct. As we explain below, the estimation error
may be as high as maxi∈[1..n] ui −mini∈[1..n] di, i.e., the dif-
ference between the largest upload speed and the smallest
download speed of any host in the system. Depending on
the distribution of host bandwidths, this spread may grow
arbitrarily large with respect to the probing error. In par-
ticular, the basic ThunderDome algorithm can dramatically
underestimate upload bandwidth. Thus, we must modify
the algorithm to hedge against faulty probe measurements.

4.1 Problem: Mismeasurement Occlusion
Recall that one of ThunderDome’s enabling assumptions

is directional asymmetry: for each host hi, ui ≤ di. How-
ever, the difference between ui and di may be smaller than
the probing error. This can cause ThunderDome to reach an
incorrect conclusion about which host’s upload bandwidth
is determined by a particular probe.

Consider the system of Figure 1 and a probe between h1

and h3. In the absence of probing error, P (h1 → h3) = 48
kbps and P (h3 → h1) = 53.3 kbps. Since P (h1 → h3) <

P (h3 → h1), ThunderDome will correctly conclude that 48
kbps is h1’s upload bandwidth.

Now consider a fractional probing error of up to 15%. In
the worst case, P (h1 → h3) = 55.2 kbps and P (h3 → h1) =
45.3 kbps. Since P (h3 → h1) < P (h1 → h3), Thunder-
Dome will wrongly conclude that 45.3 kbps is h3’s upload
bandwidth. Since the true value of u3 is 768 kbps, the mag-
nitude of the fractional estimation error is 94%, even though
the probing error is only 15%.

We refer to this phenomenon as mismeasurement occlu-
sion: a host’s upload bandwidth is occluded by an incorrect
measurement of its probe-partner’s download bandwidth.
As probing error increases, a greater fraction of hosts will
be vulnerable to such occlusions. The magnitude of the
estimation error depends on the bandwidth skew in the net-
work. Let ûi and d̂i represent the (possibly erroneous) mea-
surement of hi’s bandwidth in a pairwise exchange. In the
worst case, the estimation error for any other host hj is

mini∈[1..j−1,j+1..n]{d̂i|ûi > d̂i} − uj . As bandwidth hetero-
geneity grows, this worst-case estimation error increases, un-
bounded by probing error.

In practice, underestimation bias will occur in systems
with a mix of high-speed connections and either wireless de-
vices or dial-ups. Survey data indicates that at least 30% of
Americans connect to the Internet using dial-up modems [6],
whose upload speeds are an order of magnitude smaller than
that of mid-range DSL and cable connections.

4.2 Tightening
In the basic ThunderDome algorithm, once a host loses

a bandwidth probe, its bandwidth estimate is established
and never revised. To combat underestimation bias result-
ing from mismeasurement occlusion, we can allow losers to
perform additional probes with other hosts. Each losing
probe P (hi → hj) provides a provisional lower bound on
hi’s true upload bandwidth. Given a set of such bounds
from multiple probes from hi, we can use the highest one
as our estimate of ui. Thus, a high-bandwidth node with
a dramatically underestimated upload speed (due to mis-
measurement occlusion) can revise its estimate upward it if
subsequently pairs with another high-speed node.

A straightforward way to provide such additional pairings
is to perform one or more tightening rounds at the end. In
each tightening round, we first sort all hosts by their upload
estimates: ∀i ∈ [1..n−1] : ûs(i) < ûs(i+1). Then, we perform
probes between pairs of hosts with widely separated ranks:
∀i ∈ [1..n/2] : hs(i) ↔ hs(i+n/2). Each tightening round
requires n/2 probes, which can all proceed in parallel.

4.3 Inline Tightening
Adding tightening rounds at the end has two disadvan-

tages. First, it increases the running time of the algorithm.
Second, it treats all hosts identically, even though some
hosts are more likely to experience mismeasurement occlu-
sion than others.

To elaborate on the second point, note that a host that
wins a few rounds will tend to have higher measured band-
width than a host that loses earlier in the tournament. Fur-
thermore, this winning host will subsequently be paired with
other winning hosts, which also have high measured band-
widths. Consequently, the potential for mismeasurement
occlusion decreases as the tournament proceeds. Thus, the
hosts most in need of tightening are the losers of early rounds.

h2(0)

h1(0)

h4(0)

h3(0)

h6(0)

h5(0)

h8(0)

h7(0)

h6(14)

h1(8)

h4(19)

h3(19)

h2(16)

h5(12)

h8(32)

h7(21)

h2(16)

h5(26)

h8(32)

h7(30) h8(43)

h7(34)

h6(28)

h1(8)

h4(22)

h3(19)

h6(28)

h1(8)

h4(23)

h3(19)

h2(16)

h5(26)

T(1)

T(2)

T(4)

T(3)

T(5)

T(6)

T(7)

T(8)

1 2 3round:

Figure 3: Example progression of algorithm with
inline tightening, for n = 8, ui = 5∗ i, di = ui +10, and
error ±6. In round 1, h6 incorrectly loses to h2. In
round 2, a probe with h4 corrects h6’s underestimate.

We can address both of these issues by inlining the tight-
ening procedure. When a host loses round r, rather than
merely waiting around for k − r more rounds and then per-
forming tightening, the host can perform its tightening steps
during these k−r rounds, without adding to the overall run-
ning time. Furthermore, hosts that lose early—and which
thus have the most need for tightening—have more time to
perform a greater number of tightening rounds.

Algorithm 2 shows how ThunderDome performs this in-
line tightening, and Figure 3 gives an example. Essentially,
nodes are placed at the vertexes of a (log n)-dimensional hy-
percube. In each round, probes are exchanged between hosts
that are paired along one axis of the hypercube.

