
Breaking the Cubic Barrier for All-Pairs Max-Flow:
Gomory-Hu Tree in Nearly Quadratic Time

Amir Abboud
Weizmann Institute of Science

Rehovot, Israel

amir.abboud@weizmann.ac.il

Robert Krauthgamer
Weizmann Institute of Science

Rehovot, Israel

robert.krauthgamer@weizmann.ac.il

Jason Li
Simons Institute

University of California, Berkeley
Berkeley, USA

jmli@alumni.cmu.edu
Debmalya Panigrahi

Duke University
Durham, USA

debmalya@cs.duke.edu

Thatchaphol Saranurak
University of Michigan, Ann Arbor

Ann Arbor, USA

thsa@umich.edu

Ohad Trabelsi
Toyota Technological Institute at Chicago

Chicago, USA

ohadt@ttic.edu

Abstract—In 1961, Gomory and Hu showed that the All-Pairs
Max-Flow problem of computing the max-flow between all

(
n
2

)

pairs of vertices in an undirected graph can be solved using only
n−1 calls to any (single-pair) max-flow algorithm. Even assuming
a linear-time max-flow algorithm, this yields a running time of
O(mn), which is O(n3) when m = Θ(n2). While subsequent
work has improved this bound for various special graph classes,
no subcubic-time algorithm has been obtained in the last 60
years for general graphs. We break this longstanding barrier
by giving an Õ(n2)-time algorithm on general, integer-weighted
graphs. Combined with a popular complexity assumption, we
establish a counter-intuitive separation: all-pairs max-flows are
strictly easier to compute than all-pairs shortest-paths.

Our algorithm produces a cut-equivalent tree, known as the
Gomory-Hu tree, from which the max-flow value for any pair
can be retrieved in near-constant time. For unweighted graphs,
we refine our techniques further to produce a Gomory-Hu tree
in the time of a poly-logarithmic number of calls to any max-
flow algorithm. This shows an equivalence between the all-pairs
and single-pair max-flow problems, and is optimal up to poly-
logarithmic factors. Using the recently announced m1+o(1)-time
max-flow algorithm (Chen et al., March 2022), our Gomory-Hu
tree algorithm for unweighted graphs also runs in m1+o(1)-time.

Index Terms—Gomory-Hu tree, graph algorithms, minimum
cut, maximum flow

I. INTRODUCTION

The edge connectivity of a pair of vertices s, t in an

undirected graph is defined as the minimum weight of edges

whose removal disconnects s and t in the graph. Such a set

of edges is called an (s, t) mincut, and by duality, its value

is equal to that of an (s, t) max-flow. Consequently, the edge

A full version of this paper is available at arXiv:2111.04958. A.A. is
supported by an Alon scholarship and a research grant from the Center
for New Scientists at the Weizmann Institute of Science. R.K. is supported
by ONR Award N00014-18-1-2364, the Israel Science Foundation grant
#1086/18, the Weizmann Data Science Research Center, and a Minerva
Foundation grant. D.P. is supported in part by NSF Awards CCF-1750140
(CAREER) and CCF-1955703, and ARO Award W911NF2110230. O.T. is
supported by the NSF Grant CCF-1815316, and by the NWO VICI grant
639.023.812, and his work is partially done at University of Michigan, Ann
Arbor.

connectivity of a vertex pair is obtained by running a max-

flow algorithm, and by extension, the edge connectivity for all
vertex pairs can be obtained by

(
n
2

)
= Θ(n2) calls to a max-

flow algorithm. (Throughout, n and m denote the number of

vertices and edges in the input graph G = (V,E,w), where

w : E → Z0
+ maps edges to non-negative integer weights. We

denote the maximum edge weight by W .)

Definition 1 (The All-Pairs Max-Flow (APMF) Problem).
Given an undirected edge-weighted graph, return the edge

connectivity of all pairs of vertices.

Remarkably, Gomory and Hu [40] showed in a seminal

work in 1961 that one can do a lot better than this naı̈ve

algorithm. In particular, they introduced the notion of a cut
tree (later called Gomory-Hu tree, which we abbreviate as

GHTREE) to show that n−1 max-flow calls suffice for finding

the edge connectivity of all vertex pairs.

Theorem 2 (Gomory-Hu (1961)). For any undirected edge-
weighted graph G = (V,E), there is a cut tree (or GHTREE),
which is defined as a tree T on the same set of vertices V
such that for all pairs of vertices s, t ∈ V , the (s, t) mincut in
T is also an (s, t) mincut in G and has the same cut value.
Moreover, such a tree can be computed using n− 1 max-flow
calls.1

Since their work, substantial effort has gone into obtaining

better GHTREE algorithms, and faster algorithms are now

known for many restricted graph classes, including unweighted

graphs [7], [24], [48], simple graphs [6], [8], [9], [55], [72],

planar graphs [26], surface-embedded graphs [25], bounded

treewidth graphs [5], [16], and so on (see the survey [63]).

Indeed, GHTREE algorithms are part of standard textbooks

in combinatorial optimization (e.g., [12], [31], [67]) and have

numerous applications in diverse areas such as networks [45],

image processing [71], and optimization [62]. They have also

1These max-flow calls are on graphs that are contractions of G, and thus
no larger than G.

884

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00088

inspired entire research directions as the first example of a

sparse representation of graph cuts, the first non-trivial global
min-cut algorithm, the first use of submodular minimization in

graphs, and so forth.

In spite of this attention, Gomory and Hu’s 60-year-old

algorithm has remained the state of the art for constructing

a GHTREE in general, weighted graphs (or equivalently for

APMF, due to known reductions [5], [55] showing that any

APMF algorithm must essentially construct a GHTREE). Even

if we assume an optimal O(m)-time max-flow algorithm, the

Gomory-Hu algorithm takes O(mn) time, which is O(n3)
when m = Θ(n2). Breaking this cubic barrier for the GHTREE

problem has been one of the outstanding open questions in the

graph algorithms literature.

In this paper, we break this longstanding barrier by giving

a GHTREE algorithm that runs in Õ(n2)-time for general,

weighted graphs.

Theorem 3. There is a randomized Monte Carlo algorithm
for the GHTREE (and APMF) problems that runs in Õ(n2)
time in general, weighted graphs.

a) Remarks: 1. As noted earlier (and similar to state-of-

the-art max-flow algorithms), we assume throughout the paper

that edge weights are integers in the range {1, 2, . . . ,W}.
Throughout, the notation Õ(·) hides poly-logarithmic factors

in n and W .

2. Our result is unconditional, i.e., it does not need to assume

a (near/almost) linear-time max-flow algorithm. We note that

concurrent to our work, an almost-linear time max-flow al-

gorithm has been announced [30]. Our improvement of the

running time of GHTREE/APMF is independent of this result:

even with this result, the best GHTREE/APMF bound was

m1+o(1)n which is between n2+o(1) and n3+o(1) depending

on the value of m, and we improve it to Õ(n2). Moreover,

we stress that we do not need any recent advancement in max-

flow algorithms for breaking the cubic barrier: even using

the classic Goldberg-Rao max-flow algorithm [38] in our

(combinatorial) algorithm solves GHTREE/APMF in subcubic

time.

Our techniques also improve the bounds known for the

GHTREE problem in unweighted graphs, and even for simple
graphs, which are defined as unweighted graphs without

parallel edges. Observe that the GHTREE problem in simple

graphs is easier than in unweighted graphs, which in turn is

easier than in general weighted graphs. For unweighted graphs,

the best previous results were Õ(mn) obtained by Bhalgat et
al. [24] and by Karger and Levine [48], and an incomparable

result that reduces the GHTREE problem to O(
√
m) max-flow

calls [7]. There has recently been much interest and progress

on GHTREE in simple graphs as well [6], [8], [9], [55], [72],

with the current best running time being (m+ n1.9)1+o(1).

We give a reduction of the GHTREE problem in unweighted

graphs to polylog(n) calls of any max-flow algorithm. Note

that this reduction is nearly optimal (i.e., up to the poly-log

factor) since the all-pairs max-flow problem is at least as hard

as finding a single-pair max-flow. Using the recent m1+o(1)-

time max-flow algorithm [30], this yields a running time of

m1+o(1) for the GHTREE problem in unweighted graphs.

Theorem 4. There is a randomized Monte Carlo algorithm for
the GHTREE problem that runs in m1+o(1) time in unweighted
graphs.

b) APMF vs APSP: Our results deliver a surprising

message to a fundamental question in graph algorithms: What
is easier to compute, shortest paths or max-flows? Ignoring

no(1) factors, the single-pair versions are both solvable in

linear-time and therefore equally easy; albeit, the shortest path

algorithm [33] is classical, elementary, and fits on a single

page, whereas the max-flow algorithm [30] is very recent,

highly non-elementary, and requires more than a hundred

pages to describe and analyze. This and nearly all other

evidence (perhaps excluding the mere existence of the succinct

Gumory Hu trees) had supported the consensus that max-

flows are at least as hard as (if not strictly harder than)

shortest paths, and perhaps this can be established by looking

at the more general all-pairs versions: APMF and APSP

(All-Pairs Shortest-Paths). Much effort had gone into proving

this belief (APMF ≥ APSP) using the tools of fine-grained

complexity [3], [5], [7], [10], [50], with limited success: it

was shown that (under popular assumptions) APMF is strictly

harder than APSP in directed graphs, but the more natural

undirected setting remained open. The first doubts against

the consensus were raised in the aforementioned n2+o(1)

algorithms for APMF in simple (unweighted) graphs that go

below the nω bound of APSP [68] (where 2 ≤ ω < 2.37286
[14] denotes the fast matrix multiplication exponent). But if,

as many experts believe, ω = 2+o(1) then the only conclusion

is that APMF and APSP are equally easy in simple graphs.

