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Abstract11

In this paper, we consider the problem of assigning 2-dimensional vector jobs to identical machines online12

so to minimize the maximum load on any dimension of any machine. For arbitrary number of dimensions d,13

this problem is known as vector scheduling, and recent research has established the optimal competitive ratio14

as O
( log d

log log d

)
(Im et al. FOCS 2015, Azar et al. SODA 2018). But, these results do not shed light on the15

situation for small number of dimensions, particularly for d = 2 which is of practical interest. In this case, a16

trivial analysis shows that the classic list scheduling greedy algorithm has a competitive ratio of 3. We show the17

following improvements over this baseline in this paper:18

We give an improved, and tight, analysis of the list scheduling algorithm establishing a competitive ratio of19

8/3 for two dimensions.20

If the value of OPT is known, we improve the competitive ratio to 9/4 using a variant of the classic best fit21

algorithm for two dimensions.22

For any fixed number of dimensions, we design an algorithm that is provably the best possible against a23

fractional optimum solution. This algorithm provides a proof of concept that we can simulate the optimal24

algorithm online up to the integrality gap of the natural LP relaxation of the problem.25
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1 Introduction33

In the online load balancing problem, the goal is to allocate n jobs appearing online on a set of m34

identical machines so as to minimize the maximum load on any machine (called makespan). This35

problem was introduced in the 1960s by Graham [26, 27], who gave the list scheduling algorithm36

that assigns each arriving job to the machine with minimum load, and achieves a competitive ratio1
37

of 2.2 Since then, there has been a long line of work that aims to improve this constant below38

2, both when the optimal value OPT is unknown [10, 37, 1, 19, 18, 11, 25, 28, 2], and when OPT39

is known [9, 40, 4, 38, 39, 21, 20, 12]. The current record is a competitive ratio of 1.916 due to40

Albers [2] for unknown OPT, and 1.5 due to Bohm et al. [12] for known OPT.41

Recent research has further expanded the scope of this problem to vector jobs that have multiple42

dimensions, the resulting problem being called vector scheduling [15, 7, 43, 29, 8, 30]. As earlier, the43

goal is to minimize the makespan of the assignment, which now represents the maximum load across44

all machines and all dimensions. This problem arises in data centers where jobs with multiple resource45

requirements have to be allocated to machine clusters to make efficient use of limited resources such46

as CPU, memory, and network bandwidth [24, 44, 41, 17, 31, 32].47

It is now known that the right dependence of the competitive ratio for vector scheduling on the48

number of dimensions d is Θ(log d/ log log d) [29]. While this gives a satisfactory answer when49

the number of dimensions is large, in the practical context, the number of dimensions is usually50

small since they represent distinct computational resources. In particular, the majority of the systems51

scheduling literature (e.g., see [24] and follow-up papers) considers only two resources, CPU and52

memory, since they often tend to be the most critical bottleneck resources. Unfortunately, the existing53

bounds for vector scheduling do not shed any light on this case since we are interested in optimizing54

the constant in the competitive ratio. In this paper, we initiate the study of the online 2-dimensional55

scheduling problem, or 2DSCHED in short.56

1.1 Results and Techniques57

Baseline. Graham’s list scheduling algorithm can be naturally extended to d > 1 dimensions by58

assigning each job to the machine that minimizes the makespan after the assignment. This algorithm59

has a competitive ratio of 3 for d = 2 (and d + 1 for general d). To see this, assume wlog the60

optimum makespan OPT = 1 by scaling. Since the average load on each dimension is at most OPT, it61

follows that there is always some machine where the sum of loads on its two dimensions is at most 2.62

Consequently, this machine has a load of at most 2 on each of its dimensions. Now, note that the load63

of any single job cannot exceed OPT on any dimension; hence, the maximum load on a machine after64

the greedy assignment of a job cannot exceed 3.65

Unfortunately, despite the aforementioned recent progress, no existing algorithms are known to66

have a competitive ratio better than 3. Thus, our goal is to break the 3-competitive ratio barrier for the67

problem. This requires a new approach since the existing analytical methods are based on potential68

functions, concentrations, or volume bounds, and they all seem to inevitably lose a considerable69

constant factor in the competitive ratio.70

1 The competitive ratio of an online minimization problem is the maximum ratio between the objective of the algorithm
and that of an (offline) optimal solution, see e.g., [13].

2 The competitive ratio is actually 2 − 1/m for m machines, but we will ignore o(1) terms throughout since we
consider instances of arbitrary problem size in this paper.
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A Novel Analytical Technique: Characterizing Reachable States71

Our new approach is to directly characterize the set of reachable states of the algorithm. To illustrate72

our approach, let us take a close look at the above analysis of list scheduling. For the analysis to73

be tight, a configuration (machine loads) must be created where half the machines have a load of74

(roughly, ignoring lower order terms) (2, 0) and the remaining half have a load of (0, 2). If a job of75

load (1, 1) now arrives, then the maximum load will increase to 3 no matter where the job is assigned.76

But, do we ever create such imbalance in the configurations of the machines?77

To rule out such states/configurations, we need to define the set of reachable states of the algorithm.78

Our first contribution is to develop a general framework that allows us to characterize the set of79

reachable states of not only the greedy algorithm, but of a much larger class of algorithms that we80

call priority-based algorithms. Roughly speaking, these are algorithms where the newly arriving81

job is assigned to minimize a “disutility function” that maps the current load of the machines (i.e.,82

the current state) and the load of the current job to a real number. For such algorithms, our main83

observation is that if m machines come to have load vectors c = (c1, c2, ..., cm) – meaning that84

this configuration is reachable – then any pair (ci, cj) is a reachable state for the same algorithm85

on just two machines. Furthermore, we identify a specific pair (ci, cj) that captures the essential86

characteristics of the algorithm under consideration.87

Using this framework, we show that the greedy makespan minimization algorithm that we88

described above is 8/3-competitive – and our analysis is tight. We defer the lower bound to the full89

version of the paper.90

I Theorem 1. (Section 4) There exists a priority-based algorithm that is 8/3-competitive for the91

2DSCHED problem with unknown OPT. Furthermore, this analysis is tight.92

If we know the value of OPT, then we obtain a better competitive ratio of 2.25 by using a different93

algorithm that explicitly minimizes the difference of the loads on the two dimensions without violating94

the preset threshold α · OPT, where α = 2.25 is the desired competitive ratio. Again, this analysis95

is tight, the proof of which we defer to the full version of the paper. This “balance algorithm” can96

be thought of as a generalization of the popular best fit strategy used in bin packing (see [33, 35] for97

one-dimensional bin packing).98

I Theorem 2. (Section 5) There exists a priority-based algorithm that is 2.25-competitive for the99

2DSCHED problem with known OPT. Furthermore, this analysis is tight.100

Recall that the minimum makespan problem for d = 1 has been widely studied for both the101

known and unknown OPT scenarios, and our results obtain corresponding bounds for the 2DSCHED102

problem.103

As further evidence of the generality of our analysis framework, we also analyze a natural104

extension of the popular first fit rule used for bin packing problems. (The reader is referred to [23, 6]105

for multi-dimensional first fit bin packing and [16] for a full survey on one-dimensional first fit bin106

packing.) In this algorithm, given a target competitive ratio, the algorithm assigns a new job to the107

first bin that does not violate the competitiveness guarantee. This can be implemented as stated if108