α-tightening: An advantage of the inline tightening ap-
proach is that the most vulnerable hosts perform many rounds
of tightening. However, now that each host obtains multiple
bandwidth estimates during the tournament, ThunderDome
must define a way for a node to aggregate these values and
derive a final estimate. Taking the maximum over all sam-
ples can lead to overestimation, which follows directly from
the theory of order statistics. Conversely, if we take the
mean over all samples, measurement errors will be averaged
out, but the mean will incorporate even very low estimates
caused by mismeasurement occlusion, undermining the very
purpose of tightening.

To obtain the best of both schemes, we introduce a tech-
nique we call α-tightening. If the host’s largest measure-
ment sample is ûmax, then we compute the host’s band-
width estimate as the mean over all samples in the range
[α·ûmax, ûmax] for some specified value of α.2 This preserves
the averaging properties of the mean, without incorporating
erroneously low estimates.

5. DISTRIBUTED THUNDERDOME
In ThunderDome, the probing effort is distributed among

the hosts, which execute their bandwidth probes in parallel
during each round. However, as presented above, the hosts
require coordination after each round to determine the pair-
ings for the subsequent round. The straightforward way to
coordinate the hosts is with a central leader. In each round
r, the leader receives all probe results from round r − 1,
computes a schedule for the hosts according to one pass of
the outer loop in Algorithm 1 or 2, and tells each host who
to pair with in the next round.

2Note that for α = 1 and α = 0, α-tightening reduces to the
maximum and mean, respectively.

Algorithm 2 ThunderDome with Inline Tightening

Input: Set of n hosts {hi|i ∈ [1..n]}, number of rounds k
Output: None; hosts accumulate data as a side effect
1: Set T (i) := hi for each i ∈ [1..n]
2: for r := 1 to k do
3: for all x ∈ [0..2r−1 − 1] do
4: for all y ∈ [0..n/2r − 1] do
5: Set i := n/2r−1x + y + 1
6: Set j := i + n/2r

7: Perform probes between hosts T (i) and T (j)
8: if host T (j) wins then
9: Swap T (i) and T (j)

10: end if
11: end for
12: end for
13: end for

In large systems, the network load on the leader can be-
come substantial. Indeed, more time could be spent by the
leader (serially) sending instructions to each host than by
the hosts (in parallel) sending probes to each other. In this
section, we discuss two ways to deal with this problem: par-
titioning and distributed coordination.

5.1 Partitioning
The simplest way to reduce the communication load on

the leader is to partition the n hosts into g subsets, nominate
one host in each subset to serve as a sub-leader for that
subset, and perform g instances of the algorithm in parallel,
with n/g hosts in each instance. In some cases, this might
work acceptably, but there are two reasons that it may be
insufficient.

First, as our evaluation (§6) shows, ThunderDome’s es-
timation accuracy is related to the number k of probing
rounds. In smaller systems, k ≤ log n, so partitioned sub-
sets may be unable to perform enough rounds to reach the
desired accuracy.

Second, recall that our problem definition (§3, footnote 1)
allows the highest upload bandwidth to remain undeter-
mined if the download bandwidths of all other hosts in the
set are lower than this highest upload bandwidth. We can
evaluate the probability that this occurs as a function of the
number of hosts. We characterize host bandwidths using a
joint probability density function b with respect to upload
and download bandwidths governed by random variables U
and D: b(u, d) = P [U = u, D = d].

We derive the failure probability f for a host in a tourna-
ment among n hosts, whose bandwidths follow joint density
function b. Let Vn be the n’th order statistic of U . That is,
random variable Vn governs the distribution of the highest
upload bandwidth among the n hosts. A tournament will
fail for one in n hosts if (1) the host with highest upload
bandwidth has upload bandwidth x and (2) the n− 1 hosts
with lower upload bandwidth have download bandwidths
that are less than x:

f(b, n) =
1

n

∫ ∞

0

P [Vn = x]P [D ≤ x |U ≤ x]n−1 dx (1)

From basic order statistics:

P [Vn = x] = n P [U = x]P [U ≤ x]n−1 (2)

Figure 4: Probability of failing to accurately determine

a hosts’s upload speed by a tournament among n hosts,

for various bandwidth distributions. One outlier domi-

nates the empirical curve for n > 16.

From the definition of conditional probability:

P [D ≤ x |U ≤ x] =
P [D ≤ x ∧ U ≤ x]

P [U ≤ x]
(3)

The property of directional asymmetry implies that:

P [D ≤ x ∧ U ≤ x] = P [D ≤ x] (4)

A tournament will fail for a host whose upload bandwidth is
higher than all other host’s download bandwidths. There-
fore, substituting Eq. 4 into Eq. 3, substituting Eqs. 2-3 into
Eq. 1, and simplifying yields

f(b, n) =

∫ ∞

0

P [U = x]P [D ≤ x]n−1 dx (5)

Interestingly, this value depends only on the marginal dis-
tributions of the two random variables, not their joint dis-
tribution.3

Figure 4 plots f versus n for empirical and analytical
bandwidth distributions (§6.1). For the analytical distri-
bution, the effect on f is governed by three parameters: δ,
ρU = σU/(μD − μU), and ρD = σD/(μD − μU). The values
(δ = 0.3, ρU = 0.5, ρD = 0.6) are derived from an analytical
fit to the empirical distribution.

The failure curve for the empirical distribution does not
well match the curve for the fitted analytical distribution.
Instead, it is dominated by an outlier: a large bandwidth
value in fraction p of the upload distribution, which is less
than merely fraction q of the download distribution. This
causes f to be dominated by p (1 − q)n−1. In our empirical
distribution, p = 0.0006 and q = 0.0025.

This analysis shows that simple partitioning may have an
excessively detrimental effect on the result of the bandwidth
tournament. Even with hundreds of hosts, the failure proba-
bility is non-trivial. Moreover, this probability can be highly
dependent on characteristics of a small fraction of the pop-
ulation, making it difficult to quantify.

5.2 Distributed Coordination
An alternative approach to reducing the leader’s commu-

nication load is to distribute the coordination effort among
all the peers while preserving the probing schedule that
would be generated by centralized coordination. To do so,
we employ a set of n − n/2k coordinators, each of which is
responsible for coordinating a probe between a pair of hosts.