In general (weighted) graphs, however, one of the central

conjectures of fine-grained complexity states that the cubic

bound for APSP cannot be broken (even if ω = 2). Under

this “APSP Conjecture”, Theorem 3 proves that APMF is

strictly easier than APSP! Alternatively, if one still believes

that APMF ≥ APSP, then our paper provides strong evidence

against the APSP Conjecture and against the validity of the

dozens of lower bounds that are based upon it (e.g., [2], [4],

[11], [27], [65], [66], [70]) or upon stronger forms of it (e.g.,

[1], [18], [19], [32], [37]).

A. Related Work

Algorithms: Before this work, the time complexity of

constructing a Gomory-Hu tree in general graphs has im-

proved over the years only due to improvements in max-

flow algorithms. An alternative algorithm for the problem

was discovered by Gusfield [41], where the n − 1 max-

flow queries are made on the original graph (instead of on

contracted graphs). This algorithm has the same worst-case

time complexity as Gomory-Hu’s, but may perform better in

practice [39]. Many faster algorithms are known for special

graph classes or when allowing a (1 + ε)-approximation; see

the full version of this paper for a summary. Moreover, a

885

few heuristic ideas for getting a subcubic complexity in social

networks and web graphs have been investigated [13].

Hardness Results: The attempts at proving conditional

lower bounds for All-Pairs Max-Flow have only succeeded in

the harder settings of directed graphs [3], [50] or undirected

graphs with vertex weights [7], where Gomory–Hu trees may

not even exist [43], [46], [57]. In particular, SETH gives an

n3−o(1) lower bound for weighted sparse directed graphs [50]

and the 4-Clique conjecture gives an nω+1−o(1) lower bound

for unweighted dense directed graphs [3].

Applications: Gomory-Hu trees have appeared in many

application domains. We mention a few examples: in math-

ematical optimization for the b-matching problem [62] (and

that have been used in a breakthrough NC algorithm for perfect

matching in planar graphs [15]); in computer vision [71], lead-

ing to the graph cuts paradigm; in telecommunications [45]

where there is interest in characterizing which graphs have a

Gomory-Hu tree that is a subgraph [49], [61]. The question

of how the Gomory-Hu tree changes with the graph has arisen

in applications such as energy and finance and has also been

investigated, e.g., [20], [21], [34], [42], [64].

B. Overview of Techniques

We now introduce the main technical ingredients used in

our algorithm, and explain how to put them together to prove

Theorem 3 and Theorem 4.

a) Notation: In this paper, a graph G is an undirected

graph G = (V,E,w) with edge weights w(e) ∈ {1, 2, . . . ,W}
for all e ∈ E. If w(e) = 1 for all e ∈ E, we say that G is

unweighted. The total weight of an edge set E′ ⊆ E is defined

as w(E′) =
∑

e∈E′ w(e). For a cut (S, V \ S), we also refer

to a side S of this cut as a cut. The value of cut S is denoted

δ(S) = w(E(S, V \ S)). For any two vertices a, b, we say

that S is an (a, b)-cut if |S ∩ {a, b}| = 1. An (a, b)-mincut is

an (a, b)-cut of minimum value, and we denote its value by

λ(a, b).

b) Reduction to Single-Source Minimum Cuts: The clas-

sic Gomory-Hu approach to solving APMF is to recursively

solve (s, t) mincut problems on graphs obtained by contract-

ing portions of the input graph. This leads to n − 1 max-

flow calls on graphs that cumulatively have O(mn) edges.

Recent work [5] has shown that replacing (s, t) mincuts by

a more powerful gadget of single-source mincuts reduces the

cumulative size of the contracted graphs to only Õ(m). But,

how do we solve the single-source mincuts problem? Prior

to our work, a subcubic algorithm was only known for simple

graphs [6], [8], [9], [55], [72]. Unfortunately, if applied to non-

simple graphs, these algorithms become incorrect, and not just

inefficient.

Conceptually, our main contribution is to give an Õ(n2)-
time algorithm for the single source mincuts problem in

general weighted graphs. For technical reasons, however, we

will further restrict this problem in two ways: (1) the algorithm

(for the single-source problem) only needs to return the values

λ(s, t) for some terminals t ∈ U \ {s}, and (2) the mincut

values λ(s, t) for the terminals t ∈ U \ {s} are guaranteed to

be within a 1.1-factor of each other.2

We now state a reduction from GHTREE to this restricted

single-source problem. Let U ⊆ V be a set of termi-

nal vertices. The U -Steiner connectivity/mincut is λ(U) =
mina,b∈U λ(a, b). The restricted single-source problem is de-

fined below.

Problem 5 (Single-Source Terminal Mincuts with Promise).
The input is a graph G = (V,E,w), a terminal set U ⊆ V
and a source terminal s ∈ U with the promise that for all
t ∈ U \ {s}, we have λ(U) ≤ λ(s, t) ≤ 1.1λ(U). The goal is
to determine the value of λ(s, t) for each terminal t ∈ U \{s}.

The reduction has two high-level steps. First, we reduce the

single-source terminal mincuts problem without the promise
that λ(s, t) ∈ [λ(U), 1.1λ(U)] (we define this formally in the

full version of this paper) to the corresponding problem with

the promise (i.e., Problem 5) by calling an approximate single-

source mincuts algorithm of Li and Panigrahi [54]. Then, we

use a reduction from Gomory-Hu tree to the single-source

terminal mincuts without the promise that was presented by

Li [51].3 For completeness, we fully describe both steps of the

reduction in the full version.

Lemma 6 (Reduction to Single-Source Terminal Mincuts).
There is a randomized algorithm that computes a GHTREE of
an input graph by making calls to max-flow and single-source
terminal mincuts (with the promise, i.e., Problem 5) on graphs
with a total of Õ(n) vertices and Õ(m) edges, and runs for
Õ(m) time outside of these calls.

c) Guide Trees: The main challenge, thus, is to solve

single-source terminal mincuts (Problem 5) faster than n− 1
max-flow calls. Let us step back and think of a simpler

problem: the global mincut problem. In a beautiful paper,

Karger [47] gave a two-step recipe for solving this problem

by using the duality between cuts and tree packings. First,

by packing a maximum set of edge-disjoint spanning trees in

a graph and sampling one of them uniformly at random, the

algorithm obtains a spanning tree that, with high probability, 2-
respects the global mincut, meaning that only two edges from

the tree cross the cut. Second, a simple linear-time dynamic

program computes the minimum value cut that 2-respects the

tree. Can we use this approach?
Clearly, we cannot hope to pack λ(U) disjoint spanning

trees since the global mincut value could be much less than

λ(U). But what about Steiner trees? A tree T is called a U -
Steiner tree if it spans U , i.e., U ⊆ V (T). When U is clear

from the context, we write Steiner instead of U -Steiner.
First, we define the k-respecting property for Steiner trees.

Definition 7 (k-respecting). Let A ⊆ V be a cut in G =
(V,E,w). Let T be a tree on (some subset of) vertices in V .

2The value 1.1 is arbitrary and can be replaced by any suitably small
constant greater than 1.

3The actual reduction is slightly stronger in the sense that it only requires
a “verification” version of single-source terminal mincuts, but we omit that
detail for simplicity.

886

We say that the tree T k-respects the cut A (and vice versa)

if T contains at most k edges with exactly one endpoint in A.

Using this notion of k-respecting Steiner trees, we can now

define a collection of guide trees that is analogous to a packing

of spanning trees.

Definition 8 (Guide Trees). For a graph G and set of terminals

U ⊆ V with a source s ∈ U , a collection of U -Steiner trees

T1, . . . , Th is called a k-respecting set of guide trees, or in

short guide trees, if for every t ∈ U \ {s}, at least one tree Ti

k-respects some (s, t)-mincut in G.

Two questions immediately arise:

1) Can we actually obtain such k-respecting guide trees,

for a small k (and h)?

2) Can guide trees be used to speed up the single-source

mincuts algorithm?

The first question can be solved in a way that is concep-

tually (but not technically) similar to Karger’s algorithm for

global mincut. We first prove, using classical tools in graph

theory (namely, Mader’s splitting-off theorem [56], and Nash-

Williams [60] and Tutte’s [69] tree packing) that there exists a

packing with λ(U)/2 edge-disjoint Steiner trees. Then, we use

the width-independent Multiplicative Weights Update (MWU)

framework [17], [35], [36] to pack a near-optimal number of

Steiner trees using Õ(m) calls to an (approximation) algorithm

for the minimum Steiner tree problem. For the latter, we use

Mehlhorn’s 2-approximation algorithm [58] that runs in Õ(m)
time, giving a packing of λ(U)/4 Steiner trees in Õ(m2) time.

To speed this up, we compute the packing in a (1 + ε)-cut-

sparsifier of G (e.g., [22]), which effectively reduces m to

Õ(n) for this step. Overall, this gives an Õ(n2)-time algorithm

for constructing 4-respecting guide trees.