OPT is known, and has a tight competitive ratio of 2.5. (The proof of the next theorem is deferred to109

the full version of the paper.)110

I Theorem 3. The first fit algorithm is 2.5-competitive for the 2DSCHED problem with known OPT.111

Furthermore, this analysis is tight.112

We also show that if the first fit algorithm is suitably augmented with a framework for guessing113

the value of OPT and adjusting this guess over time, then it has a competitive ratio better than the114

naïve bound of 3 for unknown OPT. (The proof of the next theorem is also deferred to the full version115

of the paper.)116

ICALP 2020
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I Theorem 4. The first fit algorithm is 2.89-competitive for the 2DSCHED problem with unknown117

OPT.118

While we only showcase the power of our framework by giving tight analyses of the algorithms119

described above, we believe that our framework has the potential to find more applications. This is120

because it reduces characterizing the reachable states for an arbitrary number of machines to those for121

only two machines, making the search space of the worst-case assignment much more tractable from122

an analytical perspective. In fact, our framework is easily extendable to arbitrary d, so that we only123

need to consider reachable states pretending that there are only d machines. While we currently know124

how to analytically characterize the reachable states only when d = 2, and therefore the results in125

this paper are only for this case, it is plausible (and an interesting direction of future work) to further126

extend such a characterization to higher dimensions analytically and/or numerically using the fact that127

the number of available machines is small. In that case, our framework would be useful in providing128

results for online vector scheduling in d > 2 dimensions, e.g., in cases of three or four dimensions129

that are also of practical interest.130

A Near-optimal Algorithm131

We now switch our attention to a different type of algorithmic result. Note that the competitive ratio132

of all the known algorithms for d ≥ 2 are based on their comparison against the fractional optimum.133

That is, as long as the total load vector is m ·~1, and each job load vector is at most ~1, an α-competitive134

algorithm produces a schedule where the load vector on each machine is at most α · ~1. Note that135

when d = 1, the competitive ratio 2 is also obtained against the fractional optimum and even the best136

competitive ratio 1.916 against the actual optimum is not far from 2.137

Our next result is to give an online algorithm whose competitive ratio nearly matches the best138

one can hope for against the fractional optimum for any fixed d. Here our high-level approach is as139

follows. We first use a variant of the algorithm in [29] to assign jobs to groups of machines, ensuring140

that every group receives at most 1 + ε times its share of the load in an optimal fractional solution.141

Then, we assign jobs to machines within each group. We differentiate between “big" jobs and “small”142

jobs in this assignment. For the big jobs, we use discretization to bound the number of job types,143

and then use an optimal decision tree to make the actual assignments. Note that the optimal decision144

tree can be found offline for every possible job arrival pattern since the total number of big jobs in a145

group is small, and the one that matches the online sequence can be pressed into service in the online146

algorithm. To assign small jobs using the decision tree, we batch and encapsulate small jobs of similar147

load vectors into bin vectors. To enable this online, we pre-allocate some bin vectors. Thus, we can148

effectively reduce the problem of assigning small jobs to the scalar bin packing using pre-allocation149

and the decision tree.150

I Theorem 5. (Section 6) For any d ≥ 1 and ε > 0, assuming that the value of the optimum151

makespan3 is known a priori, there exists a deterministic online algorithm for the online vector load152

balancing problem whose competitive ratio is (1 + ε)c∗d, where c∗d is the best competitive ratio one153

can hope for against the fractional optimum. Furthermore, the running time of the algorithm is154

polynomial in n for any fixed d, ε.4 (For a more formal statement of this result, see Definition 23 and155

Theorem 24.)156

Before closing this section, we note the contrast between the first set of results based on the157

new analysis framework, and the last result that yields the nearly best competitive ratio against158

3 More accurately, the value of the fractional optimum makespan.
4 More precisely, the running time is polynomial in n and (d/ε)d(d/ε)O(d)

.
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the fractional optimum. While the near optimality of the last solution is attractive, the first set of159

algorithms are much more practical since the complexity of obtaining an optimal decision tree is160

likely to be prohibitive for the last algorithm. Furthermore, the last result does not give a numerical161

performance guarantee, unlike the first set of algorithms. Indeed, these two sets of results complement162

each other, and cumulatively provide the first insights into the 2DSCHED problem.163

1.2 Related Work164

The online load balancing problem for 1-dimensional jobs has had a long history. It was introduced165

by Graham in the 1960s [26, 27], who gave the list scheduling algorithm with a competitive ratio of166

2. In the last three decades, there have been a series of results for improving the competitive ratio167

below 2 and obtaining lower bounds on the competitive ratio [10, 37, 1, 19, 18, 11, 25, 28, 2]. The168

best algorithm known is a 1.916-competitive algorithm due to Albers [2]. These results address the169

situation where the online algorithm does not know the value of OPT. Azar and Regev [9] introduced170

the problem of online load balancing when OPT is known, and called this problem bin stretching. For171

bin stretching, a series of results [40, 4, 38, 39, 21, 20, 12] have led to a 1.5-competitive algorithm172

due to Böhm et al. [12].173

Recent research has expanded the scope of this problem to vector jobs, the resulting problem174

being called vector scheduling. Matching upper and lower bounds of O(log d/ log log d) have been175

derived for d dimensions [15, 7, 43, 29]. Note that since the competitive ratio is super-constant, OPT176

can be assumed to be known by a standard guess and double trick. All these results are for an arbitrary177

number of machines and jobs. There is a large literature on variations, generalizations, and special178

cases of these problems, such as optimizing norms other than makespan, considering non-identical179

machines, focusing on a small constant number of machines, handling only jobs of small size, etc.180

that we omit here for brevity. The reader is referred to several excellent surveys on the topic, e.g., by181

Azar [5], Sgall [46, 47], Pruhs, Sgall, and Torng [45], Albers [3], etc.182

The online load balancing problem is also related to the online bin packing problem, where the183

capacity of every machine is fixed and the goal is to minimize the number of machines used. For a184

single dimension, this problem has been studied since the work of Johnson in the 1970s; see, e.g.,185

[34, 36] and surveys [22, 48]. For vector jobs, the problem was introduced by Garey et al. [23] and186

has been extensively studied in the last few years [7, 6, 8].187

We note that some results of a flavor similar to Theorem 5 are known for other scheduling problems.188

Specifically, Lübbecke et al. [42] showed online algorithms of competitive ratios arbitrarily close to189

the optimum for the objective of minimizing total weighted completion time and its generalizations190

on unrelated machines. Various types of priority-based algorithms have been extensively studied for191

various scheduling problems. See [14] for the relevant pointers and follow-up works.192

Roadmap193

We present the general framework for analyzing priority based algorithms in Section 3 and use it to194

analyze the greedy algorithm in Section 4 for unknown OPT and the balance algorithm in Section 5195

for known OPT. Finally, we present the near-optimal algorithm against the fractional optimum in196

Section 6.197

2 Preliminaries198

In this paper, we focus on the online 2-dimensional scheduling problem, or 2DSCHED in short. In
this problem, a set of n jobs V, indexed by j ∈ [n], and represented by 2-dimensional non-negative
vectors vj = (vj(1), vj(2)) arrive in an online sequence. On arrival, a job must be assigned to one of

ICALP 2020
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a given set of m identical machines M , indexed by i ∈ [m]. The goal of the algorithm is to minimize
the makespan, which is defined as the maximum load on any dimension of any machine. Formally,
for any machine i, let V ji denote the set of vectors assigned to this machine after the arrival of the
j’th vector. Then, we say that machine i’s configuration is given by cji =

∑
vj′∈V

j
i
vj′ , which is (we

may omit the superscript j if it is clear from the context):

(cji (1), cji (2)) =

 ∑
vj′∈V

j
i

vj′(1),
∑

vj′∈V
j

i

vj′(2)

 .