3The derivation employs the property of directional asymmetry,
which the joint distribution is assumed to satisfy.

Algorithm 3 Distributed ThunderDome—Host

Input: Initial coordinator cinit for the host
Output: None; host accumulates data as a side effect
1: Set c := cinit

2: while c
=⊥ do
3: Ask coordinator c for instructions
4: Receive partner h′ and next coordinator cnext from c
5: Perform probes to/from host h′

6: if current host wins round then
7: c := cnext

8: else
9: stop

10: end if
11: end while

Algorithm 4 Distributed ThunderDome—Coordinator

Input: Parent coordinator cnext

Output: None
1: Wait for messages from any two hosts, hi and hj

2: Send (hj and cnext) to hi

3: Send (hi and cnext) to hj

4: stop

In the distributed version of the basic ThunderDome, each
host is initially assigned to a coordinator cinit. In each
round, the host contacts its coordinator, learns which host
it should probe, executes its probe, and updates its coordi-
nator based on the result of the probe (Algorithm 3).

The job of each coordinator is even simpler. It waits to
be contacted by two hosts, at which point it tells the hosts
about each other. It also tells the hosts about its parent
coordinator cnext, which it received at initialization (see Al-
gorithm 4). This key initialization step sets cinit for all hosts
and cnext for all coordinators according to Algorithm 5. Fig-
ure 5 illustrates the resulting topology for n = 8.

The distributed algorithm results in the exact same probe
schedule as the centralized algorithm. To state this more
formally, we introduce two pieces of notation. First, the
winner function W (h, h′) returns the host that wins a band-
width probe between hosts h and h′. Second, for tournament
algorithm A and for r ∈ [1..k], the match function MA(r)
returns a set of unordered pairs of hosts; {h, h′} ∈ MA(r)
iff algorithm A pairs hosts h and h′ in round r.

Theorem 5.1. For any power-of-two n, k ≤ log n, r ∈
[1..k], and fixed W , it holds that Mcentr(r) = Mdistr(r).

The proof for this theorem is straightforward though rather
tedious. It mainly shows that the numerical manipulations
in Algorithm 5 are isomorphic to those in Algorithm 1.

Coordinators are merely hosts acting in a different role,
but we designate them separately for clarity. A simple map-
ping between hosts and their coordinator roles is:

∀r ∈ [1..k], i ∈ [1..n/2r], j = n/2r + i : cr
i = hj

5.3 Distributed Inline Tightening
The distributed version of ThunderDome with inline tight-

ening is similar to the above. When the host updates its
coordinator based on the result of a probe, it selects one of
two next coordinators, cwin and close, as specified in Algo-
rithm 6. Similarly, each coordinator is assigned two parent
coordinators, cwin and close, which it tells the hosts about

Algorithm 5 Distributed ThunderDome—Initialization

Input: Set of n hosts {hi|i ∈ [1..n]}
Count k of rounds to run
Set of n−n/2k coordinators {cr

i |r ∈ [1..k], i ∈ [1..n/2r]}
Output: Assignment of cinit for each host

Assignment of cnext for each coordinator
1: for all r ∈ [1..k] do
2: for all i ∈ [1..n/2r] do
3: Set j := n/2r + i
4: if r = 1 then
5: Set hi.cinit := c1

i

6: Set hj .cinit := c1
i

7: else
8: Set cr−1

i .cnext := cr
i

9: Set cr−1
j .cnext := cr

i

10: end if
11: end for
12: end for
13: for all i ∈ [1..n/2k] do
14: Set ck

i .cnext :=⊥
15: end for

h8h1 h2 h3 h4 h5 h6 h7

c1
4c1

1 c1
2 c1

3

c2
1 c2

2

c3
1

key

cnext

cinit

Figure 5: Topology of basic distributed algorithm for

n = 8. Note the visual isomorphism to Figure 2.

when contacted, as specified in Algorithm 7. Again, the crux
is the initialization step, which sets values for cinit, cwin,
and close according to Algorithm 8. Figure 6 illustrates the
resulting topology for n = 8. As in the case without tight-
ening, the distributed algorithm results in the exact same
set of probes as the centralized algorithm.

Theorem 5.2. For any power-of-two n, k ≤ log n, r ∈
[1..k], and fixed W , it holds that Mc−tight(r) = Md−tight(r).

As with Theorem 5.1, the proof for this theorem is a straight-
forward though very tedious verification of the isomorphism
between the numerical manipulations in Algorithm 8 and
those in Algorithm 2.

In the absence of tightening, there are strictly fewer co-
ordinators than hosts. This is not the case for the inline
tightening algorithm, so it would be prudent to avoid as-
signing any host to multiple coordination roles that demand
simultaneous effort. Since each coordinator functions for
only one round, this is easily achieved:

∀r ∈ [1..k], i ∈ [1..n/2], j = (r mod 2)n/2 + i : cr
i = hj

6. EVALUATION
In this section, we use a combination of simulations and

Planetlab [24] experiments to evaluate ThunderDome’s per-
formance. First, we validate our hub-and-spoke network
model, using Planetlab nodes to compare transfer speeds
between WAN endpoints and LAN endpoints. To motivate
the concept of tightening, we use simulations to demonstrate

Algorithm 6 Distr. Tighten ThunderDome—Host

Input: Initial coordinator cinit for the host
Output: None; host accumulates data as a side effect
1: Set c := cinit

2: while c
=⊥ do
3: Ask coordinator c for instructions
4: Receive h′, cwin, and close from c
5: Perform probes to/from host h′

6: if current host wins round then
7: c := cwin

8: else
9: c := close

10: end if
11: end while

Algorithm 7 Distr. Tighten ThunderDome—Coordinator

Input: Parent coordinators cwin and close

Output: None
1: Wait for messages from any two hosts, hi and hj

2: Send (hj , cwin, close) to hi

3: Send (hi, cwin, close) to hj

4: stop

how measurement error can introduce non-linear underesti-
mates of upload bandwidth. We then evaluate the accuracy
of inline tightening, examining how to pick the best α for a
variety of system sizes, probing errors, and bandwidth distri-
butions. Finally, we deploy ThunderDome on live Planetlab
hosts to test its performance in realistic wide-area settings.

