
Deterministic Min-cut in Poly-logarithmic Max-flows

Jason Li
Carnegie Mellon University
jasonmli02@gmail.com

Debmalya Panigrahi
Duke University

debmalya@cs.duke.edu

Abstract—We give a deterministic (global) min-cut al-
gorithm for weighted undirected graphs that runs in
time O(m1+ε) plus polylog(n) max-flow computations.
Using the current best max-flow algorithms, this results
in an overall running time of Õ(m ·min(

√
m,n2/3)) for

weighted graphs, and m4/3+o(1) for unweighted (multi)-
graphs. This is the first improvement in the running time
of deterministic algorithms for the min-cut problem on
general (weighted/multi) graphs since the early 1990s when
a running time bound of Õ(mn) was established for this
problem.

Keywords-minimum cut; graph algorithms.

I. INTRODUCTION

The minimum cut of an undirected, weighted graph
G = (V,E,w) is a minimum weight subset of edges
whose removal disconnects the graph. Finding the min-
cut of a graph is one of the central problems in
combinatorial optimization, dating back to the work of
Gomory and Hu [1] in 1961 who gave an algorithm to
compute the min-cut of an n-vertex graph using n− 1
max-flow computations. Since then, a large body of
research has been devoted to obtaining faster algorithms
for this problem. In 1992, Hao and Orlin [2] gave
a clever amortization of the n − 1 max-flow compu-
tations to match the running time of a single max-
flow computation. Using the “push-relabel” max-flow
algorithm of Goldberg and Tarjan [3], they obtained
an overall running time of O(mn log(n2/m)) on an
n-vertex, m-edge graph. However, their amortization
technique is specific to the push-label algorithm, and
cannot be applied to faster max-flow algorithms that
have been designed since their work. Around the same
time, Nagamochi and Ibaraki [4] (see also [5]) designed
an algorithm that bypasses max-flow computations alto-
gether, a technique that was further refined by Stoer and
Wagner [6] (and independently by Frank in unpublished
work). This alternative method yields a running time
of O(mn + n2 log n). Prior to our work, these works
yielding a running time bound of Õ(mn) were the
fastest deterministic min-cut algorithms for weighted
graphs.

Starting with Karger’s contraction algorithm in
1993 [7], a parallel body of work started to emerge in
randomized algorithms for the min-cut problem. This
line of work (see also Karger and Stein [8]) eventually
culminated in a breakthrough paper by Karger [9] in
1996 that gave an O(m log3 n) time Monte Carlo algo-
rithm for the min-cut problem. Note that this algorithm
comes to within poly-logarithmic factors of the optimal
O(m) running time for this problem. In this paper,
Karger asks whether we can also achieve near-linear
running time using a deterministic algorithm. Even
before Karger’s work, Gabow [10] showed that the
min-cut can be computed in O(m + λ2n log(n2/m))
(deterministic) time, where λ is the value of the min-
cut (assuming integer weights). Note that this result
obtains a near-linear running time if λ is a constant,
but in general, the running time can be exponential.
Indeed, for general graphs, Karger’s question remains
open after more than 20 years. However, some exciting
progress has been reported in recent years for spe-
cial cases of this problem. In a recent breakthrough,
Kawarabayashi and Thorup [11] gave the first near-
linear time deterministic algorithm for this problem
for simple graphs. They obtained a running time of
O(m log12 n), which was later improved (and the algo-
rithm considerably simplified) by Henzinger, Rao, and
Wang [12] to O(m log2 n log log2 n). From a technical
perspective, their work introduced the idea of using low
conductance cuts to find the min-cut of the graph, a
very powerful idea that we also exploit in this paper.
Nevertheless, in spite of this progress, the question of
designing a faster deterministic min-cut algorithm for
general weighted graphs (or unweighted multi-graphs)
remained open.

In this paper, we give the following result:

Theorem I.1. Fix any constant ε > 0. There is a
deterministic min-cut algorithm for weighted undirected
graphs that makes (lg n)O(1/ε4) calls to s–t max-flow
on a weighted undirected graph with O(n) vertices
and O(m) edges, and runs in O(m1+ε) time outside
these max-flow calls. If the original graph G is un-

weighted, then the inputs to the max-flow calls are also
unweighted.

Using the current fastest deterministic max-flow al-
gorithms on unweighted multi-graphs (Liu and Sid-
ford [13]) and weighted graphs (Goldberg and Rao [14])
respectively, this implies a deterministic min-cut algo-
rithm for unweighted multi-graphs in m4/3+o(1) time
and for weighted graphs in Õ(m·min(

√
m,n2/3)) time.