For any value k, we say ci ≤ ~k if ci(1) ≤ k and ci(2) ≤ k; otherwise, we say ci � ~k if at least one199

of these inequalities are violated, i.e., if ci(1) > k or ci(2) > k. Analogously, we define ci ≥ ~k if200

ci(1) ≥ k and ci(2) ≥ k; otherwise, we say ci � ~k.201

Let us denote the optimal offline configuration by OPT; overloading notation, let OPT also represent202

the makespan of this configuration. The online algorithm is said to be α-competitive if cni ≤ ~a for all203

i ∈ [m], where a = α · OPT. We show two sets of results, the first when the value of OPT is known204

and the second when OPT is unknown to the algorithm. Note that if OPT is unknown, then its value is205

not used in the definition of the algorithm. Nevertheless, for the sake of the analysis, we normalize206

and set OPT = 1, which also implies that for all job vectors vj ∈ V , we have vj(1), vj(2) ∈ [0, 1],207

and
∑
j∈[n] vj/m ≤ ~1. For convenience, we call the first coordinate the left coordinate, and the208

second coordinate the right coordinate. We call a job a left vector if its left coordinate is larger than209

or equal to its right coordinate, and a right vector otherwise.210

3 Priority-based Algorithms211

In this section, we give a framework to analyze a large class of algorithms that prioritize machines212

based on their current load. More specifically, such an algorithm computes a certain disutility for213

each machine only using its current load and the arriving job’s load and assigns it to a machine with214

the least disutility. Thus, this class of algorithms are completely determined by the disutility function:215

u : (c, g)→ [0,∞] where c ∈ [0,∞)2 represents a machine’s current load vector, and g ∈ [0,∞)2 a216

job’s load vector. Formally, given a set [m] of machines, the algorithm PRIORITY(u) assigns job j to217

machine i∗ := arg mini∈[m] u(cj−1
i , vj) breaking ties arbitrarily but consistently. Here, as mentioned218

before, cj−1
i denotes machine i’s load just before assigning job j. After assigning job j, we update219

cji∗ = cj−1
i∗ + vj while keeping cji = cj−1

i for all i 6= i∗. If u(cj−1
i , vj) = ∞ for all i ∈ [m], then220

PRIORITY(u) declares failure.221

3.1 Analysis Framework: Zooming in on Jobs Assigned to Two222

Machines223

Now we present our general framework to analyze the above type of priority-based algorithms. The224

key to this framework is to define the set of reachable configurations.225

I Definition 6. We say that an ordered tuple C = (c1, c2, . . . , cm), which we call a configuration,226

where ci ∈ [0,∞)2, is reachable by PRIORITY(u) if machines have load vectors c1, c2, . . . , cm after227

PRIORITY(u) assigns some sequence of jobs [n] to machines [m], such that ||vj ||∞ ≤ 1 for all228

j ∈ [n] and
∑
j∈[n] vj ≤ m ·~1. The set of reachable configurations is denoted byRm(u).229

Unfortunately, it seems extremely challenging to characterize the reachable configurations for m230

machines in general. Our key observation is that the priority-based choices made by our algorithms231

allows us to focus on the loads of only two machines.232
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I Observation 7. For any disutility function u and configuration C = (c1, c2, . . . , cm) ∈ Rm(u),233

and for any pair i 6= j ∈ [m], we have (ci, cj) ∈ R2(u).234

Proof. For notional convenience, say machines i and j have load vectors ci and cj , respectively.235

Consider the jobs that are assigned to machines i and j. If we assign those jobs to machines i and j236

pretending that no other machines exist, the two machines i and j each would get assigned exactly237

the same set of jobs. This is because PRIORITY(u) prioritizes machines only based on their current238

respective load vector and the arriving job’s load vector. Thus, we have shown (ci, cj) ∈ R2(u). J239

Now, the looming question is which pair of machines we should focus on. If α is the target240

competitive ratio we want to establish, we would like to focus on critical machines, i.e., where one of241

the coordinates has a load exceeding α− 1 since they cannot accommodate a job of load vector ~1.242

Also, we would like to focus on a pair where the ‘average’ load between the two dimensions is not so243

high to draw a contradiction—more precisely, a convex combination of the load vectors of the two244

machines should be capped by ~1. To denote such a pair, we will often use the notation p = (pf , ps),245

where pf , ps ∈ [0,∞)2,246

I Definition 8. For an unordered pair of configuration p = (pf , ps), we define247

p ∈ L(α) iff pf +~1 � ~α and ps +~1 � ~α, and we say p is overloaded; and248

p ∈ F iff for all λ ∈ [0, 1], we have λ · pf + (1− λ) · ps � ~1, and we say p is overflown.249

The next lemma shows that there will always be at least one pair of configurations that has not250

overflown.251

I Lemma 9. For any C = (c1, c2, . . . , cm) ∈ Rm(u) such that ci 6= ~0 for all i ∈ [m], there exist252

k 6= ` ∈ [m] such that (ck, c`) /∈ F .253

Proof. Let q =
∑

i∈[m]
ci

m ; note q ≤ ~1 since C ∈ Rm(u). Clearly, q is in the convex hull of
the vectors, c1 . . . , cm. However, the convex hull doesn’t include ~0. Since the convex hull is in
two-dimensional space, this means there exists γ ∈ (0, 1], such that γ · q is on the segment (ck, c`)
for some k, ` ∈ [m]. Thus, there exists λ ∈ [0, 1] such that

λ · ck + (1− λ) · c` = γ · q.