6.1 Methodology
Simulation Methodology: Our simulator assumes a

hub-and-spoke network model, assigning each host an up-
load and download bandwidth using one of the distribu-
tions described in the following paragraph. Each simulated
time step corresponds to a tournament round. During each
round, nodes perform pairwise bandwidth exchanges. The
simulator distorts the results of these exchanges according
to a probing error function. Ideally, this function would be
guided by an empirical distribution of probing errors. How-
ever, to the best of our knowledge, none of the prior work
on bandwidth estimation [10, 11, 13, 19, 21, 20, 25, 17] has
provided a rigorous statistical characterization of the prob-
ing error. Generating such a characterization is beyond the
scope of this paper. Thus, in our simulations, we assume
that the fractional probing error is Gaussian with a mean
of zero; we vary the standard deviation of the probing error
to explore the impact of inaccurate probes upon our final
upload estimates. All data points in the simulation graphs
represent the outcome of 5000 trials.

Bandwidth Distributions: To evaluate our system, we
employ two joint distributions of host bandwidths. Our em-
pirical distribution attempts to capture the real world as
best we can. In this distribution, 30% of peers are dial-up
hosts and 70% are broadband clients [6]. For dial-up hosts,
we assume V.92 transfer speeds of 53.3 kbps downstream
and 48 kbps upstream [12]. For broadband hosts, we use
a data set provided by DSL Reports [4], a web site that
allows American broadband users to measure their upload
and download speeds. The marginal empirical distributions
for these speeds are shown in Figure 7(a).

Algorithm 8 Distr. Tighten ThunderDome—Initialization

Input: Set of n hosts {hi|i ∈ [1..n]}
Count k of rounds to run
Set of n/2 · k coordinators {cr

i |r ∈ [1..k], i ∈ [1..n/2]}
Output: Assignment of cinit for each host

Assignment of cwin and close for each coordinator
1: for all i ∈ [1..n/2] do
2: Set j := i + n/2
3: Set hi.cinit := c1

i

4: Set hj .cinit := c1
i

5: end for
6: for all r ∈ [2..k] do
7: for all x ∈ [0..2r−2] do
8: for all y ∈ [0..n/2r] do
9: for all z ∈ [0..1] do

10: Set i := n/2r−1x + y + 1
11: Set s := n/2r

12: Set cr−1
i+sz.cwin := cr

i

13: Set cr−1
i+sz.close := cr

i+s

14: end for
15: end for
16: end for
17: end for
18: Set ck

i .cnext :=⊥

h8h1 h2 h3 h4 h5 h6 h7

c1
4c1

1 c1
2 c1

3

c2
4c2

1 c2
2 c2

3

c3
4c3

1 c3
2 c3

3

key

cwin

cinit

close

Figure 6: Topology of distributed algorithm with
inline tightening for n = 8. Note the visual isomor-
phism to Figure 3.

Our analytical distribution captures the salient features of
our empirical distribution, but it allows us to vary key pa-
rameters. The analytic distribution consists of a δ-fraction
of dial-up hosts and a (1 − δ)-fraction of broadband hosts.
Although it would be straightforward to vary the speeds of
dial-up hosts, such variation does not significantly change
our results. Thus, we preserve the dial-up speed values from
the empirical distribution. For broadband hosts, we gen-
erate two independent random variables. U represents the
distribution of each host’s upload bandwidth, and R repre-
sents the distribution of the ratio of each host’s download
bandwidth to its upload bandwidth. U and R follow log-
normal distributions with parameters μU , σU , μR, and σR.
To preserve directional asymmetry, R is lower-bounded4 to
unity. Random variable D, which governs each host’s down-
load bandwidth, is then computed as the product of random
variables U and R, i.e., D = U · R. Because the product of
lognormals is lognormal, the marginal distribution of D is a
lognormal distribution with parameters μD = μU + μR and
σD =

√
σ2

U + σ2
R. When fitted to our empirical distribution

(δ = 0.3, μU = 6.6, σU = 0.68, μR = 1.4, σR = 0.49), the
marginal analytical distributions are shown in Figure 7(a).

4We use the rejection method [14] to establish this lower bound.
For the values of μR and σR that we consider, less than 0.2% of
random samples are affected.

6.2 Validating the Network Model
ThunderDome assumes that the network core has infinite

available bandwidth, and that congestion occurs at the edge
links connecting stub networks to the core. If this assump-
tion is true, then given two peers separated by the wide
area, the maximum transfer speed should be the minimum
available bandwidth along the edge links connecting the two
peers. A slower transmission rate should induce few packet
losses at the edge or inside the core.

To test this hypothesis, we examined transfers speeds on
the Planetlab testbed [24]. To provide ground truth about
edge bottleneck speeds, we enforced bandwidth limits us-
ing a simple UDP rate limiter. Like the Trickle bandwidth
shaper for TCP [8], our limiter intercepted calls to send()

and recv() using link-time library interpositioning. The
limiter wrapped these calls inside code which enforced traffic
caps. Caps were defined with respect to a sliding bandwidth
window of 500 milliseconds, i.e., nodes were limited to send-
ing a maximum of b bits over any 500 millisecond period.
We measured transfer speeds using bulk UDP transfers.

Figures 7 (b,c) shows the transfer speeds measured by re-
ceivers as a function of the upload caps on the senders (the
receivers did not have download caps). The LAN results
came from transfers between hosts in the same domain. The
WAN numbers represent inter-domain transfers amongst the
same host population. Host pairs were drawn from 32 dif-
ferent domains, and each data point represents 50 trials.