This represents the first improvement in the run-
ning time of deterministic algorithms for the min-cut
problem on general (weighted/multi) graphs since the
early 1990s. Our running time is also the best known
even if Las Vegas algorithms (that are more general
than deterministic algorithms but more restrictive than
Monte Carlo algorithms) are included. Finally, unlike
the algorithm of Hao and Orlin that relied on amortizing
runs of a specific max-flow algorithm, our algorithm
is agnostic to the specific max-flow algorithm being
used. Hence, if one were to believe the popularly held
conjecture that max-flow will eventually be solved in
(near-)linear time, then our algorithm will automatically
yield an almost linear deterministic algorithm for the
min-cut problem (assuming the max-flow algorithm is
deterministic).

Roadmap. In Section II, we present the main new
technical tool that we introduce in this work that we
call minimum isolating cuts. We hope that this idea
will be used for other problems in graph connectivity in
the future. We then present our main result – the new
deterministic min-cut algorithm – in Section III.

II. MINIMUM ISOLATING CUTS

We first introduce a few standard graph-theoretic
definitions. For a graph G = (V,E,w) and a subset
U ⊆ V of vertices, define ∂GU as the set of edges
of G with exactly one endpoint in U ; when the graph
G is clear from context, we drop the subscript G and
use ∂U instead. For a subset F ⊆ E of edges, define
w(F) :=

∑
e∈F w(e) as the total weight of edges in F .

In particular, w(∂U) is the total weight of edges with
exactly one endpoint in U .

Let us now formally define the problem we want to
solve and the main theorem of this section:

Definition II.1 (Minimum isolating cuts). Consider a
weighted, undirected graph G = (V,E) and a subset of
vertices R ⊆ V (|R| ≥ 2). The minimum isolating cuts
for R is a collection of sets {Sv : v ∈ R} such that for
each vertex v ∈ R, the set Sv satisfies Sv ∩ R = {v}
and has the minimum value of w(∂S′v) over all sets S′v
satisfying S′v ∩R = {v}.

In other words, given a set of vertices R, the goal is
to find, for every vertex v in R, a min-cut that separates
v from all the other vertices in R. Our main theorem
in this section, which we call the isolating cut lemma,
gives an algorithm for finding minimum isolating cuts:

Theorem II.2. [Isolating Cut Lemma.] Fix a subset
R ⊆ V (|R| ≥ 2). There is an algorithm that computes
the minimum isolating cuts for R using dlg |R|e calls
to s–t max-flow on weighted graphs of O(n) vertices
and O(m) edges, and takes Õ(m) deterministic time
outside of the max-flow calls. If the original graph G
is unweighted, then the inputs to the max-flow calls are
also unweighted.

The rest of this section is devoted to proving Theo-
rem II.2.

Order the vertices in R arbitrarily from 1 to |R|,
and let the label of each v ∈ R be its position in the
ordering, a number from 1 to |R| that is denoted by a
unique binary string of length dlg |R|e. Let us repeat the
following procedure for each i = 1, 2, . . . , dlg |R|e. For
each vertex v, color it red if the i’th bit of its label is 0,
and blue if the i’th bit of its label is 1. Then, compute
a min-cut Ci ⊆ E in G between the red vertices and
the blue vertices (for iteration i).

First, we show that G \
⋃
i Ci partitions the set of

vertices into connected components each of which con-
tain at most one vertex of R. Let Uv be the connected
component in G \

⋃
i Ci containing v ∈ R. Then:

Claim II.3. |Uv ∩R| = {v} for all v ∈ R.

Proof: By definition, v ∈ Uv ∩ R. Suppose for
contradiction that Uv∩R contains another vertex u 6= v.
Since the binary strings assigned to u and v are distinct,
they differ in their j’th bit for some j. Then, the cut
Cj must separate u and v, i.e., removing the edges in
Cj leaves u and v in separate components, which is a
contradiction.

Now, for each vertex v ∈ R, let λv be the minimum
value of w(∂S) over all S ⊆ V satisfying S∩R = {v},
and let S∗v be an inclusion-wise minimal set satisfying
S∗v ∩R = {v} and w(∂S∗v) = λv . Then, we claim that
the cut S∗v does not cross the cut Uv , i.e.:

Claim II.4. Uv ⊇ S∗v for all v ∈ R.

Proof: Fix a vertex v ∈ V and an iteration i. Let the
side of the cut Ci containing v be T iv ⊆ V ; we claim that
S∗v ⊆ T iv . Suppose for contradiction that S∗v \ T iv 6= ∅.
Note that (S∗v ∩ T iv) ∩R = {v}, which implies that:

w(∂(S∗v ∩ T iv)) ≥ λv = w(∂S∗v).

2

Indeed, by our choice of S∗v to be inclusion-wise mini-
mal, we can claim the strict inequality:

w(∂(S∗v ∩ T iv)) > λv = w(∂S∗v).

But, by submodularity of cuts, we have:

w(∂(S∗v ∪ T iv)) +w(∂(S∗v ∩ T iv)) ≤ w(∂S∗v) +w(∂T iv).

