
Robust Algorithms for TSP and Steiner Tree1

Arun Ganesh2

Department of Electrical Engineering and Computer Sciences, UC Berkeley, USA3

arunganesh@berkeley.edu4

Bruce M. Maggs5

Department of Computer Science, Duke University, USA and Emerald Innovations, USA6

bmm@cs.duke.edu7

Debmalya Panigrahi8

Department of Computer Science, Duke University, USA9

debmalya@cs.duke.edu10

Abstract11

Robust optimization is a widely studied area in operations research, where the algorithm takes12

as input a range of values and outputs a single solution that performs well for the entire range.13

Specifically, a robust algorithm aims to minimize regret, defined as the maximum difference between14

the solution’s cost and that of an optimal solution in hindsight once the input has been realized. For15

graph problems in P, such as shortest path and minimum spanning tree, robust polynomial-time16

algorithms that obtain a constant approximation on regret are known. In this paper, we study17

robust algorithms for minimizing regret in NP-hard graph optimization problems, and give constant18

approximations on regret for the classical traveling salesman and Steiner tree problems.19

2012 ACM Subject Classification Theory of computation → Routing and network design problems20

Keywords and phrases Robust optimization, Steiner tree, traveling salesman problem21

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.5422

Funding Arun Ganesh: Supported in part by NSF Award CCF-1535989.23

Bruce M. Maggs: Supported in part by NSF Award CCF-1535972.24

Debmalya Panigrahi: Supported in part by NSF grants CCF-1535972, CCF-1955703, an NSF25

CAREER Award CCF-1750140, and the Indo-US Virtual Networked Joint Center on Algorithms26

under Uncertainty.27

© Arun Ganesh and Bruce M. Maggs and Debmalya Panigrahi;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 54; pp. 54:1–54:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arunganesh@berkeley.edu
mailto:bmm@cs.duke.edu
mailto:debmalya@cs.duke.edu
https://doi.org/10.4230/LIPIcs.ICALP.2020.54
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Robust Algorithms for TSP and Steiner Tree

1 Introduction28

In many graph optimization problems, the inputs are not known precisely and the algorithm is29

desired to perform well over a range of inputs. For instance, consider the following situations.30

Suppose we are planning the delivery route of a vehicle that must deliver goods to n locations.31

Due to varying traffic conditions, the exact travel times between locations are not known32

precisely, but a range of possible travel times is available from historical data. Can we design33

a tour that is nearly optimal for all travel times in the given ranges? Consider another34

situation where we are designing a telecommunication network to connect a set of locations.35

We are given cost estimates on connecting every two locations in the network but these36

estimates might be off due to unexpected construction problems. Can we design the network37

in a way that is nearly optimal for all realized construction costs?38

These questions have led to the field of robust graph algorithms. Given a range of weights39

[`e, ue] for every edge e, the goal is to find a solution that minimizes regret, defined as the40

maximum difference between the algorithm’s cost and the optimal cost for any edge weights.41

In other words, the goal is to obtain: minsol maxI(sol(I) − opt(I)), where sol(I) (resp.42

opt(I)) denotes the cost of sol (resp. the optimal solution) in instance I, sol ranges over43

all feasible solutions, and I ranges over all realizable inputs. We emphasize that sol is a44

fixed solution (independent of I) whereas the solution determining opt(I) is dependent on45

the input I. The solution that achieves this minimum is called the minimum regret solution46

(mrs), and its regret is the minimum regret (mr). In many cases, however, minimizing regret47

turns out to be NP-hard, in which case one seeks an approximation guarantee. Namely, a48

β-approximation algorithm satisfies, for all input realizations I, sol(I)− opt(I) ≤ β · mr,49

i.e., sol(I) ≤ opt(I) + β ·mr.50

It is known that minimizing regret is NP-hard for shortest path [34] and minimum51

cut [1] problems, and using a general theorem for converting exact algorithms to robust52

ones, 2-approximations are known for these problems [12, 23]. In some cases, better results53

are known for special classes of graphs, e.g., [24]. Robust minimum spanning tree (mst)54

has also been studied, although in the context of making exponential-time exact algorithms55

more practical [33]. Moreover, robust optimization has been extensively researched for other56

(non-graph) problem domains in the operations research community, and has led to results57

in clustering [5, 3, 6, 27], linear programming [21, 28], and other areas [4, 23]. More details58

can be found in the book by Kouvelis and Yu [26] and the survey by Aissi et al. [2].59

To the best of our knowledge, all previous work in polynomial-time algorithms for60

minimizing regret in robust graph optimization focused on problems in P. In this paper,61

we study robust graph algorithms for minimizing regret in NP-hard optimization problems.62

In particular, we study robust algorithms for the classical traveling salesman (tsp) and63

Steiner tree (stt) problems, that model e.g. the two scenarios described at the beginning64

of the paper. As a consequence of the NP-hardness, we cannot hope to show guarantees65

of the form: sol(I) ≤ opt(I) + β · mr, since for `e = ue (i.e., mr = 0), this would imply66

an exact algorithm for an NP-hard optimization problem. Instead, we give guarantees:67

sol(I) ≤ α·opt(I)+β ·mr, where α is (necessarily) at least as large as the best approximation68

guarantee for the optimization problem. We call such an algorithm an (α, β)-robust algorithm.69

If both α and β are constants, we call it a constant-approximation to the robust problem. In70

this paper, our main results are constant approximation algorithms for the robust traveling71

salesman and Steiner tree problems. We hope that our work will lead to further research in72

the field of robust approximation algorithms, particularly for other NP-hard optimization73

problems in graph algorithms as well as in other domains.74

A.Ganesh and B.M. Maggs and D. Panigrahi 54:3

1.1 Problem Definition and Results75

We first define the Steiner tree (stt) and traveling salesman problems (tsp). In both76

problems, the input is an undirected graph G = (V,E) with non-negative edge costs. In77

Steiner tree, we are also given a subset of vertices called terminals and the goal is to obtain a78

minimum cost connected subgraph of G that spans all the terminals. In traveling salesman,79

the goal is to obtain a minimum cost tour that visits every vertex in V 1. In the robust80

versions of these problems, the edge costs are ranges [`e, ue] from which any cost may realize.81

Our main results are the following:82

I Theorem 1. (Robust Approximations.) There exist constant approximation algorithms for83

the robust traveling salesman and Steiner tree problems.84

Remark: The constants we are able to obtain for the two problems are very different:85

(4.5, 3.75) for tsp (in Section 3) and (2755, 64) for stt (in Section 4). While we did not86

attempt to optimize the precise constants, obtaining small constants for stt comparable to87

the tsp result requires new ideas beyond our work and is an interesting open problem.88

We complement our algorithmic results with lower bounds. Note that if `e = ue, we have89

mr = 0 and thus an (α, β)-robust algorithm gives an α-approximation for precise inputs. So,90

hardness of approximation results yield corresponding lower bounds on α. More interestingly,91

we show that hardness of approximation results also yield lower bounds on the value of β92

(see Section 5 for details):93

I Theorem 2. (APX-hardness.) A hardness of approximation of ρ for tsp (resp., stt)94

under P 6= NP implies that it is NP-hard to obtain α ≤ ρ (irrespective of β) and β ≤ ρ95

(irrespective of α) for robust tsp (resp., robust stt).96

1.2 Our Techniques97

We now give a sketch of our techniques. Before doing so, we note that for problems in P98

with linear objectives, it is known that running an exact algorithm using weights `e+ue

299

gives a (1, 2)-robust solution [12, 23]. One might hope that a similar result can be obtained100

for NP-hard problems by replacing the exact algorithm with an approximation algorithm101

in the above framework. Unfortunately, there exists robust tsp instances where using a102

2-approximation for tsp with weights `e+ue

2 gives a solution that is not (α, β)-robust for any103

α = o(n), β = o(n). More generally, a black-box approximation run on a fixed realization104

could output a solution including edges that have small weight relative to opt for that105

realization (so including these edges does not violate the approximation guarantee), but106

these edges could have large weight relative to mr and opt in other realizations, ruining the107

robustness guarantee. This establishes a qualitative difference between robust approximations108

for problems in P considered earlier and NP-hard problems being considered in this paper,109

and demonstrates the need to develop new techniques for the latter class of problems.110

LP relaxation. We denote the input graph G = (V,E). For each edge e ∈ E, the input is
a range [`e, ue] where the actual edge weight de can realize to any value in this range. The
robust version of a graph optimization problem is is then described by the LP

min{r : x ∈ P ;
∑
e∈E

dexe ≤ opt(d) + r, ∀d},

1 There are two common and equivalent assumptions made in the tsp literature in order to achieve
reasonable approximations. In the first assumption, the algorithms can visit vertices multiple times in
the tour, while in the latter, the edges satisfy the metric property. We use the former in this paper.