Figure 7(b) shows that mean upload estimates in the WAN
were close to those in the LAN for target caps of up to 768
kbps. In both transfer scenarios, these estimates were bi-
ased upwards. However, this was partially an artifact of
our traffic shaper 5. In both the LAN and the WAN, esti-
mation accuracy declined for upload caps above 768 kbps.
For these larger caps, hosts began to hit the real bandwidth
limitations imposed by the PlanetLab system. Each exper-
iment on a PlanetLab host receives a fraction of the host’s
raw bandwidth, and (during the time of our experiment)
senders could not reliably secure more than 768 kbps of up-
load bandwidth. This is indicated by both the falling mean
estimate of upload speed, and also the increasing standard
deviation of these estimates.

Across all upload caps, the WAN estimates had a larger
standard deviation than the LAN estimates. This shows
that our network model is not completely accurate. Even
if the core has extremely high bandwidth, it still provides
additional opportunities for packet reordering and delay.
Regardless, these experiments show that the routing core
can transmit at least 768 Kbps of PlanetLab traffic with-
out generating congestion-induced drops. This demonstra-
tion is sufficient to validate the experimental results in Sec-
tion 6.6. However, additional research is needed to de-
termine whether middle mile congestion [18] is becoming
more prevalent. Widespread middle mile congestion would
break ThunderDome’s pairwise exchange technique, which
assumes that different exchanges involving the same host
reveal bandwidth constraints bound to that host instead of
to the unique paths connecting that host to its peers.

5Since it did not enforce burst limits at a granularity smaller
than 500 milliseconds, the sender released clumps of packets at
500 millisecond intervals. From the receiver’s perspective, the
last packets in the last clump arrived earlier than they would
have if the sender had a non-bursty transmission rate. These
early arrivals nudge the receiver’s bandwidth estimate upward.

6.3 The Threat of Underestimation Bias
As shown in Section 4, measurement errors in bandwidth

probes can wreck havoc on the resulting estimation accu-
racy if left uncorrected. Figure 8(a) depicts the simulated
execution of our basic algorithm for a probing error σprobing

of 20%. For each system size, the algorithm performed all
log n rounds. The y-axis shows the fraction of hosts whose
estimation error was greater than 2 ∗ σprobing; for a given
round, a host’s upload estimate was either the losing band-
width from a previous pairwise exchange, or the largest up-
load speed that it had observed up to that point. Looking at
Figure 8(a), we see that for each value of n, estimation ac-
curacy was essentially frozen after three rounds. Figure 8(b)
explains why. In this graph, each curve represents the PDF
for estimation error at the end of a particular round (the sys-
tem size was held constant at 1024 hosts). Given that the
probing error is Gaussian with a mean of zero, one might
hope that the estimation error would follow a similar dis-
tribution. However, estimation error actually follows a bi-
modal distribution. The probability mass to the left repre-
sents the victims of underestimation bias, and the mass to
the right represents hosts whose estimation error is governed
by the (less pernicious) distribution of probing error.

The gray curve in Figure 8(b) depicts final estimation ac-
curacy when we performed a single round of tightening as
described in Section 4.2. Each node had two samples at
best, so we did not employ α-tightening. Instead, we revised
an estimate upward if the measurement from the tightening
round was at least 1.5 times larger than the current esti-
mate. Figure 8(b) shows that this scheme effectively elimi-
nated underestimation bias, turning a bimodal distribution
of estimation error into a normal one which approximated
the distribution of probing error. Unfortunately, this tight-
ening scheme required an additional round of bandwidth
probes and a centralized controller to generate the schedule.
In the rest of the evaluation section, we focus on the inline
tightening procedure, which is much more decentralized.

6.4 Inline Tightening
Inline tightening allows nodes to revise their upload es-

timates as the tournament unfolds. Figure 8(c) shows an
example of this progressive refinement. As more rounds un-
fold, more victims of underestimation bias are identified,
and their estimates are revised upward. Compared to the
centralized tightening described in Section 4.2, inline tight-
ening leaves more underestimated nodes. This is because
the centralized algorithm exploits global knowledge of all
upload estimates. By scheduling revision pairings according
to estimation rank, the centralized algorithm increases the
likelihood that an underestimated peer is discovered. The
decentralized inline scheme lacks global knowledge and sim-
ply pairs winners with winners and losers with losers.

Despite the slight decrease in estimation accuracy, inline
tightening remains attractive because of its speed. Com-
pared to the centralized scheme, it removes an additional
round of bandwidth exchanges. It also supports progressive
revisioning, which is useful if the system lacks the time to
run all log n rounds, e.g., because an online game wishes to
place an upper bound on the wait time before the game be-
gins. Given all of this, a natural question arises: which α
provides the best estimation accuracy? Experiments show
that the best α is a function of the number of rounds and the

(a) Bandwidth distribution

10%

-5%

0%

5%

10%

es
ti

m
at

io
n

er
ro

r WAN transfers

LAN transfers

-15%

-10%

0 256000 512000 768000 1024000 1280000

M
ea

n
e

Target upload cap (bits per second)

(b) Error mean

10%

20%

30%

ar
d

de
vi

at
io

n
of

m

at
io

n
er

ro
r

WAN transfers

0%

10%

0 256000 512000 768000 1024000 1280000

St
an

da
es

ti
m

Target upload cap (bits per second)

WAN transfers

LAN transfers

(c) Error standard dev.

Figure 7: Network model validation: bandwidth (left); LAN transfers versus WAN transfers (middle, right).

20%

30%

th
 e

st
im

at
io

n
2*
σ p

ro
bi

ng

64 hosts

256 hosts

1024 hosts

2048 hosts

0%

10%

0 2 4 6 8 10 12

%
 h

os
ts

 w
it

er
ro

r >

Round

(a) Accuracy versus round number

2%

3%

4%

5%

6%
After round 1

After round 6

At termination

0%

1%

2%

-100% -50% 0% 50% 100%

Estimation error

After tightening

(b) PDF without inline tightening

2%

3%

4%

5%

6%
After round 1

After round 6

After round 10

0%

1%

2%

-100% -50% 0% 50% 100%

Estimation error

(c) PDF with inline tightening

Figure 8: Underestimation bias with and without inline tightening (n = 1024, σprobing = 20%, α = 0.8).