Therefore, we get:

w(∂(S∗v ∪ T iv)) < w(∂T iv).

But (S∗v ∪T iv)∩R = T iv∩R since (S∗v \T iv)∩R = ∅. In
particular, the cut ∂(S∗v ∪T iv) also separates red vertices
from blue vertices in the ith iteration. This contradicts
the choice of ∂T iv = Ci as the min-cut separating red
vertices from blue vertices in the ith iteration.

Therefore, over all iterations i, none of the edges in
the induced subgraph G[S∗v] are present in Ci. Note
that G[S∗v] is a connected subgraph; therefore, it is a
subgraph of the connected component Uv of G \

⋃
i Ci

containing v.
It remains to compute the desired set Sv given the

property that Uv ⊇ Sv . Starting from G, contract V \Uv
into a single vertex t; we want to compute the min v–t
cut in the contracted graph Gv , which corresponds to
a set Sv satisfying Sv ∩R = {v} by Claim II.3. Since
∂GvS

∗
v is a valid v–t cut in this graph by Claim II.4,

we have w(∂Gv
Sv) ≤ w(∂Gv

S∗v) = w(∂GS
∗
v) = λv , as

desired.
Note that each edge in E is either in exactly one

graph Gv , or it is adjacent to t in exactly two graphs
Gv . Therefore, the total number of edges over all graphs
Gv is at most 2m. We can compute the v–t min-cuts
on all Gv in “parallel” through a single max-flow call
on the disjoint union of all Gv . Note that if the original
graph G is unweighted, then this max-flow instance is
also unweighted. Finally, recovering the sets Sv and the
values w(∂Sv) take time linear in the number of edges
of Gv , which is O(m) time over all v ∈ R.

This completes the proof of Theorem II.2.

III. DETERMINISTIC GLOBAL MIN-CUT

In this section, we present our deterministic min-
cut algorithm and prove our main result, Theorem I.1,
which is restated below:

Theorem I.1. Fix any constant ε > 0. There is a
deterministic min-cut algorithm for weighted undirected
graphs that makes (lg n)O(1/ε4) calls to s–t max-flow
on a weighted undirected graph with O(n) vertices
and O(m) edges, and runs in O(m1+ε) time outside

these max-flow calls. If the original graph G is un-
weighted, then the inputs to the max-flow calls are also
unweighted.

Throughout the algorithm, we maintain a set U ⊆ V
of vertices that starts out as U = V and shrinks over
time. (Think of this set as the set R over which we call
the isolating cut lemma.) We distinguish between the
cases when U is k-unbalanced or k-balanced for some
k = polylog(n), as defined below.

Definition III.1 (k-unbalanced, k-balanced). For any
positive integer k, a subset U ⊆ V is k-unbalanced if
there exists a side S ⊆ V of some min-cut satisfying
1 ≤ |S ∩ U | ≤ k. More specifically, we say that U is
k-unbalanced with witness S. The subset U ⊆ V is k-
balanced if there exists a min-cut whose two sides S1, S2

satisfy |Si∩U | ≥ k for both i = 1, 2. More specifically,
we say that U is k-balanced with witness (S1, S2).

We will only use this definition for subsets U ⊆ V
that span both sides of some min-cut, i.e., S ∩ U 6= ∅
and (V \S)∩U 6= ∅ for some min-cut S. By definition,
such a subset U ⊆ V is either k-unbalanced or k-
balanced (or possibly both, if there are multiple min-
cuts in the graph). If U is k-unbalanced with witness S
for some k = polylog(n), then the algorithm computes
a family F of subsets of U of size kO(1)polylog(n) =
polylog(n) such that some subset R ∈ F satisfies
|R ∩ S| = 1. The algorithm then executes the isolating
cut lemma (Theorem II.2) on each subset in F , guaran-
teeing that the target set R is processed and the min-cut
is found. Otherwise, U must be k-balanced with some
witness (S1, S2). In this case, the algorithm computes
a subset U ′ ⊆ U such that |U ′| ≤ |U |/2 and both
S1 ∩U ′ 6= ∅ and S2 ∩U ′ 6= ∅. Of course, the algorithm
does not know which case actually occurs, so it executes
both branches. But the second branch can only happen
O(log n) times before |U | ≤ k, at which point we can
simply run s–t min-cut between all vertex pairs in U .

The algorithm is presented in Algorithm 1.

A. Unbalanced Case

In this section, we solve the case when U is k-
unbalanced (line 4) for some fixed k = polylog(n).

Lemma III.2 (Unbalanced case). Consider a graph
G = (V,E), a parameter k ≥ 1, and a k-unbalanced
set U ⊆ V . Then, we can compute the min-cut in
kO(1)polylog(n) s–t max-flow computations plus Õ(m)
deterministic time.

