
Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_168-2
© Springer Science+Business Media New York 2015

Gomory-Hu Trees

Debmalya Panigrahi�

Department of Computer Science, Duke University, Durham, NC, USA

Keywords Cut trees • Undirected graph connectivity • Minimum s-t cut

Years and Authors of Summarized Original Work

2007; Bhalgat, Hariharan, Kavitha, Panigrahi

Problem Definition

Let G D .V; E/ be an undirected graph with jV j D n and jEj D m. The edge connectivity of
two vertices s; t 2 V , denoted by �.s; t/, is defined as the size of the smallest cut that separates s

and t ; such a cut is called a minimum s � t cut. Clearly, one can represent the �.s; t/ values for all
pairs of vertices s and t in a table of size O.n2/. However, for reasons of efficiency, one would like
to represent all the �.s; t/ values in a more succinct manner. Gomory-Hu trees (also known as cut
trees) offer one such succinct representation of linear (i.e., O.n// space and constant (i.e., O(1))
lookup time. It has the additional advantage that apart from representing all the �.s; t/ values, it
also contains structural information from which a minimum s � t cut can be retrieved easily for
any pair of vertices s and t .

Formally, a Gomory-Hu tree T D .V; F / of an undirected graph G D .V; E/ is a weighted
undirected tree defined on the vertices of the graph such that the following properties are
satisfied:

• For any pair of vertices s; t 2 V; �.s; t/ is equal to the minimum weight on an edge in the unique
path connecting s to t in T . Call this edge e.s; t/. If there are multiple edges with the minimum
weight on the s to t path in T , any one of these edges is designated as e.s; t/.

• For any pair of vertices s and t , the bipartition of vertices into components produced by
removing e.s; t/ (if there are multiple candidates for e.s; t/, this property holds for each
candidate edge) from T corresponds to a minimum s � t cut in the original graph G.

To understand this definition better, consider the following example. Figure 1 shows an undirected
graph and a corresponding Gomory-Hu tree. Focus on a pair of vertices, for instance, 3 and 5.
Clearly, the edge (6,5) of weight 3 is a minimum-weight edge on the 3 to 5 path in the Gomory-Hu
tree. It is easy to see that �.3; 5/ D 3 in the original graph. Moreover, removing edge (6,5) in the
Gomory-Hu tree produces the vertex bipartition ({1,2,3,6},{4,5}), which is a cut of size 3 in the
original graph.

�E-mail: debmalya@cs.duke.edu, debmalya@alum.mit.edu

Page 1 of 4



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_168-2
© Springer Science+Business Media New York 2015

1 1

6

5

4

3

3

6

5

4

3

4

3

2

2 2

2

Fig. 1 An undirected graph (left) and a corresponding Gomory-Hu tree (right)

It is not immediate that such Gomory-Hu trees exist for all undirected graphs. In a classical
result in 1961, Gomory and Hu [8] showed that not only do such trees exist for all undirected
graphs but that they can also be computed using n � 1 minimum s-t cut (or equivalently maximum
s-t flow) computations. In fact, a graph can have multiple Gomory-Hu trees.

All previous algorithms for constructing Gomory-Hu trees for undirected graphs used
maximum-flow subroutines. Gomory and Hu gave an algorithm to compute a cut tree T using
n � 1 maximum-flow computations and graph contractions. Gusfield [9] proposed an algorithm
that does not use graph contractions; all n � 1 maximum-flow computations are performed on
the input graph. Goldberg and Tsioutsiouliklis [7] did an experimental study of the algorithms
due to Gomory and Hu and due to Gusfield for the cut tree problem and described efficient
implementations of these algorithms. Examples were shown by Benczúr [1] that cut trees do not
exist for directed graphs.

Any maximum-flow-based approach for constructing a Gomory-Hu tree would have a running
time of (n � 1) times the time for computing a single maximum flow. Till now, faster algorithms
for Gomory-Hu trees were by-products of faster algorithms for computing a maximum flow.
The current fastest QO.m C n�.s; t// (polylog n factors ignored in QO notation) maximum-flow
algorithm, due to Karger and Levine [11], yields the current best expected running time of QO.n3/

for Gomory-Hu tree construction on simple unweighted graphs with n vertices. Bhalgat et al.
[2] improved this time complexity to QO.mn/. Note that both Karger and Levine’s algorithm and
Bhalgat et al.’s algorithm are randomized Las Vegas algorithms. The fastest deterministic algorithm
for the Gomory-Hu tree construction problem is a by-product of Goldberg and Rao’s maximum-
flow algorithm [6] and has a running time of QO.nm1=2 min.m; n3=2//.

Since the publication of the results of Bhalgat et al. [2], it has been observed that the maximum-
flow subroutine of Karger and Levine [11] can also be used to obtain an QO.mn/ time Las Vegas
algorithm for constructing the Gomory-Hu tree of an unweighted graph. However, this algorithm
does not yield partial Gomory-Hu trees which are defined below. For planar undirected graphs,
Borradaile et al. [3] gave an QO.mn/ time algorithm for constructing a Gomory-Hu tree.

It is important to note that in spite of the tremendous recent progress in approximate maximum
s-t flow (or approximate minimum s-t cut) computation, this does not immediately translate to an
improved algorithm for approximate Gomory-Hu tree construction. This is because of two reasons:
first, the property of uncrossability of minimum s-t cuts used by Gomory and Hu in their minimum
s-t cut based cut tree construction algorithm does not hold for approximate minimum s-t cuts, and

Page 2 of 4



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_168-2
© Springer Science+Business Media New York 2015

second, the errors introduced in individual minimum s-t cut computation can add up to create large
errors in the Gomory-Hu tree.