We note that our improved running time for unweighted

graphs comes from replacing this algorithm for constructing

guide trees by a more complicated algorithm. Specifically, we

show that all of the Õ(m) calls to (approximate) minimum

Steiner tree during the MWU algorithm can be handled in a

total of m1+o(1) time using a novel dynamic data structure

that relies on (1) a non-trivial adaptation of Mehlhorn’s

reduction from minimum Steiner tree to approximate Single-

Source Shortest Paths and (2) a recent decremental (dynamic)

algorithm for the latter problem [23].4 This achieves running

time m1+o(1) compared with Õ(n2) for unweighted graphs.

We summarize the construction of guide trees in the next

theorem, which we prove in Section III. (The new dynamic

data structure that is used in the improvement for unweighted

graphs is deferred to the full version of the paper.)

Theorem 9 (Constructing Guide Trees). There is a random-
ized algorithm that, given a graph G = (V,E,w), a terminal
set U ⊆ V and a source terminal s ∈ U , with the guarantee
that for all t ∈ U \ {s}, λ(U) ≤ λ(s, t) ≤ 1.1λ(U),

4While decremental algorithms for approximate single-source shortest paths
have been known since [44], the algorithm of [23] is the first to work against
adaptive adversaries, which is required for the MWU framework. In particular,
their algorithm is deterministic.

computes a 4-respecting set of O(log n) guide trees. The
algorithm takes Õ(n2) time on weighted graphs (i.e., when
w(e) ∈ {1, 2, . . . ,W} for all e ∈ E) and m1+o(1) time on
unweighted graphs (i.e., when w(e) = 1 for all e ∈ E).

But, how do guide trees help? In the case of global mincuts,

the tree is spanning, hence every k tree edges define a partition

of V , and also a cut in G. Therefore, once the k-respecting

property has been achieved, finding the best k-respecting cut

is a search over at most nk cuts for any given tree, and can be

done using dynamic programming for small k [47]. In contrast,

specifying the k tree-edges that are cut leaves an exponential

number of possibilities when T is a Steiner tree based on

which side of the cut the vertices not in T appear on. In fact,

in the extreme case where the Steiner tree is a single edge

between two terminals s and t, computing the 1-respecting

mincut is as hard as computing (s, t)-mincut.

We devise a recursive strategy to solve the problem of

obtaining k-respecting (s, t)-mincuts. First, we root the tree

T at a centroid, and recursively solve the problem on each

subtree, finding a new vertex s if necessary. By the choice of

the centroid, each subtree contains half as many vertices, so

the recursion depth is logarithmic. We show that each recursive

call preserves the k-respecting property for (s, t)-mincuts for

vertices t in the targeted subtree. However, in general, this

is too expensive since the entire graph G is being used in

each recursive call, and there can be many subtrees (and a

correspondingly large number of recursive calls). Nevertheless,

we show that this strategy can be made efficient when all the
cut edges are in the same subtree by an application of the

Isolating Cuts Lemma from [8], [53] and suitably contracting

the graph in each recursive call.

This leaves us with the case where the cut edges are spread

across multiple subtrees. Here, we use a different recursive

strategy. Consider the subtrees rooted at the children of the

centroid. We randomly remove a subset of these subtrees, and

recursively solve the problem on the remaining tree with a

smaller value of k. (We ensure that the subtree containing

s, if it exists, is never removed.) Note that this effectively

turns our challenge in working with Steiner trees vis-à-vis

spanning trees into an advantage; if we were working on

spanning trees, sampling and removing subtrees would have

violated the spanning property. This strategy works directly

when there exists at least one cut edge in a subtree other than

those containing s and t; then, with constant probability, we

remove this subtree but not the ones containing s, t to reduce

k by at least 1. The more tricky situation is if the cut edges are

only in the subtrees of s and t; this requires a more intricate

procedure involving a careful relabeling of the source vertex

s using a Cut Threshold Lemma from [54].

The algorithm is presented in detail in Section II, and we

state here its guarantees.

Theorem 10 (Single-Source Mincuts given a Guide Tree). Let
G = (V,E,w) be a weighted graph, let T be a tree defined
on (some subset of) vertices in V , and let s be a vertex in T .
For any fixed integer k ≥ 2, there is a Monte-Carlo algorithm

887

that finds, for each vertex t 	= s in T , a value λ̃(t) ≥ λ(s, t)
such that λ̃(t) = λ(s, t) if T is k-respecting an (s, t)-mincut.
The algorithm takes m1+o(1) time.

d) Remarks: The algorithm in Theorem 10 calls max-

flow on instances of maximum number of m edges and n
vertices and total number of Õ(m) edges and Õ(n) vertices,

and spends Õ(m) time outside these calls. The number of

logarithmic factors hidden in the Õ(·) depends on k. Note

that the running time of the algorithm is m1+o(1) even when

G is a weighted graph.

e) Putting it all together: Proof of Theorem 3 and Theo-
rem 4: The three ingredients above suffice to prove our main

theorems. By Lemma 6, it suffices to solve the single-source

mincut problem (Problem 5). Given an instance of Problem 5

on a graph G with terminal set U , we use Theorem 9 to

obtain a 4-respecting set of O(log n) guide trees. We call

the algorithm in Theorem 10 for each of the O(log n) trees

separately and keep, for each t ∈ U \{s}, the minimum λ̃(s, t)
found over all the O(log n) trees.

The running time of the final algorithm equals that of max-

flow calls on graphs with at most O(m) edges and O(n)
vertices each, and total number of Õ(m) edges and Õ(n)
vertices. In addition, the algorithm takes Õ(n2) time outside

of these calls (in Theorem 9); in unweighted graphs, the

additional time is only m1+o(1).

II. SINGLE-SOURCE MINCUTS GIVEN A GUIDE TREE

In this section, we present our single-source mincut algo-

rithm (SSMC) given a guide tree, which proves Theorem 10.

Before describing the algorithm, we state two tools we

will need. The first is the Isolating-Cuts procedure introduced

by Li and Panigrahi [53] and independently by Abboud,

Krauthgamer, and Trabelsi [8]. (Within a short time span, this

has found multiple interesting applications [6], [9], [28], [29],

[52], [54], [55], [59], [72].)

Recall that for a vertex set S ⊆ V , δ(S) denotes the total

weight of edges with exactly one endpoint in S (i.e., the value

of the cut (S, V \S)). For any two disjoint vertex sets A,B ⊆
V , we say that S is an (A,B)-cut if A ⊆ S and B∩S = ∅ or

B ⊆ S and A ∩ S = ∅. In other words, the cut S “separates”

the vertex sets A and B. We say that S is an (A,B)-mincut if

it is an (A,B)-cut of minimum value, and let λ(A,B) denote

the value of an (A,B)-mincut. As described earlier, if A and

B are singleton sets, say A = {a} and B = {b}, then we use

the shortcut (a, b)-mincut to denote an (A,B)-mincut, and use

λ(a, b) to denote the value of an (a, b)-mincut.

We now state the isolating cuts lemma from [8], [53]:

Lemma 11 (Isolating Cuts Lemma: Theorem 2.2 in [53], also

follows from Lemma 3.4 in [8]). There is an algorithm that,
given a graph G = (V,E,w) and a collection U of disjoint
terminal sets U1, . . . , Uh ⊆ V , computes a (Ui,∪j �=iUj)-
mincut for every Ui ∈ U . The algorithm calls max-flow
on graphs that cumulatively contain O(m log h) edges and
O(n log h) vertices, and spends Õ(m) time outside these calls.

a) Remark: The isolating cuts lemma stated above

slightly generalizes the corresponding statement from [8], [53].

In the previous versions, each of the sets U1, U2, . . . , Uh is a

distinct singleton vertex in V . The generalization to disjoint

sets of vertices is trivial because we can contract each set Ui

for i ∈ [h] and then apply the original isolating cuts lemma to

this contracted graph to obtain Lemma 11.

We call each (Ui,∪j �=iUj)-mincut Si a minimum isolating
cut because it “isolates” Ui from the rest of the terminal sets,

using a cut of minimum size. The advantage of this lemma is

that it essentially only costs O(log h) max-flow calls, which is

an exponential improvement over the naı̈ve strategy of running

h max-flow calls, one for each Ui.

The next tool is the Cut-Threshold procedure of Li and Pani-

grahi, which has been used earlier in the approximate Gomory-

Hu tree problem [54] and in edge connectivity augmentation

and splitting off algorithms [28].

Lemma 12 (Cut-Threshold Lemma: Theorem 1.6 in [54]).
There is a randomized, Monte-Carlo algorithm that, given a
graph G = (V,E,w), a vertex s ∈ V , and a threshold λ,
computes all vertices v ∈ V with λ(s, v) ≤ λ (recall that
λ(s, v) is the size of an (s, v)-mincut). The algorithm calls
max-flow on graphs that cumulatively contain Õ(m) edges
and Õ(n) vertices, and spends Õ(m) time outside these calls.

We use the Cut-Threshold lemma to obtain the following

lemma, which is an important component of our final algo-

rithm. At a high level, we simply binary search on the value

λmax; we leave the details to the full version of the paper.