Our goal is to de-randomize the simple random
process of sampling each vertex independently with

3

Algorithm 1 Deterministic Min-cut on (G = (V,E))

1: U ← V
2: k ← C logC n for a sufficiently large constant C = O(1/ε4)
3: while |U | ≥ k do
4: Run Lemma III.2 on U . Handles case when U is k-unbalanced (see Definition III.1)
5: Compute U ′ from U according to Lemma III.6 . Handles case when U is k-balanced
6: Update U ← U ′ . |U | shrinks by at least factor 2
7: for each pair of distinct s, t ∈ U do
8: Compute min s–t cut in G
9: return smallest cut seen in lines 4 and 8

probability 1/k. We compute a deterministic family of
subsets R ⊆ V such that for any subset S of size at
most k (in particular, for the set witnessing the fact that
U is k-unbalanced), there exists a subset R in the family
with |R ∩ S| = 1.

Lemma III.3. For every n and k < n, there is a
deterministic algorithm that constructs a family F of
subsets of [n] such that, for every non-empty subset
S ⊆ [n] of size at most k, there exists a set T ∈ F
with |S ∩ T | = 1. The family F has size kO(1) log n,
every set in the family has at least two elements, and
the algorithm takes kO(1)n log n time.

Before we prove Lemma III.3, we first show why
it implies an algorithm for the unbalanced case as
promised by Lemma III.2.

Proof of Lemma III.2: Let S be the set witnessing
the fact that U is k-unbalanced. Apply Lemma III.3
with parameters n = |U | and k. Map the elements of
[n] onto U , obtaining a family F of subsets of U such
that for any set S′ ⊆ U with |S′| ≤ k, there exists a set
R ∈ F with |R| ≥ 2 and |R ∩ S′| = 1. In particular,
for the set S′ = S ∩ U , we have 1 = |R ∩ S′| =
|R ∩ (S ∩ U)| = |R ∩ S|. Invoke Theorem II.2 on the
set R to obtain, for each v ∈ R, a set Sv satisfying
Sv ∩ R = {v} that minimizes w(∂Sv), along with the
value w(∂Sv). Finally, output the set Sv with minimum
value of w(∂Sv). To show that Sv is a min-cut of graph
G, it suffices to verify that Sv is a valid cut (that is,
∅ (Sv (V), and that w(∂Sv) ≤ w(∂S).

Since |R| ≥ 2, the set Sv satisfies ∅ (Sv (R, so
it is a cut of the graph G. Since |R ∩ S| = 1, for the
vertex u ∈ U with R ∩ S = {u}, the set S satisfies the
constraints for Su. In particular, w(∂Su) ≤ w(∂S). We
output the set Sv minimizing w(∂Sv), so w(∂Sv) ≤
w(∂Su) ≤ w(∂S), as promised.

The rest of this section focuses on proving
Lemma III.3. We first prove an easier variant, where
we do not insist that every set in the family has at least

two elements.

Lemma III.4. For every n and k, there is a determin-
istic algorithm that constructs a family F of subsets of
[n] such that, for each subset S ⊆ [n] of size at most
k, there exists a set T ∈ F with |S ∩ T | = 1. The
family F has size kO(1) log n and the algorithm takes
kO(1)n log n time.

To prove Lemma III.4, we use the following de-
randomization building block due to [15]. The theorem
below is from [16], who state it in terms of (n, k, k2)-
splitters (which we will not define here for simplicity).

Theorem III.5 (Theorem 5.16 from [16]). For any
n, k ≥ 1, one can construct a family of functions from
[n] to [k2] such that for every set S ⊆ [n] of size k, there
exists a function f in the family whose values f(i) are
distinct over all i ∈ S. The family has size kO(1) log n
and the algorithm takes time kO(1)n log n.

Proof of Lemma III.4: Apply Theorem III.5 to n
and k, and for each function f : [n] → [k2] in the
constructed family, add the sets f−1(j) for all j ∈ [k2]
to our family F of subsets of [n]. Fix any set S ⊆ [n] of
size k. For the function f guaranteed by Theorem III.5
for this set S, we have |f−1(f(i)) ∩ S| = 1 for any
i ∈ S. Therefore, setting T = f(i) for any i ∈ S
suffices.

This only handles subsets S ⊆ [n] of size exactly
k, but we can repeat the above construction for each
positive integer k′ ≤ k. The total size and running time
go up by a factor of k, which is absorbed by the kO(1)

factors.
Finally, to prove Lemma III.3, we add the condition

that F cannot contain sets of size at most 1. Here, we
will impose the additional constraint that k < n.