As q ≤ ~1, we have (ck, c`) /∈ F . J254

The following observation is immediate from the definition of L(α) and F , it will be useful to255

first enlist the different cases in terms of these individual coordinate values.256

I Observation 10. For any α > 2, if (pf , ps) ∈ L(α) \ F , then we have:257

- either pf (2), ps(1) > 1 and pf (1), ps(2) < 1;258

- or, pf (1), ps(2) > 1 and pf (2), ps(1) < 1.259

If the algorithm PRIORITY(u) reaches a state where no machine can accommodate another job of260

load ~1, then using Lemma 9, we can find a pair of configurations in L(α) \ F . Then, using the facts261

that the pair is overloaded yet not overflown, we can determine the sign of a certain function V (pf , ps)262

defined on the configuration’s load vectors; this function will be useful to draw a contradiction later.263

Formally, for a pair of configuration (pf , ps), define264

V (pf , ps) := pf (2) · (ps(1)− 1) + ps(2) · (1− pf (1))
ps(1)− pf (1) − 1 (1)265

266

I Lemma 11. For α > 2, if (pf , ps) ∈ L(α) \ F , then we have V (pf , ps) ≤ 0.267

ICALP 2020
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Proof. Since pf + 1, ps + 1 � ~α and α > 2, we can assume wlog that pf (2) > 1; the other case
pf (1) > 1 can be handled similarly. Then, we must have

ps(2) < 1 and ps(1) > 1 and pf (1) < 1,

since (pf , ps) ∈ L(α) \ F ; see Observation 10. Define

f(λ, k) := λ · pf (k) + (1− λ) · ps(k).

Since (pf , ps) /∈ F , there must exist λ∗ ∈ [0, 1] such that f(λ∗, 1), f(λ∗, 2) ≤ 1. Observe f(λ, k) is
monotonically decreasing in λ when k = 1, and monotonically increasing when k = 2. For

λ̃ = ps(1)− 1
ps(1)− pf (1) ∈ [0, 1], i.e., 1− λ̃ = 1− pf (1)

ps(1)− pf (1) ,

we have f(λ̃, 1) = 1. Since f(λ, 1) is monotonically decreasing, λ∗ ≥ λ̃. Since f(λ, 2) is monotoni-
cally increasing, we have

f(λ̃, 2) = pf (2) · (ps(1)− 1) + ps(2) · (1− pf (1))
ps(1)− pf (1) ≤ f(λ∗, 2) ≤ 1,

as desired. J268

Having established the sign of V (pf , ps), we now observe that it is an increasing function in any269

of the coordinates of the two configurations pf , ps.270

I Observation 12. For α > 2 and p = (pf , ps) ∈ L(α) \ F we have(
∂V (pf , ps)
∂pf (1) ,

∂V (pf , ps)
∂pf (2) ,

∂V (pf , ps)
∂ps(1) ,

∂V (pf , ps)
∂ps(2)

)
> ~0.

Proof. By taking partial derivatives on pf (1), pf (2), ps(1), ps(2) respectively, we have271 (
∂V (pf , ps)
∂pf (1) ,

∂V (pf , ps)
∂pf (2) ,

∂V (pf , ps)
∂ps(1) ,

∂V (pf , ps)
∂ps(2)

)
272

=
(

(pf (2)− ps(2)) · (ps(1)− 1)
(pf (1)− ps(1))2 ,

1− ps(1)
pf (1)− ps(1) ,

(pf (2)− ps(2)) · (1− pf (1))
(pf (1)− ps(1))2 ,

pf (1)− 1
pf (1)− ps(1)

)
273

> ~0,274
275

where the last inequalities follow from Observation 10. J276

I Corollary 13. For any α > 2, if (pf , ps), (p′f , p′s) ∈ L(α) \ F , and pf ≥ p′f and ps ≥ p′s, then277

we have V (pf , ps) ≥ V (p′f , p′s).278

We now have all the pieces for the refined analysis of PRIORITY(u). Suppose we want to279

show PRIORITY(u) is α-competitive. Towards this end, it is sufficient to show that if C =280

(c1, c2, . . . , cm) ∈ Rm(u), then we have ci + ~1 ≤ ~α for some i ∈ [m]. For the sake of contra-281

diction, suppose not. Then, by Lemmas 9 and 11, we have (ck, c`) ∈ L(α) \ F for some k, ` ∈ [m],282

and V (ck, c`) ≤ 0. Further, by Observation 7, we know (ck, c`) ∈ R2(u). This leads to the following283

lemma.284

I Lemma 14. IfR2(u) ∩ L(α) \ F = ∅, then PRIORITY(u) is α-competitive.285

Note that this lemma allows us to analyze PRIORITY(u) pretending that there are only two286

machines. Now showing the conditionR2(u) ∩ L(α) \ F = ∅ of the lemma depends on α and the287

disutility function u governing PRIORITY(u).288
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4 Greedy Algorithm: Unknown OPT289

In this section we consider the natural algorithm that assigns an arriving job to the machine yielding290

the minimum makespan. We recover this algorithm by setting the disutility function u to be the291

following:292

MAX(c, g) = ||c+ g||∞ (2)293

We call this algorithm PRIORITY(MAX). Our goal in this section is to prove the following theorem.294

I Theorem 15 (Upper Bound of Theorem 1). PRIORITY(MAX) is 8/3-competitive for the295

2DSCHED problem.296

To show Theorem 15, we will set α = 8/3 and use Lemma 14. We begin with an easy observation,297

which immediately follows from ||vj ||∞ ≤ 1 for all jobs j. (The latter is a consequence of normalizing298

OPT in the analysis, and not an assumption on the input.)299

I Observation 16. For any p = (ps, pf ) ∈ R2(MAX), we have | ||ps||∞ − ||pf ||∞| ≤ 1.300

It is straightforward to show PRIORITY(MAX) is 3-competitive using this observation. To obtain301

a tighter bound, we will show the following:302

I Lemma 17. For α = 8/3, we have (R2(MAX) ∩ L(α)) \ F = ∅.303

Note that Lemma 17 implies Theorem 15 by applying it to Lemma 14. So, the rest of this section is304

devoted to proving Lemma 17.305

For a pair of configurations (pf , ps), define306

H1(pf , ps) := ps(2) + pf (1)− ps(1) + 1307

H2(pf , ps) := ps(2) + pf (1)− pf (2) + 1308
309

I Lemma 18. For a pair of configurations p = (pf , ps), we have p /∈ R2(MAX) if

min{H1(pf , ps), H2(pf , ps), H1(ps, pf ), H2(ps, pf )} < 0.

Proof. Assume for the sake of contraction that there exists (pf , ps) ∈ R2(MAX) such that the310

minimum is non-negative. Further, assume that (pf , ps) is one among such configurations that is311

reachable by the minimum number of jobs assigned. Clearly, (pf , ps) 6= ((0, 0), (0, 0)). Since312

(pf , ps) is unordered, assume wlog that there exist c, g such that pf = c+ g and (c, ps) ∈ R2(MAX)313

and g ≤ ~1 can be assigned to (a machine of load) c according to PRIORITY (MAX), meaning314

||c+ g||∞ ≤ ||ps + g||∞. We consider two cases.315

Case 1: H1(pf , ps) < 0; this is symmetric to H2(ps, pf ) < 0. We have

H1(c, ps) = ps(2) + c(1)− ps(1) + 1 ≤ ps(2) + c(1) + g(1)− ps(1) + 1 = H1(pf , ps) < 0,

which is a contradiction to the minimality of (pf , ps).316

Case 2: H2(pf , ps) < 0; this is symmetric to H1(ps, pf ) < 0. In this case we have

0 > H2(pf , ps) = ps(2) + pf (1)− pf (2) + 1 ≥ ps(2)− pf (2) + 1 ≥ ps(2)− pf (2) + g(2);

hence we have ps(2) + g(2) < pf (2). If g(1) < pf (2)− ps(1), then

||c+ g||∞ = ||pf ||∞ ≥ pf (2) > ||ps + g||∞,
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which is a contradiction to PRIORITY(MAX) assigning g to c. Therefore, we have g(1) ≥ pf (2)−317

ps(1). Then, we have318

H1(c, ps) = ps(2) + c(1)− ps(1) + 1 = ps(2) + pf (1)− g(1)− ps(1) + 1319

≤ ps(2) + pf (1)− pf (2) + 1 = H2(pf , ps) < 0,320

which is also a contradiction.321

J322

We are now ready to prove Lemma 17.323

Proof of Lemma 17. Since (pf , ps) ∈ L(α) \ F and α = 8/3, we assume wlog that pf (2) >
α− 1 = 5/3 and ps(1) > α− 1 = 5/3 (see Observation 10; the other case is symmetric). Then, we
have

H1(pf , ps) = ps(2) + pf (1)− ps(1) + 1 ≥ 0 by Lemma 18,

which yields
ps(2) + pf (1) ≥ 2/3.