Lemma 13. For any subset U ⊆ V of vertices and a vertex
s /∈ U , there is a randomized, Monte-Carlo algorithm that
computes λmax = max{λ(s, t) : t ∈ U} as well as all
vertices t ∈ U attaining this maximum, i.e., the vertex set
argmaxt∈U{λ(s, t)}. The algorithm calls max-flow on graphs
that cumulatively contain Õ(m) edges and Õ(n) vertices, and
spends Õ(m) time outside these calls.

b) The SSMC Algorithm: Having introduced the main

tools, we are now ready to present our SSMC algorithm (see

Figure 1). The input to the algorithm is a graph G = (V,E,w)
containing a specified vertex s, a (guide) tree T containing s,

and a positive integer k. The algorithm is a recursive algorithm,

and although the guide tree initially only contains vertices

in V , there will be additional vertices (not in V) that are

introduced into the guide tree in subsequent recursive calls.

To distinguish between these two types of vertices, we define

R(T) as the subset of vertices of T that are in V , and call

these real vertices. We call the vertices of T that are not in V
fake vertices.

We extend the definition of k-respecting (i.e., Definition 7)

to fake vertices as follows:

Definition 14 (Generalized k-respecting). Let A ⊆ V be a

cut in G = (V,E,w). Let T be a tree on (some subset of)

vertices in V as well as additional vertices not in V . We say

that T k-respects cut A (and vice versa) if there exists a set

888

FA of fake vertices such that T contains at most k edges with

exactly one endpoint in A ∪ FA; we say that such edges are

cut by A ∪ FA.

We also note that even if all the vertices in T are real

vertices, T may not be a subgraph of G.

Recall that our goal is to obtain a value λ̃(t) ≥ λ(s, t)
for every terminal t ∈ U \ {s} such that if an (s, t)-mincut k-

respects T , then λ̃(t) = λ(s, t). We will actually compute λ̃(t)
for every real vertex t ∈ R(T)\{s}; clearly, this suffices since

the input Steiner tree (i.e., at the top level of the recursion)

spans all the vertices in U .

The algorithm maintains estimates λ̃(t) of the mincut values

λ(s, t) for all t ∈ R(T) \ {s}. The values λ̃(t) are initialized

to ∞, and whenever we compute an (s, t)-cut in the graph, we

“update” λ̃(t) by replacing λ̃(t) with the value of the (s, t)-
cut if it is lower. Formally, we define UPDATE(t, x) : λ̃(t)←
min(λ̃(t), x).

We describe the algorithm below. The reader should use the

illustration in Figure 1 as a visual description of each step of

the algorithm.

1) First, we describe a base case. If |R(T)| is less than

some fixed constant, then we simply compute the (s, t)-
mincut in G separately for each t ∈ R(T) \ {s}
using |R(T)| − 1 = O(1) max-flow calls, and run

UPDATE(t, λ(s, t)).
From now on, assume that |R(T)| is larger than some

(large enough) constant.5

2) Let c be a centroid of the tree T , defined in the following

manner: c is a (possibly fake) vertex in T such that if

we root T at c, then each subtree rooted at a child of c
has at most |R(T)|/2 real vertices.6

If c ∈ R(T) and s 	= c, then compute an (s, c)-mincut

in G (whose value is denoted λ) using a max-flow call

and run UPDATE(c, λ(s, c)).
3) Root T at c and let u1, . . . , u� be the children of c. For

each i ∈ [�], let Ti be the subtree rooted at ui. Recall that

R(Ti) denotes the set of real vertices in the respective

subtrees Ti for i ∈ [�]. (For technical reasons, we ignore

subtrees Ti that do not contain any real vertex.) Use

Lemma 11 to compute minimum isolating cuts in G
with the following terminal sets: (1) Ui = R(Ti) for

i ∈ [�]. (2) If c ∈ R(T), then we add an additional set

U�+1 = {c}. Note that ∪iUi = R(T) irrespective of

whether c ∈ R(T) or not.

Let Si ⊆ V be the (Ui, R(T)\Ui)-mincut in G obtained

from Lemma 11. We ignore S�+1 (if it exists) and

proceed with the remaining sets Si for i ∈ [�] in the

next step.

5For example, the constant 10 is more than enough.
6A centroid always exists by the following simple argument: take the (real

or fake) vertex of T of maximum depth whose subtree rooted at T has at
least |R(T)|/2 real vertices. By construction, this vertex is a centroid of T ,
and it can be found in time linear in the number of vertices in the tree using
a simple dynamic program.

4) For each i ∈ [�], define Gi as the graph G with V \ Si

contracted to a single vertex. Now, there are two cases.

In the first case, we have s ∈ V \Si. Then, the contracted

vertex for V \ Si is labeled the new s in graph Gi.

Correspondingly, define T ′i as the tree Ti with an added

edge (s, ui) (recall that ui is the root of Ti). In the

second case, we have s ∈ Si. Then, assign a new label

ci to the contracted vertex for V \Si in Gi. In this case,

define T ′i as the tree Ti with an added edge (ci, ui), and

keep the identity of vertex s unchanged since it is in

Ti. (Note that if s = c, the only difference is that the

second case does not happen for any i ∈ [�].)
In both cases above, make recursive calls (Gi, T

′
i , k)

for all i ∈ [�]. Call UPDATE(t, λ′(s, t)) for all t ∈
R(Ti) \ {s} where the recursive call returns the value

λ′(s, t) for the variable λ̃(t). Furthermore, if s ∈ Si, call

UPDATE(t, λ′(s, ci)) for all t ∈ R(T)\R(Ti) where the

recursive call returns the value λ′(s, ci) for the variable

λ̃(ci).
If k = 1, then we terminate the algorithm at this point,

so from now on, assume that k > 1.

5) Sample each subtree Ti independently with probability

1/2 except the subtree containing s (if it exists), which

is sampled with probability 1. (If c = s, then there is

no subtree containing s, and all subtrees are sampled

with probability 1/2.) Let T (5) be the tree T with all

(vertices of) non-sampled subtrees deleted. Recursively

call (G,T (5), k−1) and update λ̃(t) for all t ∈ R(T (5)).
(Note that R(T (5)) denotes the set of real vertices in tree

T (5). Moreover, by the sampling procedure, s is always

in R(T (5)) and hence, the recursion is valid.) Repeat

this step for O(log n) independent sampling trials.

6) Execute this step only if s 	= c, and let Ts be the subtree

from step (3) containing s. Using Lemma 13, compute

the value λmax = max{λ(s, t) : t ∈ R(T) \ R(Ts)},
as well as all vertices t ∈ R(T) \ R(Ts) attaining this

maximum. Update λ̃(t) = λmax for all such t, and

arbitrarily select one such t to be labeled s′. Let T (6)

be the tree T with (the vertices of) subtree Ts removed.

Recursively call (G,T (6), k − 1) where s′ is treated as

the new s, and update λ̃(t) for all t ∈ R(T (6)).

A. Correctness

First, we use a standard (uncrossing) property of mincuts.

For completeness, we prove the lemma below in the full

version of the paper.

Lemma 15. Let G = (V,E,w) be a weighted, undirected
graph with vertex subset U ⊆ V . For any subsets ∅ � X ⊆
X ′ � U and an (X ′, U \X ′)-mincut A′ ⊆ V of G, there is
an (X,U \X)-mincut A ⊆ V of G satisfying A ⊆ A′.

Now, we proceed to establish correctness of the SSMC

algorithm. Note that λ̃(t) starts with the value ∞, and every

time we run UPDATE(t, x), we have that x is the value of

some (s, t)-cut in G. Naturally, this would suggest that our

estimate λ̃(t) is always an upper bound on the true value

889

ݏ ݏᇱݏ

Step 6:
Set ݏᇱ ≔ argmax

୲
ݐݑܿ݊݅݉ ,ݏ ݐ : ݐ ∉ ܸ ௦ܶ .

Call G, T ∖ ௦ܶ, ݇ − 1 .

Step 5:
Let ܶ ହ ⊆ ܶ be a subtree where each ܶ ≠ ௦ܶ is
subsampled w.p. 1/2.
Call ܩ, ܶ ହ , ݇ − 1 .

subsample

ࢀ
= ࢙ࢀ ࢀ ࢀ

࢛ ࢛ ࢛ ࢛

ࢀ ࢀ

࢛ ࢛ ࢛
࢛

ࢀ
= ࢙ࢀ

ࢉࢉ

࢛

ݏ

ࢀ ࢀ

࢛ ࢛ ࢛ ࢛

ࢀ
= ࢙ࢀ

ࢉ

Step 1:
If ܶ = ܱ 1 then compute ݏ, ݐ -mincut in ܩ
for each ݐ ∈ ܸ ܶ ∖ ݏ .

ݏ

ࢀ ࢀ

࢛ ࢛ ࢛ ࢛

ࢀ

ࢉ

Step 3:
Run Isolating Cuts on ܴ ܶ ∪ ܿ .
Let ܵ be the resulting cuts.

Step 4:
∀݅: If ݏ ∈ ܸ ∖ ܵ, contract ܸ ∖ ܵ and call it ݏ.
Otherwise, contract ܸ ∖ ܵ and call it ܿ .
Call ܩ, ܶ ∪ ݁ , ݇ , for ݁ = ,ݏ ݑ or ݁ = ܿ, ݑ ,
correspondingly.

ܿଵ ≔ ܸ ∖ ଵܵݏ ≔ ܸ ∖ ܵସ

ݏ

ࢀ ࢀ

࢛ ࢛ ࢛ ࢛

ࢀ
= ࢙ࢀ

ࢉ

Step 2:
If ܿ ≠ ݏ then compute ݏ, ܿ -mincut in ܩ.