Proof of Lemma III.3: The only difference in the
output is that F must contain no sets of size at most 1.
Apply Lemma III.4 to n and k to obtain a family F0.
Initialize a set F as F0 minus all subsets of size at most

4

1. For each singleton set {x} ∈ F0, choose k arbitrary
elements in [n] \x, and for each chosen element y, add
the set {x, y} to F . The total size of F increases by at
most a factor k. Now consider a subset S ⊆ [n] of size
at most k, and let T be a set in F0 with |S ∩ T | = 1,
as promised by Lemma III.4. If |T | > 1, then T ∈ F
as well. Otherwise, if T = {x}, then since |S \ x| < k
and we chose k elements y ∈ [n] \ x, there exists some
chosen y /∈ S for which {x, y} was added to F . This
set {x, y} satisfies |S ∩ {x, y}| = 1.

B. Balanced Case: Sparsifying U

If U is k-balanced, then we compute a subset U ′ ⊆ U
of size at most |U |/2 using expander decompositions,
while preserving the condition that U ′ spans both sides
of some min-cut. This section is dedicated to proving
the following lemma:

Lemma III.6 (Sparsification of U). Fix any constant
ε > 0. Then, there is a constant C = O(1/ε4) such that
the following holds. Consider a graph G = (V,E), a
parameter φ ≤ 1/(C logC n), and a set U ⊆ V of ver-
tices that is (1+1/φ)3-balanced with witness (S1, S2).
Then, we can compute in deterministic O(m1+ε) time
a set U ′ ⊆ U with |U ′| ≤ |U |/2 such that Si ∩ U ′ 6= ∅
for both i = 1, 2.

Deterministic Expander Decomposition. Our main
tool will be a deterministic expander decomposition.
We first introduce some notation. Let G = (V,E) be
an undirected graph with edge weights w. For disjoint
vertex subsets V1, . . . , V` ⊆ V , define E(V1, . . . , V`)
as the set of edges (u, v) ∈ E with u ∈ Vi and
v ∈ Vj for some i 6= j. Recall that w(F) is the sum of
weights of edges in F ; i.e., w(E(V1, . . . , V`)) is the sum
of weights of edges with endpoints in different vertex
sets in V1, V2, . . . , V`. In particular, for a cut (A,B),
we denote the edges in the cut both by E(A,B) as
well as the previously introduced notation ∂A (or ∂B),
and the weight of the cut is correspondingly denoted
w(E(A,B)) as well as w(∂A) (or w(∂B)). For a vector
d ∈ RV of entries on the vertices, define d(v) as
the entry of v in d, and for a subset U ⊆ V , define
d(U) :=

∑
v∈U d(v).

We now introduce the concept of an expander
“weighted” by demands on the vertices.

Definition III.7 ((φ,d)-expander). Consider a
weighted, undirected graph G = (V,E) with edge
weights w and a vector d ∈ RV≥0 of non-negative
“demands” on the vertices. The graph G is a

(φ,d)-expander if for all subsets S ⊆ V ,

w(∂S)

min{d(S),d(V \ S)}
≥ φ.

Intuitively, to capture the intersection of a set with
U , we will place demand λ at each vertex v ∈ U ,
where λ is the weight of the min-cut, and demand 0 at
the remaining vertices. We now state the deterministic
algorithm of [17] that computes our desired expander
decomposition.

Theorem III.8 ((φ,d)-expander decomposition algo-
rithm). Fix any constant ε > 0 and any parameter
φ > 0. Given a weighted, undirected graph G = (V,E)
with edge weights w and a non-negative demand vector
d ∈ RV≥0 on the vertices, there is a deterministic
algorithm running in O(m1+ε) time that partitions V
into subsets V1, . . . , V` such that

1) For each i ∈ [`], define the demands di ∈ RVi

≥0 as
di(v) = d(v)+w(E({v}, V \Vi)) for all v ∈ Vi.
Then, the graph G[Vi] is a (φ,di)-expander.

2) The total weight w(E(V1, . . . , V`)) of
inter-cluster edges is Bφd(V) where
B = (lg n)O(1/ε4).

Sparsification Algorithm. Let λ̃ ∈ [λ, 3λ] be a 3-
approximation to the min-cut λ, which can be com-
puted in deterministic Õ(m) time using the (2 + δ)-
approximation algorithm of Matula (for any δ > 0) [18].
Set φ := 1/(C logC n) for a sufficiently large constant
C > 0, and let ε > 0 be the constant fixed by
Theorem I.1. We apply Theorem III.8 to G with param-
eters ε, φ and the demand vector d ∈ RV≥0 satisfying
d(v) = λ̃ for all v ∈ U and d(v) = 0 for all
v ∈ V \ U . Observe that d(V) = |U | · λ̃ ≤ |U | · 3λ.
Let V1, . . . , V` ⊆ V be the output, and for each i ∈ [`],
define Ui := Vi ∩ U .