ICALP 2020

54:4 Robust Algorithms for TSP and Steiner Tree

where P is the standard polytope for the optimization problem, and opt(d) denotes the111

cost of an optimal solution when the edge weights are d = {de : e ∈ E}. That is, this is the112

standard LP for the problem, but with the additional constraint that the fractional solution113

x must have regret at most r for any realization of edge weights. We call the additional114

constraints the regret constraint set. Note that setting x to be the indicator vector of mrs115

and r to mr gives a feasible solution to the LP; thus, the LP optimum is at most mr.116

Solving the LP. We assume that the constraints in P are separable in polynomial time
(e.g., this is true for most standard optimization problems including stt and tsp). So,
designing the separation oracle comes down to separating the regret constraint set, which
requires checking that:

max
d

[∑
e∈E

dexe − opt(d)
]

=

max
d

max
sol

[∑
e∈E

dexe − sol(d)
]

= max
sol

max
d

[∑
e∈E

dexe − sol(d)
]
≤ r.

Thus, given a fractional solution x, we need to find an integer solution sol and a weight117

vector d that maximizes the regret of x given by
∑
e∈E dexe − sol(d). Once sol is fixed,118

finding d that maximizes the regret is simple: If sol does not include an edge e, then to119

maximize
∑
e∈E dexe − sol(d), we set de = ue; else if sol includes e, we set de = `e. Note120

that in these two cases, edge e contributes uexe and `exe− `e respectively to the regret. The121

above maximization thus becomes:122

max
sol

[∑
e/∈sol

uexe +
∑
e∈sol

(`exe − `e)
]

=
∑
e∈E

uexe −min
sol

∑
e∈sol

(uexe − `exe + `e). (1)123

Thus, sol is exactly the optimal solution with edge weights ae := uexe − `exe + `e. (For124

reference, we define the derived instance of the problem as one with edge weights ae.)125

Now, if we were solving a problem in P, we would simply need to solve the problem on126

the derived instance. Indeed, we will show later that this yields an alternative technique for127

obtaining robust algorithms for problems in P, and recover existing results in [23]. However,128

we cannot hope to find an optimal solution to an NP-hard problem. Our first compromise is129

that we settle for an approximate separation oracle. More precisely, our goal is to show that130

there exists some fixed constants α′, β′ ≥ 1 such that if
∑
e dexe > α′ · opt(d) + β′ · r for131

some d, then we can find sol,d′ such that
∑
e d
′
exe > sol(d′) + r. Since the LP optimum132

is at most mr, we can then obtain an (α′, β′)-robust fractional solution using the standard133

ellipsoid algorithm.134

For tsp, we show that the above guarantee can be achieved by the classic mst-based
2-approximation on the derived instance. The details appear in Section 3 and the full paper.
Although stt also admits a 2-approximation based on the mst solution, this turns out to be
insufficient for the above guarantee. Instead, we use a different approach here. We note that
the regret of the fractional solution against any fixed solution sol (i.e., the argument over
which Eq. (1) maximizes) can be expressed as the following difference:∑

e/∈sol

(uexe − `exe + `e)−
∑
e∈E

(`e − `exe) =
∑
e/∈sol

ae −
∑
e∈E

be, where be := `e − `exe.

The first term is the weight of edges in the derived instance that are not in sol. The second
term corresponds to a new stt instance with different edge weights be. It turns out that the
overall problem now reduces to showing the following approximation guarantees on these

A.Ganesh and B.M. Maggs and D. Panigrahi 54:5

two stt instances (c1 and c2 are constants):

(i)
∑

e∈alg\sol

ae ≤ c1 ·
∑

e∈sol\alg

ae and (ii)
∑
e∈alg

be ≤ c2 ·
∑
e∈sol

be.

Note that guarantee (i) on the derived instance is an unusual “difference approximation” that135

is stronger than usual approximation guarantees. Moreover, we need these approximation136

bounds to simultaneously hold, i.e., hold for the same alg. Obtaining these dual approxima-137

tion bounds simultaneously forms the most technically challenging part of our work; a high138

level overview is given in Section 4 and technical details are deferred to the full paper.139

Rounding the fractional solution. After applying our approximate separation oracles,140

we have a fractional solution x such that for all edge weights d, we have
∑
e dexe ≤141

α′ · opt(d) + β′ ·mr. Suppose that, ignoring the regret constraint set, the LP we are using142

has integrality gap at most δ for precise inputs. Then a natural rounding approach is to143

search for an integer solution alg that has minimum regret with respect to the specific144

solution δx, i.e., alg satisfies:145

alg = argmin
sol

max
d

[
sol(d)− δ

∑
e∈E

dexe

]
. (2)146

Since the integrality gap is at most δ, we have δ ·
∑
e∈E dexe ≥ opt(d) for any d. This

implies that:
mrs(d)− δ ·

∑
e∈E

dexe ≤ mrs(d)− opt(d) ≤ mr.

Hence, the regret of mrs with respect to δx is at most mr. Since alg has minimum regret147

with respect to δx, alg’s regret is also at most mr. Note that δx is a (δα′, δβ′)-robust148

solution. Hence, alg is a (δα′, δβ′ + 1)-robust solution.149

If we are solving a problem in P, finding alg that satisfies Eq. (2) is easy. So, using an150

integral LP formulation (i.e., integrality gap of 1), we get a (1, 2)-robust algorithm overall for151

these problems. This exactly matches the results in [23], although we are using a different152

set of techniques. Of course, for NP-hard problems, finding a solution alg that satisfies153

Eq. (2) is NP-hard as well. It turns out, however, that we can design a generic rounding154

algorithm that gives the following guarantee:155

I Theorem 3. There exists a rounding algorithm that takes as input an (α, β)-robust156

fractional solution to stt (resp. tsp) and outputs a (γδα, γδβ + γ)-robust integral solution,157

where γ and δ are respectively the best approximation factor and integrality gap for (classical)158

stt (resp., tsp).159

We remark that while we stated this rounding theorem for stt and tsp here, we actually160

give a more general version (Theorem 4) in Section 2 that applies to a broader class of161

covering problems including set cover, survivable network design, etc. and might be useful in162

future research in this domain.163

1.3 Related Work164

We have already discussed the existing literature in robust optimization for minimizing regret.165

Other robust variants of graph optimization have also been studied in the literature. In166

the robust combinatorial optimization model proposed by Bertsimas and Sim [7], edge costs167

are given as ranges as in this paper, but instead of optimizing for all realizations of costs168

within the ranges, the authors consider a model where at most k edge costs can be set to169