ࢀࢀ

ࢀ

ࢀ

ࢀ

࢛

Fig. 1: An illustration of the steps inside a recursive iteration of the SSMC algorithm. We assume that the centroid c has four

children in T and that all tree vertices are real; in particular c ∈ R(T), which simplifies some of the steps. Graph vertices

that are not spanned by T are represented by gray dots. The gray areas in Step 4 refer to contracted subsets, and the scissors

symbol in Steps 5 and 6 means we remove the subtree.

λ(s, t). However, this is not immediately clear because the

vertex s may be relabeled in a recursive call from step (6).

The lemma below shows that this relabeling is not an issue.

We defer the proof to the full version of the paper.

Lemma 16 (Upper bound). For any instance (G =
(V,E,w), T, k) and a vertex t ∈ R(T), the output value λ̃(t)
is at least λ(s, t).

The lemma above establishes the condition λ̃(t) ≥ λ(s, t)
of Theorem 10. It remains to show equality when T is k-

respecting an (s, t)-mincut, which we prove below.

Lemma 17 (Equality). Consider an instance (G =
(V,E,w), T, k) and a vertex t ∈ R(T) such that there is
an (s, t)-mincut in G that k-respects T . Then, the value λ̃(t)
computed by the algorithm equals λ(s, t) w.h.p.

Proof. Consider an (s, t)-mincut C in G that k-respects T .

First, if the centroid c is the vertex t, then the mincut

computation in Step (2) correctly recovers λ(s, t). Otherwise,

let Tt be the subtree containing t. We have a few cases based

on the locations of the edges in T that cross the cut C, which

we call the cut edges. Note that there is at least one cut edge

along the (s, t) path in T , and it is incident to (the vertices of)

either Tt or the subtree Ts containing s. (If c = s and there

is no subtree Ts containing s, then at least one cut edge must

be incident on some vertex in Tt.)

The first case (Case 1 in Figure 2) is that all the cut edges

are incident to the vertices of a single subtree Tj , which must

be either Tt or Ts (if the latter exists). Then, there is a side

A ∈ {C, V \C} of the (s, t)-mincut C whose vertices in R(T)
are all in R(Tj); in other words, A∩R(T) = A∩R(Tj). Note

that A is an (A∩R(Tj), R(T) \ (A∩R(Tj)))-mincut since if

there were a smaller such cut, then that would also be a smaller

(s, t)-cut, which contradicts that A is an (s, t)-mincut. Also,

by construction, Sj is a (R(Tj), R(T) \ R(Tj))-mincut. We

now apply Lemma 15 on parameters U = R(T), A = A,

X = A ∩ R(Tj), A′ = Sj , and X ′ = R(Tj). The lemma

implies that there is an (A∩R(Tj), R(T)\(A∩R(Tj)))-mincut

Ã ⊆ Sj , and this cut survives in the contracted graph Gj .

Since Ã is an (s, t)-cut of the same value as A, we conclude

that Ã is also an (s, t)-mincut. Finally, we argue that Ã also

k-respects the tree T ′j in the recursive instance. By definition,

since A k-respects T , there exists a set FA of fake vertices

such that T contains at most k edges cut by A ∪ FA. Since

A and Ã agree on vertices in R(Tj), tree T also contains at

most k edges cut by Ã∪FA (it is the exact same set of edges).

Define FÃ = FA ∩ V (Tj), and from Ã ∩R(T) ⊆ R(Tj), we

observe that tree Tj contains at most k edges cut by Ã ∩ FÃ

(it is all edges from before, restricted to tree Tj). Furthermore,

the new edge (s, uj) or (cj , uj) added to T ′j is cut by Ã∪FÃ

if and only if the edge (c, uj) of T is cut by Ã∪FA. It follows

that at most k edges of T ′j are cut by Ã∪FÃ. Thus, the lemma

890

ݏ ݐ ݏ ݐ
Case 1: All cut-edges are in ௧ܶ:
- Call ܩ௧, ௧ܶᇱ, ݇ ; step 4. ݂ ݉, ݊, ,2/ݐ ݇

ݏᇱݏ ݐ
Case 3: There exists a cut-edge in ௦ܶ:
- Set ݏᇱ ≔ argmax୲ ݐݑܿ݊݅݉ ,ݏ ݐ : ݐ ∉ ܸ ௦ܶ
and remove ௦ܶ; step 6.෨ܱ ݉ + ݂ ݉, ݊, ,ݐ ݇ − 1

ࢀ ࢀ =ℓࢀ ࢚ࢀ
࢛ ࢛ ࢛ ℓ࢛

Case 2: There exists a cut-edge outside of ௦ܶ ∪ ௧ܶ:
- Subsample each ܶᇱ ≠ ௦ܶ w.p. 1/2 and repeat ܱ log ݊ times; step 5.ܱ log݊ ⋅ ݂ ݉, ݊, ,ݐ ݇ − 1

subsample

=ࢀ ࢙ࢀ ࢀ ࢀ =ℓࢀ ࢚ࢀ
࢛ ࢛ ࢛ ࢀℓ࢛ ࢀ =ℓࢀ ࢚ࢀ

࢛ ࢛ ࢛ =ࢀℓ࢛ =ࢀ࢙ࢀ ࢙ࢀ
ࢉ ݏࢉࢉ ≔ ܸ ∖ ܵ௧ ࢛

Fig. 2: An illustration of the different cases, which part of our algorithm deals with them, and the corresponding running time.

Here, vertices in the side of s are depicted by blue dots, vertices in the side of t by red dots, and cut edges by dashed lines.

The gray area refers to a contracted subset, and the scissors symbol means we remove the subtree. Observe that whenever the

latter happens, we get rid of at least one cut edge.

statement is satisfied on recursive call (Gj , T
′
j , k) of Step (4),

and the algorithm recovers λ(s, t) w.h.p.

In the rest of the proof, we assume that the edges of T
cut by A ∪ FA are incident to (the vertices of) at least two

subtrees. Suppose first (Case 2 in Figure 2) that a cut edge is

incident to some subtree Tj that is not Tt or Ts (or only Tt,

if s = c and Ts does not exist). In each independent trial of

Step (5), we sample Tt but not Tj with constant probability.

In this case, since Tj is discarded in the construction of T (5),

the (s, t)-mincut C (k − 1)-respects the resulting tree T (5).

Over O(log n) independent trials, this happens w.h.p., and the

algorithm correctly recovers λ(s, t) w.h.p.

We are left with the case (Case 3 in Figure 2) that all edges

of T cut by A∪FA are incident to subtrees Tt and Ts. Note that

Ts must exist since if s = c and Case 2 does not happen, we

would be in Case 1. Furthermore, Ts 	= Tt, because otherwise,

we would either be in Case 1 (if all cut edges are incident on

Tt = Ts) or in Case 2 (if there is at least one cut edge incident

on some Tj 	= Tt = Ts).

Since Ts 	= Tt, we have t /∈ R(Ts), i.e., t ∈ R(T) \R(Ts).
If λ(s, t) = λmax (where λmax is as defined in Step (6)),

then Step (6) sets λ(s, t) = λmax correctly. Otherwise, we

must have λ(s, t) < λmax. In this case, we claim that the

vertex s′ (that has the property λ(s, s′) = λmax in Step (6)

of the algorithm) satisfies λ(s′, t) = λ(s, t). To prove this

claim, we first observe that s′ must appear on the s-side of

the (s, t)-mincut C. Otherwise, if s′ is on the t-side, then C
is an (s, s′)-cut of value λ(s, t) < λmax, contradicting the

guarantee λ(s, s′) = λmax. It follows that λ(s′, t) ≤ λ(s, t).
Next, observe that s must appear on the s′-side of the (s′, t)-
mincut C ′. Otherwise, if s is on the t-side, then C ′ is an

(s, s′)-cut of value λ(s′, t) ≤ λ(s, t) < λmax, contradicting the

guarantee λ(s, s′) = λmax. It follows that λ(s, t) ≤ λ(s′, t),
which proves the claim λ(s, t) = λ(s′, t).

Consider again the (s, t)-mincut C. Since s′ is on the s-side

of the (s, t)-mincut C, if we swap the locations of s and s′ in

T , then C still k-respects the modified tree, and the edges of

the tree that cross the cut are the same (except that s and s′

swap places on the edges). In particular, the subtree Ts with

s replaced by s′ has at least one cut edge. By removing this

modified subtree Ts, we arrive at the tree T (6) in Step (6),

and the (s, t)-mincut C must (k − 1)-respect T (6). So, the

recursive call (G,T (6), k − 1) recovers λ(s′, t) w.h.p., which

equals λ(s, t) by the claim above.

This concludes all cases, and hence the proof of Lemma 17.

B. Running Time

Lemma 18 (Running time). For any fixed integer k ≥ 1, the
algorithm calls max-flow on instances of at most n vertices
and m edges each, and a total of Õ(n) vertices and Õ(m)
edges. Moreover, these max-flow calls dominate the running
time.

We first bound the total number of vertices across all

recursive instances, then use the same technique to also bound

the total number of edges.

We use the following notation for any recursive call:

r = |R(T)| and n represents the number of vertices in G
including contracted vertices, i.e., vertices resulting from the

contraction on Step (4) of any previous instance. (Since the

original instance has no contracted vertex, the initial value of n
is just the number of vertices in the input graph.) The function

f(n, r, k) represents an upper bound on the total number of

vertices among all max-flow calls that occur, starting from a

single input instance with parameters n, r, k (and including

max-flows called inside recursive instances).