We now describe the procedure to select the subset
U ′ ⊆ U . We say that a cluster Vi is trivial if Ui = ∅,
small if 1 ≤ |Ui| ≤ 1/φ2, and large if |Ui| > 1/φ2.
The algorithm for selecting the set U ′ is simple:

– for each trivial cluster, do nothing;
– for each small cluster Vi, add an arbitrary vertex

of Ui to U ′;
– for each large cluster Vj , add 1 + 1/φ arbitrary

vertices of Uj to U ′.

Size Bound: First, we prove the desired size bound of
the sparsified set U ′, which is one part of Lemma III.6.

Claim III.9. There are at most Bφ|U | many clusters;
that is, ` ≤ Bφ|U | where B = (lg n)O(1/ε4).

5

Proof: Since λ is the min-cut of graph G, each
cluster Vi has w(∂Vi) ≥ λ, so the total weight of
inter-cluster edges is at least `λ/2. By the guarantee
of Theorem III.8, the total weight of inter-cluster edges
is at most

Bφd(V) = Bφ|U |λ̃ ≤ Bφ|U |λ,

where B = (lg n)O(1/ε4). Putting these together gives
` ≤ Bφ|U | as desired.

Corollary III.10. There exists a constant C = O(1/ε4)
such that if φ ≤ 1/(C logC n), then the set U ′ con-
structed by the sparsification algorithm satisfies |U ′| ≤
|U |/2.

Proof: There are at most Bφ|U | small clusters by
Claim III.9. Also, there are at most φ2|U | large clusters
since each large cluster has at least φ2 vertices in U .
This gives

|U ′| ≤ Bφ|U |+ φ2|U | · (1 + 1/φ)

≤ O(Bφ|U |) ≤ φ|U | · C
2
logC n

for an appropriate constant C = O(B) = O(1/ε4).
Since φ ≤ 1/(C logC n), we have

|U ′| ≤ φ|U | · C
2
logC n ≤ |U |/2.

Hitting Both Sides of the Min-cut: Now, we prove
the “hitting” property of the sparsified set U ′ in
Lemma III.6, namely the guarantee that Si ∩ U ′ 6= ∅
for both i = 1, 2.

The claim below says that the min-cut (A,B) cannot
cut too “deeply” into the sets Ui. In particular, if a set Ui
is large (say, |Ui| � 1/φ), then the min-cut cannot cut
Ui evenly in the sense that |Ui∩A| ≈ |Ui∩B|; instead,
we either have |Ui ∩ A| � |Ui ∩ B| or |Ui ∩ A| �
|Ui ∩B|.

Claim III.11. For any cut (A,B) of G, we have∑
i∈[`]

min{|Ui ∩A|, |Ui ∩B|} ≤
w(E(A,B))

φλ
,

where Ui := Vi ∩ U for i ∈ [`].

Proof: Since G[Vi] is a (φ,di)-expander, and since
di(S) ≥ d(S) = |U ∩S| · λ̃ ≥ |U ∩S| ·λ for all subsets
S ⊆ Vi, we have

w(E(Vi ∩A, Vi ∩B))

min{|U ∩ (Vi ∩A)| · λ, |U ∩ (Vi ∩B)| · λ}

≥ w(E(Vi ∩A, Vi ∩B))

min{di(Ui ∩A),di(Ui ∩B)}
≥ φ.

This means that

min{|Ui ∩A| · λ, |Ui ∩B| · λ}

= min{|U ∩ (Vi ∩A)| · λ, |U ∩ (Vi ∩B)| · λ}

≤ w(E(Ui ∩A,Ui ∩B))

φ
.

Since E(Vi ∩ A, Vi ∩ B) is contained in E(A,B) and
is disjoint over all i, we have∑

i∈[`]

w(E(Vi ∩A, Vi ∩B)) ≤ w(E(A,B)).

Putting things together,∑
i∈[`]

min{|Ui ∩A|, |Ui ∩B|}

≤ 1

λ

∑
i∈[`]

w(E(Vi ∩A, Vi ∩B))

φ

≤ w(E(A,B))

φλ
.

We say that a cut C cuts a cluster Vi if both C ∩ Vi
and Vi \ C are non-empty. The next claim states that
the min-cut can only cut a few clusters Vi, i.e., only a
few clusters Vi overlap both sides of the min-cut. This
implies that for the sets Ui ⊆ Vi in particular, all but a
few of them satisfy Ui ∩A = ∅ or Ui ∩B = ∅.

Claim III.12. Let C be one side of a min-cut (i.e.,
w(∂C) = λ). Then, C cuts at most (1 + 1/φ) clusters
Vi.

Proof: Suppose for contradiction that C cuts more
than (1 + 1/φ) clusters. Fix a cluster Vi that is cut,
and let Ai and Bi be C ∩ Vi and Vi \ C (possibly
swapped) so that w(E(Ai, V \Vi)) ≤ w(E(Bi, V \Vi)).
The edges E(Ai, Bi) are contained in ∂C, and across
different clusters Vi that are cut, the edges E(Ai, Bi)
are disjoint, so∑

i

w(E(Ai, Bi)) ≤ w(∂C) = λ.