ICALP 2020

54:6 Robust Algorithms for TSP and Steiner Tree

their maximum value and the remaining are set to their minimum value. The objective is to170

minimize the maximum cost over all realizations. In this setting, there is no notion of regret171

and an approximation algorithm for the standard problem translates to an approximation172

algorithm for the robust problem with the same approximation factor.173

In the data-robust model [13], the input includes a polynomial number of explicitly174

defined “scenarios” for edge costs, with the goal of finding a solution that is approximately175

optimal for all given scenarios. That is, in the input one receives a graph and a polynomial176

number of scenarios d(1),d(2) . . .d(k) and the goal is to find alg whose maximum cost across177

all scenarios is at most some approximation factor times minsol maxi∈[k]
∑
e∈sol d

(i)
e . In178

contrast, in this paper, we have exponentially many scenarios and look at the maximum of179

alg(d)− opt(d) rather than alg(d). A variation of this is the recoverable robust model [9],180

where after seeing the chosen scenario, the algorithm is allowed to “recover” by making a181

small set of changes to its original solution.182

Dhamdhere et al. [13] also studies the demand-robust model, where edge costs are fixed183

but the different scenarios specify different connectivity requirements of the problem. The184

algorithm now operates in two phases: In the first phase, the algorithm builds a partial185

solution T ′ and then one of the scenarios (sets of terminals) Ti is revealed to the algorithm.186

In the second phase, the algorithm then adds edges to T ′ to build a solution T , but187

must pay a multiplicative cost of σk on edges added in the second phase. The demand-188

robust model was inspired by a two-stage stochastic optimization model studied in, e.g.,189

[30, 29, 31, 13, 14, 25, 18, 19, 20, 8] where the scenario is chosen according to a distribution190

rather than an adversary.191

Another related setting to the data-robust model is that of robust network design,192

introduced to model uncertainty in the demand matrix of network design problems (see the193

survey by Chekuri [10]). This included the well-known VPN conjecture (see, e.g., [17]), which194

was eventually settled in [15]. In all these settings, however, the objective is to minimize195

the maximum cost over all realizations, whereas in this paper, our goal is to minimize the196

maximum regret against the optimal solution.197

2 Generalized Rounding Algorithm198

We start by giving the rounding algorithm of Theorem 3, which is a corollary of the following,199

more general theorem:200

I Theorem 4. Let P be an optimization problem defined on a set system S ⊆ 2E that seeks201

to find the set S ∈ S that minimizes
∑
e∈S de, i.e., the sum of the weights of elements in S.202

In the robust version of this optimization problem, we have de ∈ [`e, ue] for all e ∈ E.203

Consider an LP formulation of P (called P-LP) given by: {min
∑
e∈E dexe : x ∈ X,x ∈204

[0, 1]E}, where X is a polytope containing the indicator vector χS of all S ∈ S and not205

containing χS for any S /∈ S. The corresponding LP formulation for the robust version206

(called Probust-LP) is given by: {min r : x ∈ X,x ∈ [0, 1]E ,
∑
e∈E dexe ≤ opt(d) + r ∀d}.207

Now, suppose we have the following properties:208

There is a γ-approximation algorithm for P.209

The integrality gap of P-LP is at most δ.210

There is a feasible solution x∗ to P-LP that satisfies: ∀d :
∑
e∈E dex

∗
e ≤ α·opt(d)+β ·mr.211

Then, there exists an algorithm that outputs an integer solution sol for P that satisfies:

∀d : sol(d) ≤ (γδα) · opt(d) + (γδβ + γ) ·mr.

A.Ganesh and B.M. Maggs and D. Panigrahi 54:7

Proof. The algorithm is as follows: Construct an instance of P which uses the same set212

system S and where element e has weight max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e. Then, use213

the γ-approximation algorithm for P on this instance to find an integral solution S, and214

output it.215

Given a feasible solution S to P, note that:216

max
d

[
∑
e∈S

de − δ
∑
e∈E

dex
∗
e] =

∑
e∈S

max{ue(1− δx∗e), `e(1− δx∗e)} −
∑
e/∈S

δ`ex
∗
e

=
∑
e∈S

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]−

∑
e∈E

δ`ex
∗
e.

Now, note that since S was output by a γ-approximation algorithm, for any feasible
solution S′:∑
e∈S

[max{ue(1−δx∗e), `e(1−δx∗e)}+δ`ex∗e] ≤ γ
∑
e∈S′

[max{ue(1−δx∗e), `e(1−δx∗e)}+δ`ex∗e] =⇒

∑
e∈S

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]− γ

∑
e∈E

δ`ex
∗
e

≤ γ[
∑
e∈S′

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]−

∑
e∈E

δ`ex
∗
e]

= γmax
d

[
∑
e∈S′

de − δ
∑
e∈E

dex
∗
e].

Since P-LP has integrality gap δ, for any fractional solution x, ∀d : opt(d) ≤ δ
∑
e∈E dexe.217

Fixing S′ to be the set of elements used in the minimum regret solution then gives:218

max
d

[
∑
e∈S′

de − δ
∑
e∈E

dex
∗
e] ≤ max

d
[mrs(d)− opt(d)] = mr.

Combined with the previous inequality, this gives:∑
e∈S

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]− γ

∑
e∈E

δ`ex
∗
e ≤ γmr =⇒

∑
e∈S

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]−

∑
e∈E

δ`ex
∗
e ≤ γmr + (γ − 1)

∑
e∈E

δ`ex
∗
e =⇒

max
d

[
∑
e∈S

de − δ
∑
e∈E

dex
∗
e] ≤ γmr + (γ − 1)

∑
e∈E

δ`ex
∗
e.

This implies:219

∀d : sol(d) =
∑
e∈S

de ≤ δ
∑
e∈E

dex
∗
e + γmr + (γ − 1)

∑
e∈E

δ`ex
∗
e

≤ δ
∑
e∈E

dex
∗
e + γmr + (γ − 1)

∑
e∈E

δdex
∗
e

= γδ
∑
e∈E

dex
∗
e + γmr ≤ γδ[αopt(d) + βmr] + γmr = γδα · opt(d) + (γδβ + γ) ·mr.

J220

ICALP 2020

54:8 Robust Algorithms for TSP and Steiner Tree

Minimize r subject to

∀∅ 6= S ⊂ V :
∑
u∈S,v∈V \S yuv ≥ 2

∀u ∈ V :
∑
v 6=u yuv = 2

∀∅ 6= S ⊂ V, u ∈ S, v ∈ V \S :
∑
e∈δ(S) xe,u,v ≥ yuv

∀d :
∑
e∈E dexe ≤ opt(d) + r

∀u, v ∈ V, u 6= v : 0 ≤ yuv ≤ 1
∀e ∈ E, u, v ∈ V, v 6= u : 0 ≤ xe,u,v ≤ 1
∀e ∈ E : xe ≤ 2

(3)

Figure 1 The Robust TSP Polytope

3 Algorithm for the Robust Traveling Salesman Problem221

In this section, we give a robust algorithm for the traveling salesman problem:222

I Theorem 5. There exists a (4.5, 3.75)-robust algorithm for the traveling salesman problem.223

Recall that we consider the version of the problem where we are allowed to use edges224

multiple times in tsp. We present a high level sketch of our ideas here, the details are deferred225

to the full paper. We recall that any tsp tour must contain a spanning tree, and an Eulerian226

walk on a doubled mst is a 2-approximation algorithm for tsp (known as the “double-tree227

algorithm”). One might hope that since we have a (1, 2)-robust algorithm for robust mst,228

one could take its output and apply the double-tree algorithm to get a (2, 4)-robust solution229

to robust TSP. Unfortunately, this algorithm is not (α, β)-robust for any α = o(n), β = o(n).230