Fix an instance with parameters n, r, k. For each i, let ni

represent the number of vertices in Gi, and let ri = |R(Ti)|.
Now observe that

1)
∑�

i=1(ni − 1) = n− 1 since the sets Si are disjoint by

the guarantee of Lemma 11, and

2) ri ≤ r/2 for each i ∈ [�] by the fact that c is a centroid.

We now consider the individual steps of the recursive SSMC

algorithm.

891

1) The algorithm calls a single max-flow in step (2), and

then in step (3), it calls Lemma 11, which in turn calls

max-flows on a total of O(n log �) vertices. In total, this

is O(n log �) vertices among the max-flow calls.

2) In step (4), the algorithm makes recursive calls on trees

T ′i containing ri + 1 real vertices each, and graphs

Gi containing ni vertices each, so the total number of

vertices in the max-flow calls in the recursion is at most∑
i∈[�] f(ni, ri + 1, k).

3) In step (5), the algorithm makes O(log n) independent

calls to an instance where k decreases by 1. So, this step

contributes at most O(log n) · f(n, r, k − 1).
4) In step (6), the algorithm calls Lemma 13, which in turn

calls max-flows on a total of Õ(n) vertices, followed by

a recursive call on an instance where k decreases by 1. In

total, this step contributes at most Õ(n)+f(n, r, k−1).

We may assume that f(n, r, k) is monotone non-decreasing in

all three parameters, which gives us the recursive formula

f(n, r, k) ≤O(n log �)︸ ︷︷ ︸
steps (2),(3)

+
∑

i∈[�]
f(ni, ri + 1, k)

︸ ︷︷ ︸
step (4)

+O(log n) · f(n, r, k − 1)︸ ︷︷ ︸
step (5), only for k>1

+ Õ(n) + f(n, r, k − 1)︸ ︷︷ ︸
step (6), only for k>1

.

We now claim that f(n, r, k) solves to Õ(n) for any constant

k, where the number of polylog terms depends on k. For k =
1, the recursive formula f(n, t, 1) solves to O(n log2 t). This

is because ri + 1 ≤ r/2 + 1 ≤ 2
3r for all i ∈ [�] limits the

recursive depth to O(log t).7 And, since
∑�

i=1(ni−1) = n−1,

the sum of f(·) in any recursive level is O(n log t). For larger

k, note that if we assume that f(n, r, k − 1) ≤ Õ(n), then

we also obtain f(n, r, k) ≤ Õ(n), where the Õ(·) hides more

logarithmic factors. The claim then follows by induction on k.

(Note that the polylogarithmic dependency on k is f(n, r, k) =
n(log n)O(k).)

We now bound the total number of edges. We use the

following notation in any recursive call: as earlier, r = |R(T)|
and n represents the number of vertices in G including

contracted vertices. In addition, m′ represents n plus the

number of edges in G not incident to a contracted vertex.

(Since the original instance has no contracted vertex, the initial

value of m′ is just the number of vertices plus the number

of edges in the input graph.) The function g(m′, n, r, k)
represents an upper bound on f(n, r, k) plus the total number

of edges not incident to contracted vertices among all max-

flow calls that occur, starting from a single input instance

with parameters m′, n, r, k (and including max-flows called

inside recursive instances). This then implies a bound on the

total number of edges over all max-flow calls, including those

7Here, we have used the assumption that r is larger than some constant,
e.g. 10.

incident to contracted vertices, by the following argument.

Each recursive instance has at most O(log |R(T)|) contracted

vertices, since each contraction in Step (4) decreases |R(T)|
by a constant factor. So the total number of edges incident

to contracted vertices is at most the total number of vertices

times O(log |R(T)|), which is at most f(n, r, k) ·O(log n) ≤
g(m′, n, r, k) · O(log n). So from now on, we only focus on

edges not incident to contracted vertices.

Fix an instance with parameters m′, n, r, k. For each i, let

ni represent the number of vertices in Gi, let m′i represent the

number of edges in Gi not incident to a contracted vertex, and

let ri = |R(Ti)|. Once again, observe that
∑�

i=1(ni − 1) =
n − 1 and ri ≤ r/2 for each i ∈ [�]. This time, we also

have
∑�

i=1 m
′
i ≤ m′ by the following explanation: Lemma 11

guarantees that the vertex sets Si are disjoint, and the edges

of each Gi not incident to a contracted vertex have both

endpoints in Si, and are therefore disjoint over all i. We may

assume that g(m,n, r, k) is monotone non-decreasing in all

four parameters, which gives us the recursive formula

g(m′, n, r, k) ≤O((m+ n) log �)︸ ︷︷ ︸
steps (2),(3)

+
∑

i∈[�]
g(mi, ni, ri, k)

︸ ︷︷ ︸
step (4)

+O(log n) · g(m,n, r, k − 1)︸ ︷︷ ︸
step (5), only for k>1

+ Õ(m) + g(m,n, r, k − 1)︸ ︷︷ ︸
step (6), only for k>1

.

Similar to the solution for f(n, r, k), we now have that

g(m,n, r, k) solves to Õ(m + n) for any constant k by the

same inductive argument. (Once again, the polylogarithmic

dependency on k is f(n, r, k) = (m+ n)(log n)O(k).)

Since the graph never increases in size throughout the

recursion, each max-flow call is on a graph with at most as

many vertices and edges as the original input graph. Finally,

we claim that the max-flow calls dominate the running time

of the algorithm. In particular, finding the centroid of T on

step (2) can be done in time in the size of the tree (see

the footnote at step (2)), which is dominated by the single

max-flow call on the same step. This finishes the proof of

Lemma 18.

III. CONSTRUCTING GUIDE TREES

In this section, we show how to obtain guide trees that prove

Theorem 9. Our algorithm is based on the notion of a Steiner
subgraph packing, as described next.

Definition 19. Let G = (V,E,w) be an undirected edge-

weighted graph with a set of terminals U ⊆ V . A subgraph

H of G is said to be a U -Steiner subgraph (or simply a

Steiner subgraph if the terminal set U is unambiguous from

the context) if all the terminals are connected in H . In this

case, we also call H a terminal-spanning subgraph of G.

Definition 20. A U -Steiner-subgraph packing P is a collec-

tion of U -Steiner subgraphs H1, . . . , Hk, where each subgraph

892

Hi is assigned a value val(Hi) > 0. If all val(Hi) are integral,

we say that P is an integral packing. Throughout, a packing

is assumed to be fractional (which means that it does not

have to be integral), unless specified otherwise. The value of

the packing P is the total value of all its Steiner subgraphs,

denoted val(P) = ∑
H∈P val(H). We say that P is feasible

if

∀e ∈ E,
∑

H∈P:e∈H
val(H) ≤ w(e).

To understand this definition, think of w(e) as the “capacity”

of e; then, this condition means that the total value of all

Steiner subgraphs H ∈ P that “use” edge e does not exceed

its capacity w(e). A Steiner-tree packing is a packing P where

each subgraph H ∈ P is a tree.

Denote by pack(U) the maximum value of a feasible U -

Steiner-subgraph packing in G. The next two lemmas show a

close connection between Steiner-subgraph packing pack(U)
and U -Steiner mincut λ(U), and that the former problem

admits a (2 + ε)-approximation algorithm.

Lemma 21. For every graph G with terminal set U , we have
λ(U)/2 ≤ pack(U) ≤ λ(U).

Lemma 22. There is a deterministic algorithm that, given
ε ∈ (0, 1/2), a graph G = (V,E,w), and a terminal set
U ⊆ V , returns a U -Steiner-subgraph packing P of value
val(P) ≥ pack(U)/(2+ε) in Õ(m2/ε2) time, and in the case
of unweighted G in m1+o(1)/ε2 time.

We defer Lemmas 21 and 22 to the full version of the paper.

Assuming these lemmas, we immediately obtain the following.

Corollary 23. There is a deterministic algorithm that, given
ε ∈ (0, 1/2) and a graph G = (V,E,w) with m edges and
terminal set U ⊆ V , returns a U -Steiner subgraph packing P
of value val(P) ≥ λ(U)/(4 + ε) in Õ(m2/ε2) time, and in
the case of unweighted G in m1+o(1)/ε2 time.

A. Algorithm for constructing guide trees.

Given Corollary 23, we can now prove Theorem 9.

Proof of Theorem 9. Fix ε0 = 1/60 (or another sufficiently

small ε0 > 0). The construction of guide trees is described in

Algorithm 1. To analyze this algorithm, let P be the packing

computed in line 5. Consider t ∈ U \ {s}, and let (St, V \St)
be a minimum s, t-cut in G. Denote by w(St, V \St) the total

edge-weight of this cut in G, and by w′(St, V \ St) the total

edge-weight of the cut in G′ between these same vertices.

Consider first an unweighted input G. Then, the computa-

tion in line 5 is applied to G′ = G. By combining Corollary 23

and the promise in the single source terminal mincuts problem

(Problem 5) that λG(s, t) ≤ 1.1λ(U), 8 we get that

val(P) ≥ λ(U)

4 + ε0
≥ λG(s, t)

1.1(4 + ε0)
=

w′(St, V \ St)

1.1(4 + ε0)
. (1)

8For a graph G′, λG′ (s, t) denotes the value of an (s, t)-mincut in G′,
and recall that λ(U) is the value of a U -Steiner mincut in G.