Letting pf (1) = x, we have
ps(2) ≥ 2/3− x.

Note that
pf ≥ p′f := (x, 5/3 + ε); and ps ≥ p′s := (5/3 + ε, 2/3− x)

for sufficiently small ε > 0. Thus, (p′s, p′f ) /∈ F . Also notice (p′s, p′f ) ∈ L(α). Therefore, by
Corollary 13, we have

V (pf , ps) ≥ V (p′f , p′s) ≥ 0.

By taking the limit ε→ 0, we have

V (pf , ps) > lim
ε→0

V (p′f , p′s) = (3x− 1)2

3 · (5− 3x) ≥ 0,

which is a contradiction to (pf , ps) ∈ L(α) \ F by Lemma 11. J324

5 Balance Algorithm: Known OPT325

In this section, we consider another priority-based greedy algorithm, PRIORITY(BAL). The rule BAL326

is defined as follows:327

BAL(c, g) =
{
d(c) · d(g) c+ g ≤ α · OPT

∞ otherwise,
(Bal-α)328

where d(v) := v(2)− v(1) measures the signed difference between v’s right load and left load.329

In other words, PRIORITY(BAL) tries to minimize the difference between the left and right loads330

over all machines, without violating a pre-defined threshold α. Note that this algorithm needs to know331

the value of OPT, which is wlog assumed to be 1 by scaling. The PRIORITY(BAL) algorithm keeps332

the machines in sorted order of the (signed) difference between the loads on the two coordinates (the333

left load minus the right load we say that the machines are maintained in left to right order where334

the rightmost (resp., leftmost) machine has the largest difference between the loads on the first and335

second coordinate (resp., second and first coordinate). Recall that a left (resp., right) vector is one336

whose first (resp., second) coordinate is larger. The PRIORITY(BAL) algorithm assigns a left (resp.,337
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right) vector to the rightmost (resp., leftmost) machine that can accommodate it, i.e., whose load338

on any dimension does not exceed the desired competitive ratio α after the assignment. In order to339

achieve it, given a left (right) vector the algorithm would prefer to assign to the most unbalanced right340

(left) machine that can accommodate the vector.341

I Theorem 19 (Upper Bound of Theorem 2). PRIORITY(BAL), knowing OPT a priori, is342

2.25-competitive for the 2DSCHED problem.343

To prove Theorem 19, thanks to Lemma 14, it suffices to show the following.344

I Lemma 20. For α = 2.25, we have (R2(BAL) ∩ L(α)) \ F = ∅.345

The remainder of this section is devoted to proving Lemma 20. Instead of analysing directly346

R2(BAL), we introduce a slightly modified rule of BAL, which is not subject to α:347

BAL-NO-LIM(c, g) = d(c) · d(g) (3)348

Note thatR2(BAL-NO-LIM) ∩ {v | v ∈ [0, α]2} ⊆ R2(BAL) and the subtle difference between349

R2(BAL-NO-LIM) andR2(BAL). The closureR2(BAL-NO-LIM) attempts to assign a vector g to350

only mitigate the difference of the left and right loads of the two machines. If we can assign g to the351

machine i∗ that achieves this, then this assignment would be exactly the same as PRIORITY(BAL)352

would make. However, in the closureR2(BAL-NO-LIM), if g would overflow machine i∗, it doesn’t353

add it to the other machine even if it would be possible under PRIORITY(BAL). This is summarized354

in the following observation.355

I Observation 21. For two pairs of configuration p = (ca, cb), p′ = (ca + g, cb), such that p′ is356

reachable inR2(BAL) by assigning a job of load g ∈ [0, 1]2 into (a machine of load) ca in the pair p,357

if (ca+ g, cb) ∈ R2(BAL)\R2(BAL-NO-LIM) and (ca, cb) ∈ R2(BAL-NO-LIM), then cb+ g � ~α358

and (d(ca)− d(cb)) · d(g) > 0.359

For a pair of configuration (cs, cf ), define360

H3(cf , cs) := d(cs)− d(cf ) + 1 = cs(2)− cs(1)− cf (2) + cf (1) + 1361
362

I Lemma 22. For a pair of configuration p = (ps, pf ), if H3(pf , ps) < 0 or H3(ps, pf ) < 0, then363

we have p /∈ R2(BAL-NO-LIM).364

Proof. Assume for the purpose of contradiction that p ∈ R2(BAL-NO-LIM). AssumeH3(pf , ps) <
0, since the case H3(ps, pf ) < 0 is symmetric. There must exist a vector g such that pf = c+ g, and
(c, ps) ∈ R2(BAL-NO-LIM), for which PRIORITY (BAL-NO-LIM) assigned to c, hence we have

BAL-NO-LIM(c)− BAL-NO-LIM(ps) = (d(c)− d(ps)) · d(g) ≤ 0.

We consider two cases.365

Case 1. g(2) > g(1): Clearly, g(2) − g(1) ≤ 1. However, d(ps) − d(pf ) + 1 = H3(pf , ps) < 0,
hence

d(ps) < d(pf )− 1 = d(c+ g)− 1 = c(2) + g(2)− c(1)− g(1)− 1 ≤ c(2)− c(1) = d(c).

Therefore, (d(c)− d(ps)) · (g(2)− g(1)) > 0, which is a contradiction.366

Case 2. g(2) ≤ g(1): We have

c(2)− c(1)− 1 ≥ c(2) + g(2)− c(1)− g(1)− 1 = pf (2)− pf (1)− 1 > ps(2)− ps(1).

Therefore, we have H3(c, ps) < 0 hence (c, ps) /∈ R2(BAL-NO-LIM), which is a contradiction. J367
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We now have all the pieces to prove Lemma 20.368

Proof of Lemma 20. Assume for the purpose of contradiction that there exists a pair p = (cr, c`) ∈369

R2(BAL) ∩ L(α)) \ F . Let
〈
p∅, p1, . . . pn = p

〉
a sequence of reachable pairs i.e. for all i,370

pi ∈ R2(BAL) and pi+1 is reachable from pi by a single vector assignment under PRIORITY(BAL).371

Case 1. For all i ∈ [n], pi ∈ R2(BAL-NO-LIM). Since p = (cr, c`) ∈ R2(BAL-NO-LIM) ∩ L(α),
assume wlog that cr(2) > α − 1, c`(1) > α − 1. In addition, since (cr, c`) ∈ R2(BAL-NO-LIM),
by Lemma 22, we have H3(cr, c`) = c`(2)− c`(1)− cr(2) + cr − 1 ≥ 0. Therefore, we have

0 ≤ H3(cr, c`) ≤ H3((cr(1), α− 1), (α− 1, c`(1)) = 3− 2 · α+ cr(1) + c`(2).