Nevertheless, we are able to leverage the connection to mst to arrive at a (4.5, 3.75)-robust231

algorithm for tsp.232

3.1 Approximate Separation Oracle233

We use the LP relaxation of robust traveling salesman in Figure 1. This is the standard234

subtour LP (see e.g. [32]), but augmented with variables specifying the edges used to visit235

each new vertex, as well as with the regret constraint set. Integrally, yuv is 1 if splitting the236

tour into subpaths at each point where a vertex is visited for the first time, there is a subpath237

from u to v (or vice-versa). That is, yuv is 1 if between the first time u is visited and the first238

time v is visited, the tour only goes through vertices that were already visited before visiting239

u. xe,u,v is 1 if on this subpath, the edge e is used. We use xe to denote
∑
u,v∈V xe,u,v for240

brevity. A discussion of why the constraints other than the regret constraint set in (3) are241

identical to the standard tsp polytope is included in the full paper.242

We now describe the separation oracle RRTSP-Oracle used to separate (3). All243

constraints except the regret constraint set can be separated in polynomial time by solving a244

min-cut problem. Recall that exactly separating the regret constraint set involves finding245

an “adversary” sol that maximizes maxd[
∑
e∈E dexe − sol(d)], and seeing if this quantity246

exceeds r. However, since TSP is NP-hard, finding this solution in general is NP-hard.247

Instead, we will only consider a solution sol if it is a walk on some spanning tree T , and248

find the one that maximizes maxd[
∑
e∈E dexe − sol(d)].249

Fix any sol that is a walk on some spanning tree T . For any e, if e is not in T , the250

regret of x,y against sol is maximized by setting e’s length to ue. If e is in T , then sol is251

paying 2de for that edge whereas the fractional solution pays dexe ≤ 2de, so to maximize the252

A.Ganesh and B.M. Maggs and D. Panigrahi 54:9

Minimize r subject to

∀S ⊂ V such that ∅ ⊂ S ∩ T ⊂ T :
∑
e∈δ(S) xe ≥ 1 (4)

∀d such that de ∈ [`e, ue] :
∑
e∈E dexe ≤ opt(d) + r (5)

∀e ∈ E : xe ∈ [0, 1] (6)

Figure 2 The Robust Steiner Tree Polytope

fractional solution’s regret, de should be set to `e. This gives that the regret of fractional253

solution x against any sol that is a spanning tree walk on T is254 ∑
e∈T

(`exe − 2`e) +
∑
e/∈T

uexe =
∑
e∈E

uexe −
∑
e∈T

(uexe − (`exe − 2`e)).

The quantity
∑
e∈E uexe is fixed with respect to T , so finding the spanning tree T that255

maximizes this quantity is equivalent to finding T that minimizes
∑
e∈T (uexe− (`exe− 2`e)).256

But this is just an instance of the minimum spanning tree problem where edge e has257

weight uexe − (`exe − 2`e), and thus we can find T in polynomial time. After finding this258

spanning tree, RRTSP-Oracle checks if the regret of x,y against the walk on T is at259

least r, and if so outputs this as a violated inequality. If there is some sol,d such that260 ∑
e∈E dexe > 2 · sol(d) + r, then the regret of the fractional solution against a walk on a261

spanning tree contained in sol (which has cost at most 2 · sol(d) in realization d) must be262

at least r, and thus its regret against T must also be at least r. This gives the following263

lemma:264

I Lemma 6. For any instance of robust traveling salesman there exists an algorithm RRTSP-265

Oracle that given a solution (x,y, r) to (3) either:266

Outputs a separating hyperplane for (3), or267

Outputs “Feasible”, in which case (x,y) is feasible for the (non-robust) TSP LP and268

∀d :
∑
e∈E dexe ≤ 2 · opt(d) + r.269

The formal description of RRTSP-Oracle and the proof of Lemma 6 are given in the270

full paper. By using the ellipsoid method with separation oracle RRTSP-Oracle and the271

fact that (3) has optimum at most mr, we get a (2, 1)-robust fractional solution. Applying272

Theorem 3 as well as the fact that the TSP polytope has integrality gap 3/2 (see e.g. [32])273

and the TSP problem has a 3/2-approximation gives Theorem 5.274

4 Algorithm for the Robust Steiner Tree Problem275

In this section, our goal is to find a fractional solution to the LP in Fig. 2 for robust Steiner276

tree. By Theorem 3 and known approximation/integrality gap results for Steiner Tree, this277

gives the following theorem:278

I Theorem 7. There exists a (2755, 64)-robust algorithm for the Steiner tree problem.279

It is well-known that the standard Steiner tree polytope admits an exact separation oracle280

(by solving the s, t-min-cut problem using edge weights xe for all s, t ∈ T) so it is sufficient281

to find an approximate separation oracle for the regret constraint set. Unlike tsp, we do282

not know how to leverage the approximation for stt via solving an instance of mst, since283

this approximation uses information about shortest paths in the stt distance which are not284

ICALP 2020

54:10 Robust Algorithms for TSP and Steiner Tree

well-defined when the weights are unknown. In turn, a more nuanced separation oracle and285

analysis is required. We present the main ideas of the separation oracle here, and defer the286

details to the full paper.287

First, we create the derived instance of the Steiner tree problem which is a copy G′ of the288

input graph G with edge weights uexe + `e − `exe. As noted earlier, the optimal Steiner tree289

T ∗ on the derived instance maximizes the regret of the fractional solution x. However, since290

Steiner tree is NP-hard, we cannot hope to exactly find T ∗. We need a Steiner tree T̂ such291

that the regret caused by it can be bounded against that caused by T ∗. The difficulty is292

that the regret corresponds to the total weight of edges not in the Steiner tree (plus an offset293

that we will address later), whereas standard Steiner tree approximations give guarantees294

in terms of the total weight of edges in the Steiner tree. We overcome this difficulty by295

requiring a stricter notion of “difference approximation” – that the weight of edges T̂ \ T ∗296

be bounded against those in T ∗ \ T̂ . Note that this condition ensures that not only is the297

weight of edges in T̂ bounded against those in T ∗, but also that the weight of edges not in298

T̂ is bounded against that of edges not in T ∗. We show the following lemma to obtain the299

difference approximation:300

I Lemma 8. For any ε > 0, there exists a polynomial-time algorithm for the Steiner tree301

problem such that if opt denotes the set of edges in the optimal solution and c(S) denotes302

the total weight of edges in S, then for any input instance of Steiner tree, the output solution303

alg satisfies c(alg \ opt) ≤ (4 + ε) · c(opt \ alg).304

The algorithm proving Lemma 8 is a local search procedure proposed by [16] (who305

considered the more general Steiner forest) that considers local moves of the following form:306

For the current solution alg, a local move consists of adding any path f whose endpoints307

are vertices in alg and whose intermediate vertices are not in alg, and then deleting from308

alg a subpath a in the resulting cycle such that alg∪ f \ a remains feasible. We extend the309

results in [16] by showing that such an algorithm is 4-approximate for Steiner tree. We can310

further extend this argument to show that such an algorithm, in fact, satisfies the stricter311

difference approximation requirement in Lemma 8 (see the full paper for details).312

Recall that the regret caused by T is not exactly the weight of edges not in T , but313

includes a fixed offset of
∑
e∈E(`e − `exe). If `e = 0 for all edges, i.e., the offset is 0, then314

we can recover a robust algorithm from Lemma 8 alone with much better constants than315

in Theorem 7 (we defer the discussion/proof of this result to the full paper). In general316

though, the approximation guarantee given in Lemma 8 alone does not suffice because of317

the offset. We instead rely on a stronger notion of approximation formalized in the next318

lemma that provides simultaneous approximation guarantees on two sets of edge weights:319

ce = uexe − `exe + `e and c′e = `e − `exe. The guarantee on `e − `exe can then be used to320

handle the offset.321

I Lemma 9. Let G be a graph with terminals T and two sets of edge weights c and c′. Let sol322

be any Steiner tree connecting T . Let Γ′ > 1, κ > 0, and 0 < ε < 4
35 be fixed constants. Then323

there exists a constant Γ (depending on Γ′, κ, ε) and an algorithm that obtains a collection of324