-10%

0%

10%

st
im

at
io

n
Er

ro
r

α = 1.0

α = 0.8

α = 0.6

-30%

-20%

0 2 4 6

M
ea

n
Es

Round

α = 0.4

α = 0.2

α = 0

(a) Error mean, 64 nodes

20%

30%

40%

rd
 d

ev
ia

ti
on

 o
f

m
at

io
n

er
ro

r α=1.0

α=0.0

α=0.8

0%

10%

0 2 4 6

St
an

da
r

es
ti

m

Round

α=0.2

α=0.4

α=0.6

(b) Error standard dev., 64 nodes

-10%

-5%

0%

5%

10%

st
im

at
io

n
Er

ro
r

α=1.0

α=0.8

α=0.6

-25%

-20%

-15%

10%

0 3 6 9 12

M
ea

n
Es

Round

α=0.4

α=0.2

α=0

(a) Error mean, 4096 nodes

Figure 9: Error estimation versus network size in a 64 node (left, middle) and a 4096 node system (right).

20%

30%

40%

d
de

vi
at

io
n

of

bi
ng

 e
rr

or

α=1.0

α=0.8

α=0

0%

10%

0 3 6 9 12

St
an

da
r

pr
o b

Round

α=0.6

α=0.2

α=0.4

(a) Error standard dev., 4096 nodes

0.4

0.6

0.8

1.0

Be
st

 α

σ_probing=10%
bi 20%

0.0

0.2

0 2 4 6 8 10
Round

σ_probing=20%
σ_probing=30%
σ_probing=40%

(b) Selecting the optimal α

-10%

0%

10%

ea
n

es
ti

m
at

io
n

er
ro

r

σ_probing=10%
σ probing 20%

-30%

-20%

0 2 4 6 8 10

Be
st

 m

Round

σ_probing=20%
σ_probing=30%
σ_probing=40%

(c) Error mean for (σprobing = 20%)

Figure 10: Error estimation versus network size in a 4096 node system (left). Selecting the best α as a
function of rounds and σprobing (middle). For σprobing = 20%, 6 rounds is enough to push mean estimation error
to 0 (right).

measurement error. Interestingly, it is not a function of the
system size. For example, Figs. 9(a,b,c) and Figure 10(a)
show estimation accuracy as a function of rounds for two
systems, one with 64 nodes and another with 4096. σprobing

was set to 20% in both systems. Comparing round 6 in Fig-
ure 9(a) to the equivalent round in Figure 9(c), we see that
the performance of the various α’s was virtually equivalent
in both systems. This is because, after round k, two systems
with different sizes will have performed the same number of
pairwise exchanges, and thus produced the same number of
samples over which to average.

Generally speaking, the fewer rounds that one is willing
to expend, the higher α must be to push the mean esti-
mation error to zero. However, depending on the probing
error, there may be no α which can do this in a small num-
ber of rounds. For example, Figs. 9(a) and (c) show that
in a network with σprobing = 20%, even the largest α can-
not push the mean estimation error to zero in less than 6

rounds. Furthermore, Figs. 9(b) and 10(a) show that early
termination leads to higher standard deviations for estima-
tion error. Running for too few rounds prevents some of the
dramatically underestimated hosts from pairing with high
bandwidth peers and revising their estimates.

Figs. 11(a,b,c) and 12(a) hold the system size constant at
1024 hosts, varying σprobing from 5% to 40%. For low values
of σprobing, most α values provide equivalent performance.
As σprobing increases, estimation accuracies diverge, making
it crucial to pick a high α if fewer than log n rounds will be
completed, but a smaller α otherwise.

Figs. 10(b,c) provides a concise summary of the results in
this section. Figure 10(b) shows that high α are better for
early termination, whereas moderate ones are better if most
of the log n rounds will be performed. However, Figure 10(c)
demonstrates that even an α of one cannot provide high
estimation accuracy if too few rounds are completed.

-10%

0%

10%

20%
st

im
at

io
n

Er
ro

r α=0.8
α=0.6
α=0.4

-30%

-20%

0 2 4 6 8 10

M
ea

n
E

Round

(a) Error mean, σprobing = 5%

20%

30%

40%

ar
d

de
vi

at
io

n
of

m

at
io

n
er

ro
r α=0.8

α=0.6

α=0.4

0%

10%

0 2 4 6 8 10

St
an

da
es

ti
m

Round

(b) Error standard dev., σprobing = 5%

-10%

0%

10%

20%

st
im

at
io

n
Er

ro
r α=0.8

α=0.6

α=0.4

-30%

-20%

0 2 4 6 8 10

M
ea

n
E

Round

(c) Error mean, σprobing = 40%

Figure 11: Estimation accuracy versus probing error σprobing.

20%

30%

40%

50%

ar
d

de
vi

at
io

n
of

m

at
io

n
er

ro
r

α=0.8

0%

10%

0 2 4 6 8 10

St
an

da
es

ti
m

Round

α=0.6

α=0.4

(a) Error standard dev., σprobing = 40%

0%

10%

20%

st
im

at
io

n
er

ro
r

σ_probing=40%

σ_probing=30%

σ_probing=20%

σ_probing=10%

-10%

0%

0 0.2 0.4 0.6 0.8 1
M

ea
n

es
δ

(b) Error mean

20%

30%

40%

rd
 d

ev
ia

ti
on

 o
f

m
at

io
n

er
ro

r

σ probing=40%

0%

10%

0 0.2 0.4 0.6 0.8 1

St
an

da
r

es
ti

m

δ

σ_probing 40%
σ_probing=30%
σ_probing=20%
σ_probing=10%

(c) Error standard dev.