By setting cr(1) = x , we have c`(2) ≥ 2·α−3−x. Note x ∈ [0, 1] since c`(1) > 1 and (cr, c`) /∈ F .
For α = 2.25, we have

V (cr, c`) > V ((x, α− 1), (α− 1, 2 · α− 3− x)) = (4x− 3)2

20− 16x ≥ 0,

which is a contradiction to p ∈ L(α) \ F by Lemma 11.372

Case 2. pi /∈ R2(BAL-NO-LIM) for some i ∈ [n]. Let i be the first index such that pi /∈373

R2(BAL-NO-LIM), let pi−1 = (ca, cb), pi = (ca + g, cb). Note that cr ≥ ca and c` ≥ cb. By Obser-374

vation 21 we have cb+ g � ~α. Assuming wlog that cb(1) + g(1) > α, we have cb(1) > α− g(1) > 1375

since g ≤ ~1 and α > 2. For the same reason, we have cr(2) > α − 1, and cr(1), c`(2) ≤ 1 (since376

(cr, c`) ∈ L(α) \ F).377

Since V (cr, c`) is monotone increasing, we have V (cr, c`) > V (〈ca(1) + g(1), α − 1〉, cb).378

Moreover, by our assumption pi−1 = (ca, cb) ∈ R2(BAL-NO-LIM), by Lemma 22, we have379

H3(ca, cb) = cb(2)− cb(1)− ca(2) + ca(1) + 1 ≥ 0,380

ca(1) ≥ max{ca(2)− cb(2) + cb(1)− 1, 0} ≥ max{cb(1)− cb(2)− 1, 0}.381

Recall that cr(1) ≤ 1, and we have ca(1) ≥ cb(1) − cb(2) − 1, and g(1) > α − cb(1). Therefore,
1 ≥ cr(1) ≥ g(1) + ca(1) ≥ α− cb(1) + ca(1) ≥ α− cb(2)− 1, which yields cb(2) ≥ α− 2. Thus,

V (cr, c`) > V (〈α− cb(1) + max{cb(1)− cb(2)− 1, 0}, α− 1〉, 〈cb(1), cb(2)).

We lower bound V by considering two cases:382

Case A. If cb(1)− cb(2) < 1, then

V (cr, c`) > V (〈α− cb(1), α− 1〉, 〈cb(1), cb(2)) ≥ V (〈α− cb(1), α− 1〉, 〈cb(1), cb(1)− 1).

Case B. If cb(1)− cb(2) ≥ 1, then

V (cr, c`) > V (〈α− cb(2)− 1, α− 1〉, 〈cb(1), cb(2)) ≥ V (〈α− cb(2), α− 1〉, 〈1 + cb(2), cb(2)).

Setting x = cb(1)− 1(≥ α − 2) in the first case and x = cb(2) in the second case, we get that
x ≥ α− 2 in both cases. So, we have

V (cr, c`) > V (〈α− 1− x, α− 1〉, 〈1 + x, x〉) ≥ 0.

By setting α = 2.25, for x ≥ α− 2 = 0.25, we have

V (cr, c`) > V (〈α− 1− x, α− 1〉, 〈1 + x, x〉) = (2x− 1)2

8x− 1 ≥ 0,

which is a contradiction to p ∈ L(α) \ F by Lemma 11. J383
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6 A Nearly Optimal Algorithm Against the Fractional Optimal384

Solution385

Recall that all algorithms we developed and analyzed were based on the two most obvious lower386

bounds for the optimal solution, the total load vector of all jobs and the maximum job size on any387

dimension. Therefore, the benchmark we used can do better than the offline optimum solution. For388

example, consider three job vectors (1, 1, 0), (1, 0, 1), (0, 1, 1) to be scheduled on 2 machines. Since389

one of the two machines must receive at least two jobs, the optimum makespan cannot be smaller390

than 2. However, this instance still has an average load of 1 on all dimensions and no job has size391

greater than 1 on any dimensions. In other words, the benchmark can distribute all jobs equally across392

all machines. For this reason, we will call this benchmark the fractional optimum solution.393

I Definition 23. For any number of dimensions d ≥ 1, the optimum competitive ratio c∗d against
the fractional optimum solution is defined as

inf
A

sup
J

maxi∈[m],k∈[d] ΛJ,mi (k)
max{||

∑
j∈J vj/m||∞,maxj∈J,k∈[d] vj(k)} ,

where A denotes an arbitrary deterministic online algorithm, J an arbitrary sequence of jobs, m394

the number of machines, and ΛJ,mi the load vector of machine i under the assignment of jobs J to395

machines [m] by the algorithm A.396

Our goal is to develop and analyze an algorithm that performs nearly as well as the fractional397

optimum solution.398

I Theorem 24. For any d ≥ 1 and ε > 0, assuming that the value of the optimum makespan5 is399

known a priori, there exists a deterministic online algorithm for the vector scheduling problem whose400

competitive ratio is (1 + ε)c∗d. Further, the running time is polynomial in n for any fixed d, ε.6401

6.1 Assigning Jobs to Groups402

The first stage of the algorithm is executed only whenm ≥ (1+ 1
ε )α where α := 250

ε3 log d. We group403

machines so that every group has exactly α machines; to simplify the notation we assume that α is404

an integer to omit ceilings. The only one possible group that has less than α machines is discarded.405

We assign jobs to the (remaining) groups and obtain the following lemma using an algorithm and406

analysis very similar to [29]; hence, we defer the details to the full version of the paper.407

I Lemma 25. For a sufficiently small ε > 0, there exists an online algorithm that assigns jobs to408

the groups, each consisting of α := 250
ε3 log d machines, such that every group’s total load is at most409

(1 + ε)αd~1.410

Note that the average load vector a machine should handle increases by a factor of at most411

m
m−(α−1) ≤

1+1/ε
1+1/ε−1 = 1 + ε. We also slightly modify each job’s load vector: For each job j, we412

minimally increase vj , so that we have vj(k) ≥ (ε/d)||vj ||∞. This is wlog since increasing job load413

vectors can only increase the algorithm’s makespan and we fixed the optimum to be 1.414

I Lemma 26. The preprocessing step increases the total load vector to at most (1 + ε)m~1.415

5 More accurately, the value of the fractional optimum makespan.
6 More precisely, the running time is polynomial in n and (d/ε)d(d/ε)O(d)

.
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Proof. For the sake of contradiction, suppose the total load is more than (1+ε)m on some dimension.416