Steiner trees alg, at least one of which (let us call it algi) satisfies:325

c(algi \ sol) ≤ 4Γ · c(sol \ algi), and326

c′(algi) ≤ (4Γ′ + κ+ 1 + ε) · c′(sol).327

The fact that Lemma 9 generates multiple solutions (but only polynomially many) is328

fine because as long as we can show that one of these solutions causes sufficient regret, our329

separation oracle can just iterate over all solutions until it finds one that causes sufficient330

regret.331

A.Ganesh and B.M. Maggs and D. Panigrahi 54:11

We give a high level sketch of the proof of Lemma 9 here, and defer details to the full332

paper. The algorithm uses the idea of alternate minimization, alternating between a “forward333

phase” and a “backward phase”. The goal of each forward phase/backward phase pair is to334

keep c′(alg) approximately fixed while obtaining a net decrease in c(alg). In the forward335

phase, the algorithm greedily uses local search, choosing swaps that decrease c and increase336

c′ at the best “rate of exchange” between the two costs (i.e., the maximum ratio of decrease337

in c to increase in c′), until c′(alg) has increased past some upper threshold. Then, in the338

backward phase, the algorithm greedily chooses swaps that decrease c′ while increasing c339

at the best rate of exchange, until c′(alg) reaches some lower threshold, at which point we340

start a new forward phase.341

We guess the value of c′(sol) (we can run many instances of this algorithm and generate342

different solutions based on different guesses for this purpose) and set the upper threshold343

for c′(alg) appropriately so that we satisfy the approximation guarantee for c′. For c we344

show that as long as alg is not a 4Γ-difference approximation with respect to c then a345

forward/backward phase pair reduces c(alg) by a non-negligible amount (of course, if alg is346

a 4Γ-difference approximation then we are done). This implies that after enough iterations,347

alg must be a 4Γ-difference approximation as c(alg) can only decrease by a bounded348

amount. To show this, we claim that while alg is not a 4Γ-difference approximation, for349

sufficiently large Γ the following bounds on rates of exchange hold:350

For each swap in the forward phase, the ratio of decrease in c(alg) to increase in c′(alg)351

is at least some constant k1 times c(alg\sol)
c′(sol\alg) .352

For each swap in the backward phase, the ratio of increase in c(alg) to decrease in353

c′(alg) is at most some constant k2 times c(sol\alg)
c′(alg\sol) .354

Before we discuss how to prove this claim, let us see why this claim implies that a forward355

phase/backward phase pair results in a net decrease in c(alg). If this claim holds, suppose we356

set the lower threshold for c′(alg) to be, say, 101c′(sol). That is, throughout the backward357

phase, we have c′(alg) > 101c′(sol). This lower threshold lets us rewrite our upper bound358

on the rate of exchange in the backward phase in terms of the lower bound on rate of359

exchange for the forward phase:360

k2
c(sol \ alg)
c′(alg \ sol) ≤ k2

c(sol \ alg)
c′(alg)− c′(sol) ≤ k2

c(sol \ alg)
100c′(sol) ≤ k2

c(sol \ alg)
100c′(sol \ alg)

≤ k2
1

4Γ
c(alg \ sol)

100c′(sol \ alg) = k2

400Γk1
· k1

c(alg \ sol)
c′(sol \ alg) .

In other words, the bound in the claim for the rate of exchange in the forward phase361

is larger than the bound for the backward phase by a multiplicative factor of Ω(1) · Γ.362

While these bounds depend on alg and thus will change with every swap, let us make the363

simplifying assumption that through one forward phase/backward phase pair these bounds364

remain constant. Then, the change in c(alg) in one phase is just the rate of exchange for365

that phase times the change in c′(alg), which by definition of the algorithm is roughly equal366

in absolute value for the forward and backward phase. So this implies that the decrease in367

c(alg) in the forward phase is Ω(1) · Γ times the increase in c(alg) in the backward phase,368

i.e., the net change across the phases is a non-negligible decrease in c(alg) if Γ is sufficiently369

large. Without the simplifying assumption, we can still show that the decrease in c(alg)370

in the forward phase is larger than the increase in c(alg) in the backward phase for large371

enough Γ using a much more technical analysis. In particular, our analysis will show there is372

ICALP 2020

54:12 Robust Algorithms for TSP and Steiner Tree

a net decrease as long as:373

min
{

4Γ− 1
8Γ ,

(4Γ− 1)(
√

Γ− 1)(
√

Γ− 1− ε)κ
16(1 + ε)Γ2

}
− (eζ

′(4Γ′+κ+1+ε) − 1) > 0, (7)374

where
ζ ′ = 4(1 + ε)Γ′

(
√

Γ′ − 1)(
√

Γ′ − 1− ε)(4Γ′ − 1)(4Γ− 1)
.

Note that for any positive ε, κ,Γ′, there exists a sufficiently large value of Γ for (7) to hold,
since as Γ→∞, we have ζ ′ → 0, so that

(eζ
′(4Γ′+κ+1+ε) − 1)→ 0 and

min
{

4Γ− 1
8Γ ,

(4Γ− 1)(
√

Γ− 1)(
√

Γ− 1− ε)κ
16(1 + ε)Γ2

}
→ min{1/2, κ/(4 + 4ε)}.

So, the same intuition holds: as long as we are willing to lose a large enough Γ value, we can375

make the increase in c(alg) due to the backward phase negligible compared to the decrease376

in the forward phase, giving us a net decrease.377

It remains to argue that the claimed bounds on rates of exchange hold. Let us argue the
claim for Γ = 4, although the ideas easily generalize to other choices of Γ. We do this by
generalizing the analysis of the local search algorithm. This analysis shows that if alg is a
locally optimal solution, then

c(alg \ sol) ≤ 4 · c(sol \ alg),

i.e., alg is a 4-difference approximation of sol. The contrapositive of this statement is that
if alg is not a 4-difference approximation, then there is at least one swap that will improve it
by some amount. We modify the approach of [16] by weakening the notion of locally optimal.
In particular, suppose we define a solution alg to be “approximately” locally optimal if at
least half of the (weighted) swaps between paths a in alg \ sol and paths f in sol \ alg
satisfy c(a) ≤ 2c(f) (as opposed to c(a) ≤ c(f) in a locally optimal solution; the choice of
2 for both constants here implies Γ = 4). Then a modification of the analysis of the local
search algorithm, losing an additional factor of 4, shows that if alg is approximately locally
optimal, then

c(alg \ sol) ≤ 16 · c(sol \ alg).

The contrapositive of this statement, however, has a stronger consequence than before: if alg
is not a 16-difference approximation, then a weighted half of the swaps satisfy c(a) > 2c(f),
i.e. reduce c(alg) by at least

c(a)− c(f) > c(a)− c(a)/2 = c(a)/2.