Figure 12: Estimation accuracy versus probing error σprobing (left). Estimation sensitivity to fraction δ of
dial-up hosts (middle, right).

6.5 Sensitivity Analysis
Up to this point, our simulations have been driven by

an empirical bandwidth distribution containing 30% dial-up
hosts and 70% hosts from the DSL Report data set. To eval-
uate inline tightening under different bandwidth regimes, we
now turn to the synthetic bandwidth distribution described
in Section 6.1.

Figs. 12(b,c) show ThunderDome’s estimation accuracy as
a function of δ, the fraction of dial-up hosts. For all data
points, the system size was 1024 hosts, α was 0.8, and the
lognormal parameters were set to values derived from the
DSL Report data. Looking at Figure 12(b), we see that
mean estimation error is very sensitive to fluctuations in δ.
For extreme values of δ, the network becomes more homoge-
nous, containing a minority or a majority of dial-up hosts.
In either situation, the potential for widespread underesti-
mation bias is low, since dial-up hosts are unlikely to be
matched with high-bandwidth peers. For less extreme val-
ues of δ, such infelicitous pairings becomes more likely, and
the mean estimation error is pulled downward. Looking at
Figure 12(c), we witness a similar degradation in the stan-
dard deviation of estimation error.

Figs. 13(a,b) show ThunderDome’s sensitivity to μR, which
controls the stretch between upload speeds and download
speeds for non-dial-up hosts. In these experiments, we set
δ to 0.3 and kept the other lognormal parameters set to
the values described in Section 6.1. For high values of μR

(i.e., high download-to-upload ratios), Figure 13(a) shows
that underestimation bias rarely occurs within tournaments
involving two lognormal hosts. As μR shrinks, lognormal
hosts have increasingly smaller download-to-upload ratios,
and underestimation bias emerges in tournaments between
lognormal hosts. The worst-case underestimation error is
still bound by the difference in upload speed between a dial-
up host and a lognormal host. Thus, the standard deviation
of the estimation error is relatively unaffected by μR.

The σR parameter controls the variation in download-to-
upload ratios. Larger values of σR allow for a wider range
of download-to-upload ratios, whereas smaller values imply
more homogenous ratios. Due to space limitations, we do

not show graphs for this sensitivity analysis. Instead, we
note that for σR in the range 0.4 to 0.7, ThunderDome’s
estimation accuracy is insensitive to σR, with differences in
estimation accuracy smaller than per-trial simulation vari-
ance. In this range, most download-to-upload ratios are suf-
ficiently large that underestimation bias will not occur in
tournaments involving two lognormal hosts. Thus, varia-
tions in σR have little impact on estimation accuracy.

6.6 ThunderDome over the Wide Area
For our final experiment, we deployed ThunderDome on

the PlanetLab distributed testbed [24]. To provide ground-
truth about available bandwidths, we capped transfer speeds
using our custom rate limiter (§ 6.2). Caps were set using a
bandwidth distribution of 30% dial-up hosts and 70% hosts
from the DSL Report data. A special controller node acted
as the scheduler, iteratively assigning hosts to tournaments
and receiving the results of those tournaments. Nodes used
inline tightening (α = 0.8) to estimate their upload speeds,
and the system ran for all log n rounds. Nodes resided in
the same domains that were used for network validation in
Section 6.2. In fact, each validation experiment was imme-
diately followed by a ThunderDome tournament. Planet-
Lab hosts have extremely variable network and CPU loads,
so running ThunderDome immediately after a validation
test ensured that the validation results could identify faulty
ThunderDome estimates. Note that the ThunderDome tests
only involved WAN transfers, i.e., only one node from each
domain participated in the tournaments.

Figure 13(c) shows a sample validation ThunderDome trial.
The graph shows that ThunderDome’s wide-area estimates
have similar accuracy to local-area estimates. Essentially,
ThunderDome on the wide-area did not add new estimation
artifacts to those that already arose from our simple rate
limiters and bandwidth estimators. In both the validation
phase and the ThunderDome phase, bandwidth estimates di-
verged from target upload caps when the caps overshot the
real limits imposed by PlanetLab’s resource allocator. How-
ever, ThunderDome did not exacerbate this phenomenon,
degrading in a similar fashion to local-area estimation.

0%

5%

10%

15%
st

im
at

io
n

er
ro

r

σ_probing=40%

σ_probing=30%

-10%

-5%

0 0.5 1 1.5 2

M
ea

n
e

μR

σ_probing=20%

σ_probing=10%

(a) Error mean

20%

30%

40%

rd
 d

ev
ia

ti
on

 o
f

m
at

io
n

er
ro

r

σ_probing=40%

σ probing=30%

0%

10%

0 0.5 1 1.5 2

St
an

da
r

es
ti

m

μR

_p g

σ_probing=20%

σ_probing=10%

(b) Error standard dev.

-10%

-5%

0%

5%

10%

15%

es
ti

m
at

io
n

er
ro

r ThunderDome
estimations

LAN estimations

-20%

-15%

10%

0 500000 1000000 1500000 2000000

M
ea

n
e

Target upload cap
(bits per second)

(c) Error mean

Figure 13: Estimation sensitivity to μR (left, middle). WAN ThunderDome accuracy (n = 32) in PlanetLab
setting (right).

7. DISCUSSION
Given our results in Section 6, we believe that Thunder-

Dome is an important practical step towards resolving the
collaborative upload estimation problem. However, we real-
ize that ThunderDome does not address potentially impor-
tant aspects of the problem. For example, ThunderDome
does not prevent peers from lying about their unidirectional
bandwidths. Furthermore, although ThunderDome provides
a fast measurement framework for estimating an unknown
bandwidth distribution, it does not have a lightweight mech-
anism to determine the exact moment that non-stationary
bandwidths change. Devising fast, efficient techniques to
detect such phase transitions is an important area for future
research. For example, one could imagine passively intro-
specting foreground traffic for changes in quality of service,
or using truncated runs of the full unidirectional probes to
identify potential network variance.