Algorithm 1: An algorithm for constructing guide

trees

input : Undirected graph G = (V,E,w) (weighted or

unweighted) and terminal set U ⊆ V
output: A collection of guide trees for U

1 if G is weighted then then
2 compute for it a (1± ε0)-cut-sparsifier G′

using [22] and ε0 = 1/60, thus G′ has

m = Õ(n/ε20) edges

3 else
4 let G′ ← G

5 compute a packing P for G′ by applying Corollary 23

6 sample 300 lnn subgraphs from P , each drawn

independently from the distribution

{val(H)/val(P)}H∈P
7 compute any Steiner tree of each sampled subgraph,

and report these trees

If the input graph G is weighted, then the bound in (1)

applies to the cut-sparsifier G′ of G, and we get that

val(P) ≥ λG′(s, t)

1.1(4 + ε0)
≥ (1− ε0) · w(St, V \ St)

1.1(4 + ε0)
(2)

≥ (1− ε0) · w′(St, V \ St)

1.1(4 + ε0)(1 + ε0)
≥ w′(St, V \ St)

1.1(4 + 30ε0)
. (3)

We remark that now the packing P contains subgraphs of the

sparsifier G′ and not of G, but it will not pose any issue.

In both cases we have the weaker inequality

val(P) ≥ w′(St, V \ St)

1.1(4 + 30ε0)
. (4)

Let E′t be the set of edges in the cut (St, V \ St) in G′

(depending on the case, G′ is either G or the sparsifier). Let

P≤4 ⊆ P be the subset of all Steiner subgraphs H ∈ P whose

intersection with E′t is at most 4 edges, and let Ft be the event

that no subgraph from P≤4 is sampled in line 6. Then

Pr[Ft] = (1− val(P≤4)/val(P))300 lnn

≤ n−300·val(P≤4)/val(P). (5)

Similarly to Karger’s paper [47], define xH to be one less

than the number of edges of H that crosses the cut E′t, and

observe that xH is always a non-negative integer (because U
is connected in H). Since P is a packing, every edge of E′t
appears in at most one subgraph of P , and consequently,

∑
H∈P

val(H)(xH + 1) ≤
∑

e∈E′
t

w(e) = w′(St, V \ St)

=⇒
∑
H∈P

val(H)xH ≤ w′(St, V \ St)−
∑
H∈P

val(H)

= w′(St, V \ St)− val(P).

893

Observe that for a random H̄ ∈ P drawn as in line 6,

EH̄ [xH̄] =
∑
H∈P

xH ·
val(H)

val(P) ≤
w′(St, V \ St)

val(P) − 1

≤ 1.1(4 + 30ε0)− 1,

where the last inequality is by (4). By Markov’s inequality,

Pr
H̄
[xH̄ ≥ 4] ≤ 1.1(4 + 30ε0)− 1

4
≤ 0.99.

Observe that val(P≤4)/val(P) = PrH̄ [xH̄ < 4] ≥ 0.01, and

so by plugging into (5) we get that Pr[Ft] ≤ 1/n3. Finally, by

a union bound we have that with high probability, for every

t ∈ U \ {s}, at least one of the subgraphs that are sampled

in line 6 of the algorithm 4-respects the cut E′t,
9 and thus

at least one of the trees reported by the algorithm 4-respects

E′t. Furthermore, since the cut E′t in G′ has the exact same

bipartition of V as the (s, t)-mincut in G, the reported tree

mentioned above 4-respects also the (s, t)-mincut in G (recall

that Definition 7 refers to a cut as a bipartition of V).
Finally, computing a Steiner tree of a Steiner subgraph in

Line 7 only takes linear time, and so the running time is

dominated by line 5 and thus it is bounded by Õ(n2/ε2) for

weighted graphs and by m1+o(1)/ε2 for unweighted graphs,

and by fixing a small ε > 0, we can write these as Õ(n2)
and m1+o(1), respectively. This concludes the proof of Theo-

rem 9.

IV. CONCLUSION

In this paper, we broke the longstanding cubic barrier for the

GHTREE and APMF problems in general, weighted graphs.

All previous improvements since 1961, were either corollaries

of speed-ups in (single-pair) max-flow algorithms, or were

limited to special graph classes. Assuming the APSP Con-

jecture, a cornerstone of fine-grained complexity, our result

disproves the belief that computing max-flows is at least as

hard as computing shortest-paths.
Our algorithm has a running time of Õ(n2) which is

nearly-optimal for APMF if all
(
n
2

)
max-flow values must be

returned. For GHTREE in unweighted graphs, our techniques

yield an improved running time of m1+o(1). In fact, a succinct

representation of all-pairs max-flows can be produced in the

time of Õ(1) calls to a (single-pair) max-flow algorithm.
It is an interesting open question as to whether our tech-

niques can be extended to obtain an m1+o(1)-time GHTREE

algorithm for weighted graphs as well. In particular, the most

significant challenge is to design a new dynamic Steiner

tree subroutine that can be used for packing Steiner trees in

weighted graphs in almost-linear time.

9Strictly speaking, Definition 7 defines 4-respecting only relative to a tree
T , but the same wording extends immediately to any graph T (not necessarily
a tree).

REFERENCES

[1] ABBOUD, A., COHEN-ADDAD, V., AND KLEIN, P. N. New hardness
results for planar graph problems in p and an algorithm for sparsest
cut. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020
(2020), K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and
J. Chuzhoy, Eds., ACM, pp. 996–1009.

[2] ABBOUD, A., AND DAHLGAARD, S. Popular conjectures as a barrier
for dynamic planar graph algorithms. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA (2016), I. Dinur, Ed.,
IEEE Computer Society, pp. 477–486.

[3] ABBOUD, A., GEORGIADIS, L., ITALIANO, G. F., KRAUTHGAMER,
R., PAROTSIDIS, N., TRABELSI, O., UZNANSKI, P., AND WOLLEB-
GRAF, D. Faster Algorithms for All-Pairs Bounded Min-Cuts. In 46th
International Colloquium on Automata, Languages, and Programming
(ICALP 2019) (2019), vol. 132, pp. 7:1–7:15.

[4] ABBOUD, A., GRANDONI, F., AND WILLIAMS, V. V. Subcubic
equivalences between graph centrality problems, APSP and diameter.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015 (2015), P. Indyk, Ed., SIAM, pp. 1681–1697.

[5] ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. Cut-equivalent
trees are optimal for min-cut queries. In 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020 (2020), pp. 105–118.

[6] ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. APMF <
APSP? Gomory-Hu tree for unweighted graphs in almost-quadratic time.
Accepted to FOCS’21 (2021). arXiv:2106.02981.

[7] ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. New algo-
rithms and lower bounds for all-pairs max-flow in undirected graphs.
Theory of Computing 17, 5 (2021), 1–27.

[8] ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. Subcubic
algorithms for gomory–hu tree in unweighted graphs. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
(2021), pp. 1725–1737.

[9] ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. Friendly cut
sparsifiers and faster Gomory-Hu trees. Accepted to SODA’22 (2022).
arXiv:2110.15891.

[10] ABBOUD, A., VASSILEVSKA WILLIAMS, V., AND YU, H. Matching
triangles and basing hardness on an extremely popular conjecture. In
Proc. of 47th STOC (2015), pp. 41–50.

[11] ABBOUD, A., AND WILLIAMS, V. V. Popular conjectures imply strong
lower bounds for dynamic problems. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014 (2014), pp. 434–443.

[12] AHUJA, R., MAGNANTI, T., AND ORLIN, J. Network Flows. Prentice
Hall, 1993.

[13] AKIBA, T., IWATA, Y., SAMESHIMA, Y., MIZUNO, N., AND YANO, Y.
Cut tree construction from massive graphs. In 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM) (2016), IEEE, pp. 775–780.

[14] ALMAN, J., AND WILLIAMS, V. V. A refined laser method and
faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021 (2021), pp. 522–539.

[15] ANARI, N., AND VAZIRANI, V. V. Planar graph perfect matching is in
NC. Journal of the ACM 67, 4 (2020), 1–34.

[16] ARIKATI, S. R., CHAUDHURI, S., AND ZAROLIAGIS, C. D. All-pairs
min-cut in sparse networks. J. Algorithms 29, 1 (1998), 82–110.

[17] ARORA, S., HAZAN, E., AND KALE, S. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing
8, 1 (2012), 121–164.

[18] BACKURS, A., DIKKALA, N., AND TZAMOS, C. Tight hardness results
for maximum weight rectangles. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy (2016), I. Chatzigiannakis, M. Mitzenmacher,
Y. Rabani, and D. Sangiorgi, Eds., vol. 55 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, pp. 81:1–81:13.

[19] BACKURS, A., AND TZAMOS, C. Improving viterbi is hard: Better
runtimes imply faster clique algorithms. In International Conference on
Machine Learning (2017), PMLR, pp. 311–321.

[20] BARTH, D., BERTHOMÉ, P., DIALLO, M., AND FERREIRA, A. Revisit-
ing parametric multi-terminal problems: Maximum flows, minimum cuts
and cut-tree computations. Discrete Optimization 3, 3 (2006), 195–205.

[21] BASWANA, S., GUPTA, S., AND KNOLLMANN, T. Mincut sensitivity
data structures for the insertion of an edge. In 28th Annual European
Symposium on Algorithms (ESA 2020) (2020).