The decrease in c(alg) due to all of these swaps together is at least c(alg \ sol) times some378

constant. In addition, since a swap between a and f increases c′(alg) by at most c′(f), the379

total increase in c′ due to these swaps is at most c′(sol \ alg) times some other constant.380

An averaging argument then gives the rate of exchange bound for the forward phase in the381

claim, as desired. The rate of exchange bound for the backward phase follows analogously.382

This completes the algorithm and proof summary, although more detail is needed to383

formalize these arguments. Moreover, we also need to show that the algorithm runs in384

polynomial time. These details are given in the full paper.385

We now formally define our separation oracle RRST-Oracle in Fig. 3 and prove that it386

is an approximate separation oracle in the lemma below:387

A.Ganesh and B.M. Maggs and D. Panigrahi 54:13

RRST-Oracle(G(V,E), {[`e, ue]}e∈E , (x, r))
Data: Undirected graph G(V,E), lower and upper bounds on edge lengths

{[`e, ue]}e∈E , solution (x = {xe}e∈E , r) to the LP in Fig. 2
1 Check all constraints of the LP in Fig. 2 except regret constraint set, return any

violated constraint that is found;
2 G′ ← copy of G where ce = uexe − `exe + `e, c′e = `e − `exe;
3 alg← output of algorithm from Lemma 9 on G′;
4 for algi ∈ alg do
5 if

∑
e/∈algi

uexe +
∑
e∈algi

`exe −
∑
e∈algi

`e > r then
6 return

∑
e/∈algi

uexe +
∑
e∈algi

`exe −
∑
e∈algi

`e ≤ r;
7 end
8 end
9 return “Feasible”;

Figure 3 Separation Oracle for LP in Fig. 2

I Lemma 10. Fix any Γ′ > 1, κ > 0, 0 < ε < 4/35 and let Γ be the constant given in388

Lemma 9. Let α = (4Γ′ + κ + 2 + ε)4Γ + 1 and β = 4Γ. Then there exists an algorithm389

RRST-Oracle that given a solution (x, r) to the LP in Fig. 2 either:390

Outputs a separating hyperplane for the LP in Fig. 2, or391

Outputs “Feasible”, in which case x is feasible for the (non-robust) Steiner tree LP and

∀d :
∑
e∈E

dexe ≤ α · opt(d) + β · r.

Proof. It suffices to show that if there exists d, sol such that∑
e∈E

dexe > α · sol(d) + β · r, i.e.,
∑
e∈E

dexe − α · sol(d) > β · r

then RRST-Oracle outputs a violated inequality on line 6, i.e., the algorithm finds a
Steiner tree T ′ such that ∑

e/∈T ′

uexe +
∑
e∈T ′

`exe −
∑
e∈T ′

`e > r.

Notice that in the inequality ∑
e∈E

dexe − α · sol(d) > β · r,

replacing d with d′ where d′e = `e when e ∈ sol and d′e = ue when e /∈ sol can only increase
the left hand side. So replacing d with d′ and rearranging terms, we have

∑
e∈sol

`exe +
∑
e/∈sol

uexe > α
∑
e∈sol

`e + β · r =
∑
e∈sol

`e +
[

(α− 1)
∑
e∈sol

`e + β · r

]
.

In particular, the regret of the fractional solution against sol is at least (α−1)
∑
e∈sol `e+β ·r.392

Let T ′ be the Steiner tree satisfying the conditions of Lemma 9 with ce = uexe− `exe+ `e393

and c′e = `e − `exe. Let E0 = E \ (sol ∪ T ′), ES = sol \ T ′, and ET = T ′ \ sol. Let c(E′)394

for E′ = E0, ES , ET denote
∑
e∈E′(uexe− `exe + `e), i.e., the total weight of the edges E′ in395

G′. Now, note that the regret of the fractional solution against a solution using edges E′ is:396

ICALP 2020

54:14 Robust Algorithms for TSP and Steiner Tree

∑
e/∈E′

uexe +
∑
e∈E′

`exe −
∑
e∈E′

`e =
∑
e/∈E′

(uexe − `exe + `e)−
∑
e∈E

(`e − `exe)

= c(E \ E′)−
∑
e∈E

(`e − `exe).

Plugging in E′ = sol, we then get that:397

c(E0) + c(ET)−
∑
e∈E

(`e − `exe) > (α− 1)
∑
e∈sol

`e + β · r.

Isolating c(ET) then gives:398

c(ET) > (α− 1)
∑
e∈sol

`e + β · r −
∑
e∈E0

(uexe − `exe + `e) +
∑
e∈E

(`e − `exe)

= (α− 1)
∑
e∈sol

`e + β · r −
∑
e∈E0

uexe +
∑
e/∈E0

(`e − `exe).

Since β = 4Γ, Lemma 9 along with an appropriate choice of ε gives that c(ET) ≤ βc(ES),399

and thus:400

c(ES) > 1
β

(α− 1)
∑
e∈sol

`e + β · r −
∑
e∈E0

uexe +
∑
e/∈E0

(`e − `exe)

 .
Recall that our goal is to show that c(E0) + c(ES)−

∑
e∈E(`e − `exe) > r, i.e., that the401

regret of the fractional solution against T ′ is at least r. Adding c(E0)−
∑
e∈E(`e − `exe) to402

both sides of the previous inequality, we can lower bound c(E0) + c(ES)−
∑
e∈E(`e − `exe)403

as follows:404

c(E0) + c(ES)−
∑
e∈E

(`e − `exe)

>
1
β

(α− 1)
∑
e∈sol

`e + β · r −
∑
e∈E0

uexe +
∑
e/∈E0

(`e − `exe)


+

∑
e∈E0

(uexe − `exe + `e)−
∑
e∈E

(`e − `exe)

= r + α− 1
β

∑
e∈sol

`e + 1
β

∑
e/∈E0

(`e − `exe) + β − 1
β

∑
e∈E0

uexe −
∑
e/∈E0

(`e − `exe)

≥ r + α− 1− β
β

∑
e∈sol

`e + 1
β

∑
e/∈E0

(`e − `exe) + β − 1
β

∑
e∈E0

uexe −
∑
e∈ET

(`e − `exe) ≥ r.

Here, the last inequality holds because by our setting of α, we have

α− 1− β
β

= 4Γ′ + κ+ 1 + ε,

and thus Lemma 9 gives that∑
e∈ET

(`e − `exe) ≤
α− 1− β

β

∑
e∈sol

(`e − `exe) ≤
α− 1− β

β

∑
e∈sol

`e.

J405

A.Ganesh and B.M. Maggs and D. Panigrahi 54:15

By using Lemma 10 with the ellipsoid method and the fact that the LP optimum is406

at most mr, we get an (α, β)-robust fractional solution. Then, Theorem 3 and known407

approximation/integrality gap results give us the following theorem, which with appropriate408

choice of constants gives Theorem 7:409

I Theorem 11. Fix any Γ′ > 1, κ > 0, 0 < ε < 4/35 and let Γ be the constant given in410

Lemma 9. Let α = (4Γ′ + κ+ 2 + ε)4Γ + 1 and β = 4Γ. Then there exists a polynomial-time411

(2α ln 4 + ε, 2β ln 4 + ln 4 + ε)-robust algorithm for the Steiner tree problem.412

5 Lower Bounds413

To contextualize our approximation guarantees, we give the following generalized hardness414

result for a family of problems which includes many graph optimization problems:415

I Theorem 12. Let P be any robust covering problem whose input includes a weighted graph416

G where the lengths de of the edges are given as ranges [`e, ue] and for which the non-robust417

version of the problem, P ′, has the following properties:418

A solution to an instance of P ′ can be written as a (multi-)set S of edges in G, and has419

cost
∑
e∈S de.420

Given an input including G to P ′, there is a polynomial-time approximation-preserving421

reduction from solving P ′ on this input to solving P ′ on some input including G′, where422

G′ is the graph formed by taking G, adding a new vertex v∗, and adding a single edge423

from v∗ to some v ∈ V of weight 0.424

For any input including G to P ′, given any spanning tree T of G, there exists a feasible425

solution only including edges from T .426

Then, if there exists a polynomial time (α, β)-robust algorithm for P, there exists a427

polynomial-time β-approximation algorithm for P.428

Before proving Theorem 12, we note that robust traveling salesman and robust Steiner429

tree are examples of problems that Theorem 12 implicitly gives lower bounds for. For both430

problems, the first property clearly holds.431

For traveling salesman, given any input G, any solution to the problem on input G′432

as described in Theorem 12 can be turned into a solution of the same cost on input G by433

removing the new vertex v∗ (since v∗ was distance 0 from v, removing v∗ does not affect the434

length of any tour), giving the second property. For any spanning tree of G, a walk on the435

spanning tree gives a valid TSP tour, giving the third property.436

For Steiner tree, for the input with graph G′ and the same terminal set, for any solution437

containing the edge (v, v∗) we can remove this edge and get a solution for the input with438

graph G that is feasible and of the same cost. Otherwise, the solution is already a solution439

for the input with graph G that is feasible and of the same cost, so the second property440

holds. Any spanning tree is a feasible Steiner tree, giving the third property.441