8. CONCLUSION
If a peer-to-peer system knows the upload bandwidth of

each participant, it can reorganize its communication topol-
ogy to improve scalability and performance [1, 2, 3, 9, 15].
Unfortunately, a straightforward application of current band-
width estimators cannot reveal such upload constraints. Thun-
derDome is a new system for efficiently measuring these con-
straints in peer-to-peer systems. Using pairwise bandwidth
exchanges as a fundamental measurement primitive, Thun-
derDome determines each host’s upload bandwidth using
time that is logarithmic in the total number of peers. Thun-
derDome uses statistical techniques to minimize the impact
of probing errors. Simulations and a live PlanetLab deploy-
ment demonstrate that ThunderDome can produce accurate,
fast estimates.

9. REFERENCES
[1] A. Bharambe, J. Douceur, J. Lorch, T. Moscibroda, J. Pang,

S. Seshan, and X. Zhuang. Donnybrook: Enabling Large-Scale,
High-Speed, Peer-to-Peer Games. In Proceedings of
SIGCOMM, pages 389–400, August 2008.

[2] B. Biskupski, R. Cunningham, J. Dowling, and R. Meier.
High-Bandwidth Mesh-based Overlay Multicast in
Heterogeneous Environments. In Proceedings of ACM
AAA-IDEA, October 2006.

[3] A. Bozdog, R. van Renesse, and D. Dumitriu. SelectCast—A
Scalable and Self-Repairing Multicast Overlay Routing Facility.
In Proceedings of SSRS, pages 33–42, October 2003.

[4] Broadband Reports. Broadband reports speed test statistics.
http://www.dslreports.com/archive, October 29, 2008.

[5] R. Carter and M. Crovella. Measuring bottleneck link speed in
packet-switched networks. Performance Evaluation,
27–28:297–318, October 1996.

[6] Communication Workers of America. Speed Matters: A Report
on Internet Speeds in All 50 States.
http://www.speedmatters.org/document-
library/sourcematerials/sm report.pdf,2007.

[7] C. Dovrolis, P. Ramanathan, and D. Moore. Packet-Dispersion
Techniques and a Capacity-Estimation Methodology.
IEEE/ACM Transactions on Networking, 12(6):963–977, 2004.

[8] M. Eriksen. Trickle: A Userland Bandwidth Shaper for
Unix-like Systems. In Proceedings of USENIX Technical
(FREENIX Track), pages 61–70, April 2005.

[9] J. Ghoshal, B. Ramamurthy, and L. Xu. Variable Neighbor
Selection in Live Peer-to-Peer Multimedia Streaming Networks.
Technical Report, University of Nebraska-Lincoln Department
of Computer Science and Engineering, 2007.

[10] N. Hu and P. Steenkiste. Evaluations and Characterization of
Available Bandwidth Probing Techniques. IEEE Journal on
Selected Areas in Communication, 21(6):879–894, 2003.

[11] N. Hu and P. Steenkiste. Exploiting Internet Route Sharing for
Large Scale Available Bandwidth Estimation. In Proceedings of
IMC, pages 187–192, October 2005.

[12] International Telecommunication Union, Standardization
Sector. ITU-T Recommendation V.92: Enhancements to
Recommendation V.90, November 2000.

[13] M. Jain and C. Dovrolis. Pathload: A measurement tool for
end-to-end available bandwidth. In Proceedings of the Passive
and Active Measurements Workshop, pages 14–25, 2002.

[14] R. Jain. The Art of Computer Systems Performance Analysis.
Wiley, 1991.

[15] X. Jin, W. Yiu, S. Chan, and Y. Wang. On Maximizing Tree
Bandwidth for Topology-Aware Peer-to-Peer Streaming. IEEE
Transactions on Multimedia, 9(8):1580–1592, December 2007.

[16] K. Lai and M. Baker. Nettimer: A Tool for Measuring
Bottleneck Link Bandwidth. In Proceedings of USITS, pages
123–134, March 2001.

[17] K. Lakshminarayanan, V. Padmanabhan, and J. Padhye.
Bandwidth Estimation in Broadband Access Networks. In
Proceedings of IMC, pages 314–321, October 2004.

[18] T. Leighton. Improving Performance on the Internet. ACM
Queue, 6(6):20–29, 2008.

[19] B. Melander, M. Bjorkman, and P. Gunningberg. A new
end-to-end probing and analysis method for estimating
bandwidth bottlenecks. In Proceedings of the GLOBECOM,
pages 415–420, November 2000.

[20] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, and
R. Baraniuk. Multifractal cross traffic estimation. In
Proceedings of ITC Specialist Seminar on IP Traffic
Measurement, September 2000.

[21] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell.
pathChirp: Efficient Available Bandwidth Estimation for
Network Paths. In Proceedings of the Passive and Active
Measurement Workshop, March 2003.

[22] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session
Traversal Utilities for NAT (STUN). RFC 5389, October 2008.

[23] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido,
M. Fomenkov, and K. Claffy. Comparison of Public End-to-End
Bandwidth Estimation Tools on High-Speed Links. In
Proceedings of PAM, March 2005.

[24] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using PlanetLab
for network research: myths, realities, and best practices.
SIGOPS Operating Systems Review, 40(1):17–24, 2006.

[25] J. Strauss, D. Katabi, and F. Kaashoek. A Measurement Study
of Available Bandwidth Estimation Tools. In Proceedings of
IMC, pages 39–44, October 2003.

[26] K. Vishwanath and A. Vahdat. Evaluating Distributed
Systems: Does Background Traffic Matter? In Proceedings of
USENIX Technical, pages 227–240, June 2008.

[27] WebSiteOptimization.com. Average Web Page Size Triples
Since 2003, http://www.websiteoptimization.com/speed/
tweak/average-web-page/.