Key Results

Bhalgat et al. [2] considered the problem of designing an efficient algorithm for constructing a
Gomory-Hu tree on unweighted undirected graphs. The main theorem shown in this entry is the
following.

Theorem 1. Let G D .V; E/ be a simple unweighted graph with m edges and n vertices. Then
a Gomory-Hu tree for G can be built in expected time QO.mn/.

Their algorithm is always faster by a factor of Q�.n2=9/ (polylog n factors ignored in Q� notation)
compared to the previous best algorithm.

Instead of using maximum-flow subroutines, they use a Steiner connectivity algorithm. The
Steiner connectivity of a set of vertices S (called the Steiner set) in an undirected graph is the
minimum size of a cut which splits S into two parts; such a cut is called a minimum Steiner cut.
Generalizing a tree-packing algorithm given by Gabow [5] for finding the edge connectivity of
a graph, Cole and Hariharan [4] gave an algorithm for finding the Steiner connectivity k of a
set of vertices in either undirected or directed Eulerian unweighted graphs in QO.mk2/ time. (For
undirected graphs, their algorithm runs a little faster in time QO.m C nk3/.) Bhalgat et al. improved
this result and gave the following theorem.

Theorem 2. In an undirected or directed Eulerian unweighted graph, the Steiner connectivity k

of a set of vertices can be determined in time QO.mk/.

The algorithm in [4] was used by Hariharan et al. [10] to design an algorithm with expected
running time QO.mCnk3/ to compute a partial Gomory-Hu tree for representing the �.s; t/ values
for all pairs of vertices s; t that satisfied �.s; t/ � k. Replacing the algorithm in [4] by the new
algorithm for computing Steiner connectivity yields an algorithm to compute a partial Gomory-
Hu tree in expected running time QO.m C nk2/. Bhalgat et al. showed that using a more detailed
analysis, this result can be improved to give the following theorem.

Theorem 3. The partial Gomory-Hu tree of an undirected unweighted graph to represent all
�.s; t/ values not exceeding k can be constructed in expected time QO.mk/.

Since �.s; t/ < n for all s; t vertex pairs in an unweighted (and simple) graph, setting k to n in
Theorem 3 implies Theorem 1.

Applications

Gomory-Hu trees have many applications in multiterminal network flows and are an important
data structure in graph connectivity literature.

Page 3 of 4



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_168-2
© Springer Science+Business Media New York 2015

Open Problems
The problem of derandomizing the algorithm due to Bhalgat et al. [2] to produce an QO.mn/

time deterministic algorithm for constructing Gomory-Hu trees for unweighted undirected graphs
remains open. The other main challenge is to extend the results in [2] to weighted graphs.

Experimental Results

Goldberg and Tsioutsiouliklis [7] did an extensive experimental study of the cut tree algorithms
due to Gomory and Hu [8] and that due to Gusfield [9]. They showed how to efficiently implement
these algorithms and also introduced and evaluated heuristics for speeding up the algorithms. Their
general observation was that while Gusfield’s algorithm is faster in many situations, Gomory and
Hu’s algorithm is more robust. For more detailed results of their experiments, refer to [7].

No experimental results are reported for the algorithm due to Bhalgat et al. [2].

Recommended Reading

1. Benczúr AA (1995) Counterexamples for directed and node capacitated cut-trees. SIAM J
Comput 24(3):505–510

2. Bhalgat A, Hariharan R, Kavitha T, Panigrahi D (2007) An QO.mn/ Gomory-Hu tree construc-
tion algorithm for unweighted graphs. In: Proceedings of the 39th annual ACM symposium on
theory of computing, San Diego

3. Borradaile G, Sankowski P, Wulff-Nilsen C (2010) Min st-cut Oracle for planar graphs
with near-linear preprocessing time. In: Proceedings of the 51th annual IEEE symposium on
foundations of computer science, Las Vegas, pp 601–610

4. Cole R, Hariharan R (2003) A fast algorithm for computing steiner edge connectivity. In:
Proceedings of the 35th annual ACM symposium on theory of computing, San Diego,
pp 167–176

5. Gabow HN (1995) A matroid approach to finding edge connectivity and packing arbores-
cences. J Comput Syst Sci 50:259–273

6. Goldberg AV, Rao S (1998) Beyond the flow decomposition barrier. J ACM 45(5):783–797
7. Goldberg AV, Tsioutsiouliklis K (2001) Cut tree algorithms: an experimental study. J Algo-

rithms 38(1):51–83
8. Gomory RE, Hu TC (1961) Multi-terminal network flows. J Soc Ind Appl Math 9(4):551–570
9. Gusfield D (1990) Very simple methods for all pairs network flow analysis. SIAM J Comput

19(1):143–155
10. Hariharan R, Kavitha T, Panigrahi D (2007) Efficient algorithms for computing all low s-t

edge connectivities and related problems. In: Proceedings of the 18th annual ACM-SIAM
symposium on discrete algorithms, New Orleans, pp 127–136

11. Karger D, Levine M (2002) Random sampling in residual graphs. In: Proceedings of the 34th
annual ACM symposium on theory of computing, Montreal, pp 63–66

Page 4 of 4


	Gomory-Hu Trees
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems

	Experimental Results
	Recommended Reading