[22] BENCZÚR, A. A., AND KARGER, D. R. Randomized approximation
schemes for cuts and flows in capacitated graphs. SIAM J. Comput. 44,
2 (2015), 290–319.

894

[23] BERNSTEIN, A., GUTENBERG, M. P., AND SARANURAK, T. Deter-
ministic decremental sssp and approximate min-cost flow in almost-
linear time. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS) (2022), IEEE, pp. 1000–1008.

[24] BHALGAT, A., HARIHARAN, R., KAVITHA, T., AND PANIGRAHI, D.
An Õ(mn) Gomory-Hu tree construction algorithm for unweighted
graphs. In 39th Annual ACM Symposium on Theory of Computing
(2007), STOC’07, pp. 605–614.

[25] BORRADAILE, G., EPPSTEIN, D., NAYYERI, A., AND WULFF-NILSEN,
C. All-pairs minimum cuts in near-linear time for surface-embedded
graphs. In 32nd International Symposium on Computational Geometry
(2016), vol. 51 of SoCG ’16, pp. 22:1–22:16.

[26] BORRADAILE, G., SANKOWSKI, P., AND WULFF-NILSEN, C. Min st-
cut oracle for planar graphs with near-linear preprocessing time. ACM
Trans. Algorithms 11, 3 (2015).

[27] BRINGMANN, K., GAWRYCHOWSKI, P., MOZES, S., AND WEIMANN,
O. Tree edit distance cannot be computed in strongly subcubic time
(unless apsp can). ACM Transactions on Algorithms (TALG) 16, 4
(2020), 1–22.

[28] CEN, R., LI, J., AND PANIGRAHI, D. Augmenting edge connectivity
via isolating cuts. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022 (2022).

[29] CHEKURI, C., AND QUANRUD, K. Isolating cuts,(bi-) submodularity,
and faster algorithms for connectivity. In 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021) (2021),
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[30] CHEN, L., KYNG, R., LIU, Y. P., PENG, R., GUTENBERG, M. P., AND

SACHDEVA, S. Maximum flow and minimum-cost flow in almost-linear
time. CoRR abs/2203.00671 (2022).

[31] COOK, W., CUNNINGHAM, W., PULLEYBANK, W., AND SCHRIJVER,
A. Combinatorial Optimization. Wiley, 1997.

[32] CYGAN, M., MUCHA, M., WEGRZYCKI, K., AND WŁODARCZYK, M.
On problems equivalent to (min,+)-convolution. ACM Transactions on
Algorithms (TALG) 15, 1 (2019), 1–25.

[33] DIJKSTRA, E. W. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[34] ELMAGHRABY, S. E. Sensitivity analysis of multiterminal flow net-
works. Operations Research 12, 5 (1964), 680–688.

[35] FLEISCHER, L. K. Approximating fractional multicommodity flow
independent of the number of commodities. SIAM Journal on Discrete
Mathematics 13, 4 (2000), 505–520.

[36] GARG, N., AND KÖNEMANN, J. Faster and simpler algorithms for
multicommodity flow and other fractional packing problems. SIAM
Journal on Computing 37, 2 (2007), 630–652.

[37] GAWRYCHOWSKI, P., MOZES, S., AND WEIMANN, O. Planar negative
k-cycle. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021
(2021), D. Marx, Ed., SIAM, pp. 2717–2724.

[38] GOLDBERG, A. V., AND RAO, S. Beyond the flow decomposition
barrier. J. ACM 45, 5 (1998), 783–797.

[39] GOLDBERG, A. V., AND TSIOUTSIOULIKLIS, K. Cut tree algorithms:
an experimental study. Journal of Algorithms 38, 1 (2001), 51–83.

[40] GOMORY, R. E., AND HU, T. C. Multi-terminal network flows. Journal
of the Society for Industrial and Applied Mathematics 9 (1961), 551–
570.

[41] GUSFIELD, D. Very simple methods for all pairs network flow analysis.
SIAM Journal on Computing 19, 1 (1990), 143–155.

[42] HARTMANN, T., AND WAGNER, D. Dynamic Gomory–Hu tree
construction–fast and simple. arXiv preprint arXiv:1310.0178 (2013).

[43] HASSIN, R., AND LEVIN, A. Flow trees for vertex-capacitated net-
works. Discrete Appl. Math. 155, 4 (2007), 572–578.

[44] HENZINGER, M., KRINNINGER, S., AND NANONGKAI, D. Decremen-
tal single-source shortest paths on undirected graphs in near-linear total
update time. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science (2014), IEEE, pp. 146–155.

[45] HU, T. C. Optimum communication spanning trees. SIAM Journal on
Computing 3, 3 (1974), 188–195.

[46] JELINEK, F. On the maximum number of different entries in the terminal
capacity matrix of oriented communication nets. IEEE Transactions on
Circuit Theory 10, 2 (1963), 307–308.

[47] KARGER, D. R. Minimum cuts in near-linear time. Journal of the ACM
47, 1 (2000), 46–76.

[48] KARGER, D. R., AND LEVINE, M. S. Fast augmenting paths by random
sampling from residual graphs. SIAM J. Comput. 44, 2 (2015), 320–339.

[49] KORTE, B., AND VYGEN, J. Combinatorial optimization, vol. 2.
Springer, 2012.

[50] KRAUTHGAMER, R., AND TRABELSI, O. Conditional lower bounds for
all-pairs max-flow. ACM Trans. Algorithms 14, 4 (2018), 42:1–42:15.

[51] LI, J. Preconditioning and Locality in Algorithm Design. PhD thesis,
Carnegie Mellon University, 2021.

[52] LI, J., NANONGKAI, D., PANIGRAHI, D., SARANURAK, T., AND

YINGCHAREONTHAWORNCHAI, S. Vertex connectivity in poly-
logarithmic max-flows. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (2021), pp. 317–329.

[53] LI, J., AND PANIGRAHI, D. Deterministic min-cut in poly-logarithmic
max-flows. In 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2020 (2020), pp. 85–92.

[54] LI, J., AND PANIGRAHI, D. Approximate Gomory-Hu tree is faster than
n−1 max-flows. In STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing (2021), ACM, pp. 1738–1748.

[55] LI, J., PANIGRAHI, D., AND SARANURAK, T. A nearly optimal all-
pairs min-cuts algorithm in simple graphs. Accepted to FOCS’21 (2021).
arXiv:2106.02233.

[56] MADER, W. A reduction method for edge-connectivity in graphs. In
Advances in Graph Theory, B. Bollobás, Ed., vol. 3 of Annals of Discrete
Mathematics. Elsevier, 1978, pp. 145–164.

[57] MAYEDA, W. On oriented communication nets. IRE Transactions on
Circuit Theory 9, 3 (1962), 261–267.

[58] MEHLHORN, K. A faster approximation algorithm for the steiner
problem in graphs. Information Processing Letters 27, 3 (1988), 125–
128.

[59] MUKHOPADHYAY, S., AND NANONGKAI, D. A note on isolating
cut lemma for submodular function minimization. arXiv preprint
arXiv:2103.15724 (2021).

[60] NASH-WILLIAMS, C. S. A. Edge-Disjoint Spanning Trees of Finite
Graphs. Journal of the London Mathematical Society s1-36, 1 (01 1961),
445–450.

[61] NAVES, G., AND SHEPHERD, F. B. When do Gomory-Hu subtrees
exist? CoRR (2018).

[62] PADBERG, M. W., AND RAO, M. R. Odd minimum cut-sets and b-
matchings. Mathematics of Operations Research 7, 1 (1982), 67–80.

[63] PANIGRAHI, D. Gomory-Hu trees. In Encyclopedia of Algorithms, M.-
Y. Kao, Ed. Springer New York, 2016, pp. 858–861.

[64] PICARD, J.-C., AND QUEYRANNE, M. On the structure of all minimum
cuts in a network and applications. In Combinatorial Optimization II.
Springer, 1980, pp. 8–16.

[65] RODITTY, L., AND ZWICK, U. On dynamic shortest paths problems. In
European Symposium on Algorithms (2004), Springer, pp. 580–591.

[66] SAHA, B. Language edit distance and maximum likelihood parsing of
stochastic grammars: Faster algorithms and connection to fundamental
graph problems. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015
(2015), V. Guruswami, Ed., IEEE Computer Society, pp. 118–135.

[67] SCHRIJVER, A. Combinatorial Optimization. Springer, 2003.
[68] SEIDEL, R. On the all-pairs-shortest-path problem in unweighted

undirected graphs. Journal of computer and system sciences 51, 3
(1995), 400–403.

[69] TUTTE, W. T. On the Problem of Decomposing a Graph into n
Connected Factors. Journal of the London Mathematical Society s1-
36, 1 (01 1961), 221–230.

[70] WILLIAMS, V. V., AND WILLIAMS, R. R. Subcubic equivalences
between path, matrix, and triangle problems. J. ACM 65, 5 (2018),
27:1–27:38.

[71] WU, Z., AND LEAHY, R. An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation. IEEE
transactions on pattern analysis and machine intelligence 15, 11 (1993),
1101–1113.

[72] ZHANG, T. Faster Cut-Equivalent Trees in Simple Graphs. In 49th
International Colloquium on Automata, Languages, and Programming
(ICALP 2022) (Dagstuhl, Germany, 2022), vol. 229 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pp. 109:1–109:18.

895