Since C cuts more than (1+ 1/φ) clusters, there exists
a cluster Vi with

w(E(Ai, Bi)) <
w(∂C)

1 + 1/φ
=

λ

1 + 1/φ
.

For all subsets S ⊆ Vi, we have

di(S) ≥
∑
v∈S

w(E({v}, V \ Vi)) = w(E(S, V \ Vi)).

6

Since G[Vi] is a (φ,di)-expander,

w(E(Ai, Bi))

≥ φ ·min{di(Ai),di(Bi)}
≥ φ ·min{w(E(Ai, V \ Vi)), w(E(Bi.V \ Vi))}
= φ · w(E(Ai, V \ Vi)).

Consider the cut ∂Ai, which satisfies

w(∂Ai) = w(E(Ai, Bi)) + w(E(Ai, V \ Vi))

≤ w(E(Ai, Bi)) +
1

φ
w(E(Ai, Bi))

=

(
1 +

1

φ

)
w(E(Ai, Bi)) < λ,

contradicting the fact that C is the min-cut.
Finally, we prove the “hitting” property of the spar-

sified set U ′. This, along with Corollary III.10, finishes
the proof of Lemma III.6.

Lemma III.13. Suppose that U is (1+1/φ)3-balanced
with witness (S1, S2). Then, for the set U ′ constructed
by the sparsification algorithm, we have Si ∩ U ′ 6= ∅
for both i = 1, 2.

Proof: For each cluster Vi, by Claim III.11,

min{|Ui ∩A|, |Ui ∩B|} ≤
w(E(A,B))

φλ
≤ 1

φ
.

In other words, either |S1 ∩ Ui| ≤ 1/φ or |S2 ∩ Ui| ≤
1/φ. Call a cluster Vi:

1) white if S1 ∩ Ui = ∅ (i.e., Ui ⊆ S2).
2) light gray if 0 < |S1 ∩ Ui| ≤ |S2 ∩ Ui| < |Ui|,

which implies that 0 < |S1 ∩ Ui| ≤ 1/φ.
3) dark gray if 0 < |S2 ∩ Ui| < |S1 ∩ Ui| < |Ui|,

which implies that 0 < |S2 ∩ Ui| ≤ 1/φ.
4) black if S2 ∩ Ui = ∅ (i.e., Ui ⊆ S1).

Every cluster must be one of the four colors, and by
Claim III.12, there are at most (1+1/φ) (light or dark)
gray clusters since Ui∩S1, Ui∩S2 6= ∅ implies that S1

cuts cluster Vi. Note that since we are only considering
clusters Vi such that Ui 6= ∅, it must be that for a white
cluster, we have |S2∩Ui| 6= ∅, and similarly, for a black
cluster, we have |S1 ∩ Ui| 6= ∅. There are now a few
cases:

1) There are no large clusters. In this case, if there
is at least one white and one black small cluster,
then the vertices from these clusters added to
U ′ are in S2 and S1, respectively. Otherwise,
assume w.l.o.g. that there are no black clusters.
Since there are at most (1+1/φ) gray clusters in
total, |S1 ∩ U | ≤ (1 + 1/φ) · 1/φ2, contradicting

our assumption that min{|S1 ∩ U |, |S2 ∩ U |} ≥
(1 + 1/φ)3.

2) There are large clusters, but all of them are white
or light gray. Let Vi be a large white or light gray
cluster. Since we select 1 + 1/φ vertices of Ui,
and |S1 ∩ Ui| = min{|S1 ∩ Ui|, |S2 ∩ Ui|} ≤
1/φ, we must select at least one vertex not in S1.
Therefore, S2 ∩ U ′ 6= ∅. If there is at least one
black cluster, then the selected vertex in there is
in U ′, so S1 ∩ U ′ 6= ∅ too, and we are done.
So, assume that there is no black cluster. Since
all large clusters are light gray (or white), |S1 ∩
Ui| ≤ 1/φ for all large clusters Vi. Moreover, by
definition of small clusters, |S1 ∩ Ui| ≤ |Ui| ≤
1/φ2 for all small clusters Vi. Since there are at
most (1 + 1/φ) gray clusters by Claim III.12,

|S1 ∩ U | =
∑

i:Vi small

|S1 ∩ Ui|+
∑

i:Vi large

|S1 ∩ Ui|

≤
(
1 +

1

φ

)
· 1

φ2
+

(
1 +

1

φ

)
· 1
φ

= 2

(
1 +

1

φ

)
· 1
φ
<

(
1 +

1

φ

)3

,

a contradiction.
3) There are large clusters, but all of them are black

or dark gray. This is symmetric to case (2) above
with S1 replaced with S2.