It means the load increased by more than εm on the dimension. We know that job j contributes to the417

increase by at most (ε/d)||vj ||∞. Thus, the increase is at most
∑
j(ε/d)||vj ||∞. However, we know418 ∑

j ||vj ||∞ ≤ md since the total load of all jobs across all dimensions is md. Therefore, the increase419

is at most εm, which is a contradiction. J420

Since we are only concerned with assigning jobs to groups of machines at this stage, to simplify421

notation we pretend each group is a machine. By a machine i, we mean the i-th group which consists422

of α machines.423

We now restate the problem: We are given m′ = bmα c machines. Let [n] denote the set of all jobs424

arriving, which satisfies the following properties.425

Property (i): The total job load vector, i.e.,
∑
j∈[n] vj is at most m′α(1 + ε)2~1.426

Property (ii): For all j ∈ [n], ||vj ||∞ ≤ 1.427

Property (iii): For all j ∈ [n], mink vj(k) ≥ (ε/d)||vj ||∞.428

Our goal is to assign jobs to m′ machines so that each group receives jobs of total load at most429

(1 + 7ε)α~1, which would immediately imply Lemma 25 by scaling ε.430

The algorithm has two procedures. The algorithm pretends there are two sets M1 and M2 of431

machines, where |M1| = |M2| = m′. The first procedure assigns all jobs to machines M1 and432

identifies a set J2 of jobs, which will be assigned to machines M2 by the second procedure. However,433

this is a shadow process: What really happens is that only jobs in [n] \ J2 remain on machines M1434

and the other jobs J2 are assigned to machines M2. Further, the algorithm pairs machines between435

M1 and M2 arbitrarily and combine the load vectors of the paired machines. To prove Lemma 25, it436

suffices to show the following two lemmas (with scaling ε):437

I Lemma 27. The makespan of the assignment of [n] \ J2 to M1 is at most ((1 + ε)5α + 1)~1 ≤438

(1 + 6ε)α~1.439

I Lemma 28. The makespan of the assignment of J2 to M2 is at most εα~1.440

We are now ready to describe the algorithm.441

First procedure (assignment by a potential function): Let β := (1 + ε)3. Let f(x) := βx.442

Each job j is assigned to a machine i ∈ M1 such that Φ(j) is minimized. For every i ∈ M1,443

let Λ1
i,j denote machine i’s load vector right after assigning job j to some machine in M1. If444

Λ1
i,j(k) ≥ βα+1, then j is added to queue J2 so that it can be scheduled by the second procedure.445

Φi,k(j) := f

Λ1
i,j(k)− β

m′

∑
j′∈[j]

vj′(k)

 ∀i ∈M1, j ∈ [n], k ∈ [d]446

Φ(j) :=
∑
i∈M1

d∑
k=1

Φi,k(j)447

448

Second procedure (assignment by greedy): This procedure is only concerned with the jobs J2
449

that are passed from the first procedure. It allocates each job in J2 (in the order that the jobs450

arrive in) to one of the machines in M2 such that the resulting makespan, maxi∈M2,k∈[d] Λ2
i,j(k)451

is minimized; here Λ2
i,j is analogously defined as Λ1

i,j is defined in the first procedure.452

Note that Lemma 27 immediately follows due to the way the first procedure is defined. The proof453

of Lemma 28 constitutes the heart of the analysis in this stage of the algorithm. Since this closely454

follows techniques in [29], we defer the details of this analysis to the full version of the paper.455
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6.2 Assigning Jobs to Machines Within Each Group456

We need to define a fair amount of notation to formally describe our algorithm. We assume that the457

input consists of m machines and the average load of all jobs to be assigned is at most (1 + ε)m on458

all dimensions for some ε > 0.459

For ease of reference, we list the following definitions.460

Let β := ε
2md ; ∆ := ε2

d(1+1/β)d ; and δ := εβ∆/(2dm).461

A vector is said to be a type vector if it is in {0, β, 2β, · · · , 1}d \ {~0} and has 1 on at least one462

dimension. Let Q denote the set of all type vectors. Note that |Q| ≤ (1 + 1/β)d ≤ (2/β)d.463

We say a job j is small if ||vj ||∞ < ∆; otherwise it is big.464

The volume of a job j is defined as its total size over all dimensions.465

We discretize big jobs and small jobs in different manners:466

Big jobs: For a big job j, we round its load on every dimension down to the nearest integer467

multiple of δ. Let B denote the set of all possible load vectors of big jobs after discretization.468

Small jobs: For a small job j, let pj = ||vj ||∞. Then, we discretize vj/pj by rounding each entry469

down to the nearest integer multiple of β. Let qj denote the resulting discretized vector of vj/pj ;470

note that qj ∈ Q. After rounding, we can express each small job j as pjqj .471

We are now ready to describe our algorithm. Below, assume that jobs are already discretized. We472

will later show that the effect of discretization is negligible on the competitive ratio.473

6.2.1 Building a decision tree474

We build a decision tree T to assign big jobs. To simplify the analysis later, we assume wlog that the475

total load vector T receives is exactly m(1 + 4ε)~1. Each node of the decision tree T corresponds to476

the current loads of all the m machines. Each node u has at most m|B| children. Each edge (u,w)477

is associated with a pair (i, j) where j ∈ B and i ∈ [m], meaning that if a big job j is assigned to478

machine i, then the machine loads vectors change from u to w. Since the total volume of jobs is at479

most (1 + 4ε)md ≤ 5md and every big job has volume at least ∆, the decision tree has depth at480

most 5md/∆ and the number of nodes is at most (m|B|)5md/∆. We only need to keep nodes whose481

machine load vectors don’t contradict the assumption that the total load of all jobs on each dimension482

is exactly (1 + 4ε)m.483

Given that every node of the decision tree T corresponds to a configuration (machine load vectors)484

that can be reached via a valid sequence of big jobs along with their assignment, our goal is to compute485

the minimum makespan we can achieve from each node u. Formally, if u is a leaf node, define g(u) to486

be the makespan norm of the machine load vectors corresponding to u. Otherwise, let ui,j denote u’s487

child such that the edge (u, ui,j) is associated with (i, j). Then, define g(u) := mini maxj g(ui,j).488

We can use the tree T to assign big jobs as follows. Let u be the node corresponding to the current489

machine load vectors. If a big job j arrives, then we assign j to machine i with the minimum g(ui,j).490

The following observation is immediate due to the optimal nature of the decision tree for big jobs.491

In other words, the observation says that the decision tree yields a nearly optimal algorithm against492

the fractional optimum.493

I Observation 29. Let r denote the root of T . Then, g(r) ≤ (1 + 4ε)c∗d.494

Proof. Since we assumed that the total load vector is exactly (1 + 4ε)m~1, the denominator in495

Definition 23 is exactly (1 + 4ε). Since we know the decision tree gives an optimal algorithm for big496

jobs, we have g(r)/(1 + 4ε) ≤ c∗d, as desired. J497
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6.2.2 Batching smalls jobs of the same type498