We now give the proof of Theorem 12.442

Proof of Theorem 12. Suppose there exists a polynomial time (α, β)-robust algorithm A443

for P. The β-approximation algorithm for P ′ is as follows:444

1. From the input instance I of P where the graph is G, use the approximation-preserving445

reduction (that must exist by the second property of the theorem) to construct instance446

I ′ of P ′ where the graph is G′.447

ICALP 2020

54:16 Robust Algorithms for TSP and Steiner Tree

2. Construct an instance I ′′ of P from I ′ as follows: For all edges in G′, their length is fixed448

to their length in I ′. In addition, we add a “special” edge from v∗ to all vertices besides449

v with length range [0,∞]2.450

3. Run A on I ′′ to get a solution sol. Treat this solution as a solution to I ′ (we will show it451

only uses edges that appear in I). Use the approximation-preserving reduction to convert452

sol into a solution for I and output this solution.453

Let O denote the cost of the optimal solution to I ′. Then, mr ≤ O. To see why, note454

that the optimal solution to I ′ has cost O in all realizations of demands since it only uses455

edges of fixed cost, and thus its regret is at most O. This also implies that for all d, opt(d)456

is finite. Then for all d, sol(d) ≤ α · opt(d) + β ·mr, i.e. sol(d) is finite in all realizations457

of demands, so sol does not include any special edges, as any solution with a special edge458

has infinite cost in some realization of demands.459

Now consider the realization of demands d where all special edges have length 0. The460

special edges and the edge (v, v∗) span G′, so by the third property of P ′ in the theorem461

statement there is a solution using only cost 0 edges in this realization, i.e. opt(d) = 0.462

Then in this realization, sol(d) ≤ α · opt(d) + β · mr ≤ β · O. But since sol does not463

include any special edges, and all edges besides special edges have fixed cost and their cost464

is the same in I ′′ as in I ′, sol(d) also is the cost of sol in instance I ′, i.e. sol(d) is a465

β-approximation for I ′. Since the reduction from I to I ′ is approximation-preserving, we466

also get a β-approximation for I.467

J468

From [11, 22] we then get the following hardness results:469

I Corollary 13. Finding an (α, β)-robust solution for Steiner tree where β < 96/95 is470

NP-hard.471

I Corollary 14. Finding an (α, β)-robust solution for TSP where β < 121/120 is NP-hard.472

6 Conclusion473

In this paper, we designed constant approximation algorithms for the robust Steiner tree474

and traveling salesman problems. To the best of our knowledge, this is the first instance of475

robust polynomial-time algorithms being developed for NP-complete graph problems. While476

our approximation bounds for tsp are small constants, that for stt are very large constants.477

A natural question is whether these constants can be made smaller, e.g. of the same scale478

as classic approximation bounds for stt. While we did not seek to optimize our constants,479

obtaining truly small constants for stt appears to be beyond our techniques, and is an480

interesting open question. More generally, robust algorithms are a key component in the481

area of optimization under uncertainty that is of much practical and theoretical significance.482

We hope that our work will lead to more research in robust algorithms for other fundamental483

problems in combinatorial optimization, particularly in graph algorithms.484

2 We use ∞ to simplify the proof, but it can be replaced with a sufficiently large finite number. For
example, the total weight of all edges in G suffices and has small bit complexity.

A.Ganesh and B.M. Maggs and D. Panigrahi 54:17

References485

1 H. Aissi, C. Bazgan, and D. Vanderpooten. Complexity of the min–max (regret) versions of486

min cut problems. Discrete Optimization, 5(1):66 – 73, 2008.487

2 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Min–max and min–max regret488

versions of combinatorial optimization problems: A survey. European Journal of Operational489

Research, 197(2):427 – 438, 2009. URL: http://www.sciencedirect.com/science/article/490

pii/S0377221708007625, doi:https://doi.org/10.1016/j.ejor.2008.09.012.491

3 I. Averbakh and Oded Berman. Minimax regret p-center location on a network with492

demand uncertainty. Location Science, 5(4):247 – 254, 1997. URL: http://www.493

sciencedirect.com/science/article/pii/S0966834998000333, doi:https://doi.org/10.494

1016/S0966-8349(98)00033-3.495

4 Igor Averbakh. On the complexity of a class of combinatorial optimization problems with496

uncertainty. Mathematical Programming, 90(2):263–272, Apr 2001.497

5 Igor Averbakh. The minmax relative regret median problem on networks. INFORMS Journal498

on Computing, 17(4):451–461, 2005.499

6 Igor Averbakh and Oded Berman. Minmax regret median location on a network under uncer-500

tainty. INFORMS Journal on Computing, 12(2):104–110, 2000. URL: https://doi.org/10.501

1287/ijoc.12.2.104.11897, arXiv:https://doi.org/10.1287/ijoc.12.2.104.11897, doi:502

10.1287/ijoc.12.2.104.11897.503

7 Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows.504

Mathematical Programming, 98(1):49–71, Sep 2003. URL: https://doi.org/10.1007/505

s10107-003-0396-4, doi:10.1007/s10107-003-0396-4.506

8 Moses Charikar, Chandra Chekuri, and Martin Pál. Sampling bounds for stochastic op-507

timization. In Proceedings of the 8th International Workshop on Approximation, Ran-508

domization and Combinatorial Optimization Problems, and Proceedings of the 9th Inter-509

national Conference on Randamization and Computation: Algorithms and Techniques, AP-510

PROX’05/RANDOM’05, pages 257–269, Berlin, Heidelberg, 2005. Springer-Verlag. URL:511

http://dx.doi.org/10.1007/11538462_22, doi:10.1007/11538462_22.512

9 André Chassein and Marc Goerigk. On the recoverable robust traveling salesman problem.513

Optimization Letters, 10, 09 2015. doi:10.1007/s11590-015-0949-5.514

10 Chandra Chekuri. Routing and network design with robustness to changing or uncertain515

traffic demands. SIGACT News, 38(3):106–129, 2007.516

11 Miroslav Chlebík and Janka Chlebíková. Approximation hardness of the Steiner tree problem517

on graphs. In Martti Penttonen and Erik Meineche Schmidt, editors, Algorithm Theory —518

SWAT 2002, pages 170–179, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.519

12 Eduardo Conde. On a constant factor approximation for minmax regret problems using a520

symmetry point scenario. European Journal of Operational Research, 219(2):452 – 457,521

2012. URL: http://www.sciencedirect.com/science/article/pii/S0377221712000069,522

doi:https://doi.org/10.1016/j.ejor.2012.01.005.523

13 Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh. How to pay, come what524

may: Approximation algorithms for demand-robust covering problems. In 46th Annual IEEE525

Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh,526

PA, USA, Proceedings, pages 367–378, 2005.527

14 Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab S. Mirrokni. Robust combinatorial528

optimization with exponential scenarios. In Integer Programming and Combinatorial Optimiza-529

tion, 12th International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007, Proceedings,530

pages 439–453, 2007.531

15 Navin Goyal, Neil Olver, and F. Bruce Shepherd. The VPN conjecture is true. J. ACM,532

60(3):17:1–17:17, 2013.533

16 Martin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie534

Schmidt, and José Verschae. A local-search algorithm for Steiner forest. In 9th Innovations535

in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge,536

ICALP 2020

http://www.sciencedirect.com/science/article/pii/S0377221708007625
http://www.sciencedirect.com/science/article/pii/S0377221708007625
http://www.sciencedirect.com/science/article/pii/S0377221708007625
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2008.09.012
http://www.sciencedirect.com/science/article/pii/S0966834998000333
http://www.sciencedirect.com/science/article/pii/S0966834998000333
http://www.sciencedirect.com/science/article/pii/S0966834998000333
http://dx.doi.org/https://doi.org/10.1016/S0966-8349(98)00033-3
http://dx.doi.org/https://doi.org/10.1016/S0966-8349(98)00033-3
http://dx.doi.org/https://doi.org/10.1016/S0966-8349(98)00033-3
https://doi.org/10.1287/ijoc.12.2.104.11897
https://doi.org/10.1287/ijoc.12.2.104.11897
https://doi.org/10.1287/ijoc.12.2.104.11897
http://arxiv.org/abs/https://doi.org/10.1287/ijoc.12.2.104.11897
http://dx.doi.org/10.1287/ijoc.12.2.104.11897
http://dx.doi.org/10.1287/ijoc.12.2.104.11897
http://dx.doi.org/10.1287/ijoc.12.2.104.11897
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1007/s10107-003-0396-4
http://dx.doi.org/10.1007/s10107-003-0396-4
http://dx.doi.org/10.1007/11538462_22
http://dx.doi.org/10.1007/11538462_22
http://dx.doi.org/10.1007/s11590-015-0949-5
http://www.sciencedirect.com/science/article/pii/S0377221712000069
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2012.01.005

54:18 Robust Algorithms for TSP and Steiner Tree

MA, USA, pages 31:1–31:17, 2018. URL: https://doi.org/10.4230/LIPIcs.ITCS.2018.31,537

doi:10.4230/LIPIcs.ITCS.2018.31.538

17 Anupam Gupta, Jon M. Kleinberg, Amit Kumar, Rajeev Rastogi, and Bülent Yener. Pro-539

visioning a virtual private network: a network design problem for multicommodity flow.540

In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001,541

Heraklion, Crete, Greece, pages 389–398, 2001.542

18 Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Thresholded covering algorithms for543

robust and max-min optimization. Math. Program., 146(1-2):583–615, 2014.544

19 Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Robust and maxmin optimization under545

matroid and knapsack uncertainty sets. ACM Trans. Algorithms, 12(1):10:1–10:21, 2016.546

20 Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Boosted sampling: Approximation547

algorithms for stochastic optimization. In Proceedings of the Thirty-sixth Annual ACM548

Symposium on Theory of Computing, STOC ’04, pages 417–426, New York, NY, USA,549

2004. ACM. URL: http://doi.acm.org/10.1145/1007352.1007419, doi:10.1145/1007352.550

1007419.551

21 Masahiro Inuiguchi and Masatoshi Sakawa. Minimax regret solution to linear program-552

ming problems with an interval objective function. European Journal of Operational Re-553

search, 86(3):526 – 536, 1995. URL: http://www.sciencedirect.com/science/article/pii/554

037722179400092Q, doi:https://doi.org/10.1016/0377-2217(94)00092-Q.555

22 Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds556

for TSP. In Leizhen Cai, Siu-Wing Cheng, and Tak-Wah Lam, editors, Algorithms and557

Computation, pages 568–578, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.558

23 Adam Kasperski and PawełZieliński. An approximation algorithm for interval data minmax559

regret combinatorial optimization problems. Inf. Process. Lett., 97(5):177–180, March 2006.560

URL: http://dx.doi.org/10.1016/j.ipl.2005.11.001, doi:10.1016/j.ipl.2005.11.001.561

24 Adam Kasperski and Pawel Zieliński. On the existence of an FPTAS for minmax regret562

combinatorial optimization problems with interval data. Oper. Res. Lett., 35:525–532, 2007.563

25 Rohit Khandekar, Guy Kortsarz, Vahab S. Mirrokni, and Mohammad R. Salavatipour. Two-564

stage robust network design with exponential scenarios. Algorithmica, 65(2):391–408, 2013.565

26 P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Springer US, 1996.566

27 Panos Kouvelis and Gang Yu. Robust 1-Median Location Problems: Dynamic Aspects and567

Uncertainty, pages 193–240. Springer US, Boston, MA, 1997. URL: https://doi.org/10.568

1007/978-1-4757-2620-6_6, doi:10.1007/978-1-4757-2620-6_6.569

28 Helmut E. Mausser and Manuel Laguna. A new mixed integer formulation for the maximum570

regret problem. International Transactions in Operational Research, 5(5):389 – 403, 1998. URL:571

http://www.sciencedirect.com/science/article/pii/S0969601698000239, doi:https://572

doi.org/10.1016/S0969-6016(98)00023-9.573

29 David B. Shmoys and Chaitanya Swamy. An approximation scheme for stochastic lin-574

ear programming and its application to stochastic integer programs. J. ACM, 53(6):978–575

1012, November 2006. URL: http://doi.acm.org/10.1145/1217856.1217860, doi:10.1145/576

1217856.1217860.577

30 Chaitanya Swamy and David B. Shmoys. Approximation algorithms for 2-stage stochastic578

optimization problems. SIGACT News, 37(1):33–46, 2006.579

31 Chaitanya Swamy and David B. Shmoys. Sampling-based approximation algorithms for580

multistage stochastic optimization. SIAM J. Comput., 41(4):975–1004, 2012.581

32 Jens Vygen. New approximation algorithms for the tsp.582

33 H. Yaman, O. E. Karaşan, and M. Ç. Pinar. The robust spanning tree problem with interval583

data. Operations Research Letters, 29(1):31 – 40, 2001.584

34 P. Zieliński. The computational complexity of the relative robust shortest path problem with585

interval data. European Journal of Operational Research, 158(3):570 – 576, 2004.586

https://doi.org/10.4230/LIPIcs.ITCS.2018.31
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.31
http://doi.acm.org/10.1145/1007352.1007419
http://dx.doi.org/10.1145/1007352.1007419
http://dx.doi.org/10.1145/1007352.1007419
http://dx.doi.org/10.1145/1007352.1007419
http://www.sciencedirect.com/science/article/pii/037722179400092Q
http://www.sciencedirect.com/science/article/pii/037722179400092Q
http://www.sciencedirect.com/science/article/pii/037722179400092Q
http://dx.doi.org/https://doi.org/10.1016/0377-2217(94)00092-Q
http://dx.doi.org/10.1016/j.ipl.2005.11.001
http://dx.doi.org/10.1016/j.ipl.2005.11.001
https://doi.org/10.1007/978-1-4757-2620-6_6
https://doi.org/10.1007/978-1-4757-2620-6_6
https://doi.org/10.1007/978-1-4757-2620-6_6
http://dx.doi.org/10.1007/978-1-4757-2620-6_6
http://www.sciencedirect.com/science/article/pii/S0969601698000239
http://dx.doi.org/https://doi.org/10.1016/S0969-6016(98)00023-9
http://dx.doi.org/https://doi.org/10.1016/S0969-6016(98)00023-9
http://dx.doi.org/https://doi.org/10.1016/S0969-6016(98)00023-9
http://doi.acm.org/10.1145/1217856.1217860
http://dx.doi.org/10.1145/1217856.1217860
http://dx.doi.org/10.1145/1217856.1217860
http://dx.doi.org/10.1145/1217856.1217860

	Introduction
	Problem Definition and Results
	Our Techniques
	Related Work

	Generalized Rounding Algorithm
	Algorithm for the Robust Traveling Salesman Problem
	Approximate Separation Oracle

	Algorithm for the Robust Steiner Tree Problem
	Lower Bounds
	Conclusion