4) There is at least one black or dark gray large
cluster Vi, and at least one white or light gray
large cluster Vj . In this case, since we select
1+1/φ vertices of Ui and |S2∩Ui| = min{|S1∩
Ui|, |S2∩Ui||} ≤ 1/φ, we must select at least one
vertex in S1. Similarly, we must select at least one
vertex in Uj that is in S2.

IV. CONCLUSION

In this paper, we gave a deterministic algorithm for
the min-cut problem in undirected graphs that uses poly-
logarithmic max-flow computations plus m1+ε time for
any constant ε. Our main new tool is the isolation cut
lemma which we hope will be useful for other problems
in graph connectivity as well. The main open question
left by our work is to obtain a deterministic Õ(m)-
time algorithm for the min-cut problem on undirected
graphs. Such a result is currently known only for simple
graphs [19], [12].

ACKNOWLEDGMENTS

JL was supported in part by NSF award CCF-
1907820. DP was supported in part by NSF grant CCF-
1955703 and an NSF CAREER Award CCF-1750140.

7

REFERENCES

[1] R. E. Gomory and T. C. Hu, “Multi-terminal network
flows,” Journal of the Society for Industrial and Applied
Mathematics, vol. 9, no. 4, pp. 551–570, 1961.

[2] J. Hao and J. B. Orlin, “A faster algorithm for finding
the minimum cut in a graph,” in Proceedings of the third
annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 1992,
pp. 165–174.

[3] A. V. Goldberg and R. E. Tarjan, “A new approach
to the maximum-flow problem,” J. ACM, vol. 35,
no. 4, pp. 921–940, 1988. [Online]. Available:
https://doi.org/10.1145/48014.61051

[4] H. Nagamochi and T. Ibaraki, “Computing edge-
connectivity in multigraphs and capacitated graphs,”
SIAM Journal on Discrete Mathematics, vol. 5, no. 1,
pp. 54–66, 1992.

[5] ——, “A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph,”
Algorithmica, vol. 7, no. 5&6, pp. 583–596, 1992.
[Online]. Available: https://doi.org/10.1007/BF01758778

[6] M. Stoer and F. Wagner, “A simple min-cut algorithm,”
Journal of the ACM (JACM), vol. 44, no. 4, pp. 585–591,
1997.

[7] D. R. Karger, “Global min-cuts in rnc, and other ramifi-
cations of a simple min-cut algorithm.” in SODA, vol. 93,
1993, pp. 21–30.

[8] D. R. Karger and C. Stein, “A new approach to the
minimum cut problem,” Journal of the ACM (JACM),
vol. 43, no. 4, pp. 601–640, 1996.

[9] D. R. Karger, “Minimum cuts in near-linear time,”
J. ACM, vol. 47, no. 1, pp. 46–76, 2000. [Online].
Available: http://dx.doi.org/10.1145/331605.331608

[10] H. N. Gabow, “A matroid approach to finding edge
connectivity and packing arborescences,” Journal of
Computer and System Sciences, vol. 50, no. 2, pp. 259–
273, 1995.

[11] K.-i. Kawarabayashi and M. Thorup, “Deterministic
edge connectivity in near-linear time,” Journal of the
ACM (JACM), vol. 66, no. 1, pp. 1–50, 2018.

[12] M. Henzinger, S. Rao, and D. Wang, “Local
flow partitioning for faster edge connectivity,” in
Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, 2017, pp. 1919–1938. [Online]. Available:
https://doi.org/10.1137/1.9781611974782.125

[13] Y. P. Liu and A. Sidford, “Faster divergence max-
imization for faster maximum flow,” arXiv preprint
arXiv:2003.08929, 2020.

[14] A. V. Goldberg and S. Rao, “Beyond the flow decom-
position barrier,” Journal of the ACM (JACM), vol. 45,
no. 5, pp. 783–797, 1998.

[15] N. Alon, R. Yuster, and U. Zwick, “Color-coding,”
Journal of the ACM (JACM), vol. 42, no. 4, pp. 844–
856, 1995.

[16] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh,
Parameterized algorithms. Springer, Cham, 2015.
[Online]. Available: http://dx.doi.org/10.1007/978-3-
319-21275-3

[17] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and
T. Saranurak, “A deterministic algorithm for balanced
cut with applications to dynamic connectivity, flows, and
beyond,” arXiv preprint arXiv:1910.08025, 2019.

[18] D. W. Matula, “A linear time 2+ ε approximation algo-
rithm for edge connectivity,” in Proceedings of the fourth
annual ACM-SIAM Symposium on Discrete algorithms,
1993, pp. 500–504.

[19] K. Kawarabayashi and M. Thorup, “Deterministic
edge connectivity in near-linear time,” J. ACM,
vol. 66, no. 1, pp. 4:1–4:50, 2019. [Online]. Available:
https://doi.org/10.1145/3274663

8