We will first describe how we batch small jobs and assign them using the above decision tree T499

assuming that we can wait until we collect enough volume of jobs for each type. For each type vector500

q ∈ Q, we create a buffer F (q). The buffer has capacity ∆/ε. When a small job j of vector pjqj501

arrives, we add it to buffer F (qj); j uses pj space of the buffer. There are two events that trigger502

emptying a buffer. When we empty a buffer F (q), we encapsulate the load vectors of all jobs in F (q)503

into a ‘bin’ vector (∆/ε)q, and assign it using the decision tree T . The buffer is emptied when either504

we cannot add a job j since it would exceed the capacity ∆/ε or after all jobs arrive.505

This procedure is well defined due to the following lemma.506

I Lemma 30. Every bin vector is in B.507

Proof. Consider any bin vector (∆/ε)q. To show that this is in B, we need to show the following508

three: (i) it has size at least ∆ on some dimensions; (ii) each of its entries is a multiple of δ; and509

(iii) it has size no more than 1 on every dimension. First, (i) follows since ||q||∞ = 1 due to the510

way we defined small job types. To see (ii), consider q’s entry on each dimension – we know that511

its value must be `β for some integer `. So, it suffices to show that (∆/ε)(`β)/δ is an integer.512

Recall that δ := εβ∆/(2dm). Thus, we have, (∆/ε)(`β)/δ = ∆
ε (`β) 2dm

εβ∆ , which is an integer513

assuming that 1/ε is an integer. To see (iii), note that the maximum size over all dimensions is at514

most (∆/ε) = ε
d(1+1/β)d < 1. J515

6.2.3 Batching small jobs online516

In the online setting we cannot wait to aggregate small jobs of the same type. To handle this issue, we517

pre-allocate one “bin" vector of each type. That is, before any jobs arrive, we pretend that one job of518

each load vector q arrives and assign it using the decision tree T . Then, batching jobs of the same519

type vector q in F (q) is actually done on the machine that received the bin vector. Therefore, we can520

assign small jobs upon their arrival without waiting.521

We have fully described our online algorithm to assign jobs upon their arrival. We now shift our522

focus to the analysis. When a job j is encapsulated into a type vector v of type q ∈ Q, we say v523

contains job j.524

I Observation 31. Every bin vector of each type q ∈ Q, possibly except one, has total size of jobs525

at least (1− ε)(∆/ε).526

Proof. Since small jobs are aggregated only when they are of the same type, for each type q ∈ Q,527

we can focus on the scalar quantities, job sizes pj and the buffer size ∆/ε. The observation follows528

from the fact that we empty buffer B(q) only when the total size of jobs in the buffer B(q) exceeds529

(1− ε)(∆/ε), or at the end after all jobs arrive. The only exception is due to the pre-allocation, which530

corresponds to emptying the buffer at the end. J531

I Lemma 32. If the total job load vector is at most (1 + ε)m~1, then the decision tree, due to532

batching and preallocation, receives jobs of total load vector at most (1 + 4ε)m~1.533

Proof. By Observation 31, the total load vector T receives is at most (1+ε)m~1/(1−ε) ≤ (1+3ε)m~1,534

plus
∑
q∈Q(∆/ε)q. Further, we have

∑
q∈Q(∆/ε)q = |Q|(∆/ε)~1 ≤ (1 + 1/β)d · ε2

d(1+1/β)d
1
ε
~1 ≤535

ε~1. J536

Therefore, the algorithm sends to the decision tree T big jobs (including bin vectors which are big)537

of total load vector at most (1 + 4ε)m~1. Note that sending less loads only helps our algorithm. By538



I. Cohen and S. Im and D. Panigrahi 54:17

Observation 29, our algorithm’s makespan is at most (1 + 4ε)c∗d-competitive if all jobs are discretized.539

We now show that when replacing each discretized vector with the original vector, every machine’s540

load increases by at most 2ε~1. Knowing that the optimum makespan is 1, this will mean that the541

competitive ratio of our algorithm is at most (1 + 6ε)c∗d-competitive. By scaling ε appropriately, we542

obtain Theorem 24.543

We complete the analysis by proving the following lemma.544

I Lemma 33. Restoring the discretized jobs load vectors to their original vectors increases each545

machine’s load vector by at most 2ε~1.546

Proof. For the sake of contradiction, suppose the total load increases by more than 2ε on some fixed547

dimension d on some fixed machine i. In the first case, suppose at least ε increase was due to big jobs.548

Then, since discretizing a big job reduces its load by less than δ on each dimension, this means that the549

total number of big jobs assigned to the machine i is at least ε/δ. Since a big job has a volume ∆ or550

more, the total volume of jobs assigned to machine i is at least (ε/δ) ·∆ = ε/(ε∆/2dm) ·∆ = 2dm,551

which is a contradiction to the fact that each machine has makespan at most (1 + 4ε), thus volume552

at most (1 + 4ε)d. Now suppose at least ε increase was due to small jobs. Let S be the set of553

all small jobs assigned to machine i. We know that discretizing a small job j reduces its load554

by at most pjβ on the fixed dimension d. Thus, we have
∑
j∈S pjβ > ε. As a result, we have555 ∑

j∈S pj > ε/β = ε/(ε/2md) = 2md. This implies that the total volume of the jobs in S is at least556 ∑
j∈S pj ≥ 2md, which is a contradiction as before. J557

6.3 Putting the Pieces Together558

In Section 6.1 we showed if we use the first phase of the algorithm, then we can assign jobs to groups559

of machines so that each group has m′ = O( 1
ε3 log d) machines and receives load at most (1 + ε)m′~1.560

Otherwise, we can pretend all jobs are assigned to the single group of all machines. In either case,561

we can assign jobs to groups of machines so that each group has m′ = O( 1
ε4 log d) machines and562

receives load at most (1 + ε)m′~1. Then, using the procedure in 6.2, we can assign jobs to machines563

within group, so that each machine’s load vector is at most (1 + 6ε)c∗d~1. Thus, we have found an564

online algorithm whose competitive ratio is (1 + ε)c∗d by appropriately scaling ε.565

It now remains to show the running time of our algorithm. Since the running time is mostly566

dominated by the second phase, we will focus on the second phase. It is an easy exercise to see the567

running time is polynomially bounded by the size of decision tree and n. As discussed, the number568

of nodes is (m|B|)5md/∆, where |B| ≤ (2/δ)d. By the above discussion, we have m = O( 1
ε4 log d).569

Recall that β := ε
2md , ∆ := ε2

d(1+1/β)d , δ := εβ∆/(2dm). By calculation, one can show that the tree570

size is (d/ε)d(d/ε)O(d)

. Thus, we have shown the running time.571

This completes the proof of Theorem 24.572

7 Open Problems573

This paper gives the first non-trivial results for the online vector scheduling problem with a small574

number of dimensions. The most interesting open question is to better understand the competitive ratio575

of “practical” algorithms when d > 2. For instance, what is the competitive ratio of PRIORITY(MAX)576

when d > 2? Or, can we extend PRIORITY(BAL) for d = 2 to higher dimensions? Even for d = 2, in577

our analysis, we used as the lower bound the fractional optimum where job vectors can be fractionally578

assigned to machines. This is inherently limited by the integrality gap of the fractional assignment.579

Can we obtain better lower bounds for the true optimum, and thereby improve the competitive ratio580

for the problem? For instance, for d = 2, is there a 2-competitive algorithm?581
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