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ABSTRACT
Many online trip planning and navigation software need to rou-

tinely solve the problem of deciding where to take stops during a

journey for various services such as refueling (or EV charging), rest

stops, food, etc. The goal is to minimize the overhead of these stops

while ensuring that the traveller is not starved of any essential re-

source (such as fuel, rest, or food) during the journey. In this paper,

we formally model this problem and call it the pit stop problem. We

design algorithms for this problem under various settings: single

vs multiple types of stops, and offline vs online optimization (i.e.,

in advance of or during the trip). Our algorithms achieve provable

guarantees in terms of approximating the optimal solution. We

then extensively evaluate our algorithms on real world data and

demonstrate that they significantly outperform baseline solutions.

CCS CONCEPTS
• Theory of computation → Online algorithms; • Informa-
tion systems→ Geographic information systems.
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1 INTRODUCTION
Trip planning and navigation software are an important component

of the bouquet of services offered to online users today. Perhaps

the most visible use of such software is in providing driving plans

for personal mobility such as in planning road trips (e.g., Google

maps, Apple maps, Waze, etc.). But, they have also played a crucial

role in the rapid growth of many other services on the Internet.

For instance, ride sharing services (such as Uber, Lyft, etc.) rely

extensively on dynamic trip planning to optimize QoS and revenue,

autonomous vehicles increasingly used in logistics rely on auto-

mated decision making for optimizing trip times, the online travel

and tourism industry uses navigation and planning software to de-

sign vacation plans, increased adoption of electric vehicles (EVs) has

been facilitated by software support for charging schedules during
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long trips, etc. This increasing variety of application domains have

given rise to many more uses of online maps beyond the traditional

point-to-point navigation and guidance. Further, these applications

enable different levels of interactions with the navigation software.

Examples include mobile devices used for advance or dynamic trip

planning (e.g., Google Maps, Tom Tom, Apple Maps, Bing Maps),

in-vehicle interaction both using software built into vehicles (par-

ticularly by high end car manufacturers like Tesla) and using third

party software provided via mobile devices (e.g., Android Auto,

Apple CarPlay), and the burgeoning autonomous vehicles in the

logistics industry that are controlled by the routing software in a

tightly integrated setting [11].

A central problem for these services is to plan stops along a

trip route to avail services such as refueling, food, rest stops, fa-

cilities breaks, truck weighing stations, etc. We call the problem

of planning these stops in an optimal manner the pit stop problem.

In some cases, these pit stops can be decided in advance of the

trip, and are incorporated into route planning itself. In practice,

however, most travellers do not plan out a trip at a level of detail

that includes the precise schedule of stops beforehand. Indeed, such

planning might even be impossible because of the uncertainties

associated with traffic delays, rest area or weighing station closings,

facilities hours, etc. that are difficult to predict in advance. In such

cases, one needs a more adaptive strategy where the navigation

software plans pit stops along the route during the journey itself,

while dynamically adapting to the current road conditions, facility

closures, etc. Whether planned in advance or during the journey,

the goal is to minimize the overhead incurred by these pit stops,

while ensuring that the traveller is not starved of any essential

resource such as food, fuel, or rest during the journey.

In this paper, we model and study the pit stop problem from an

algorithmic perspective. We consider both the offline setting, where
the stops are planned before the journey commences, and the online
problem where the stops are decided during the journey. In the

offline case, we provide an optimal algorithm using a dynamic

programming approach. In the online setting, we design a novel

algorithm that only uses local information about resource avail-

ability in close proximity to the current location of the traveller

to decide her next pit stop. We give provable guarantees on the

performance of this algorithm, namely that it achieves a constant
approximation of an (offline) optimal solution. In addition to the

theoretical guarantees, we evaluate our algorithms on real data

sets for EV charging and food stops, and show that our algorithms

improve on benchmark greedy solutions for these applications.

1.1 Our Contributions
Our first contribution is in formally modeling the pit stop problem

as an algorithmic question in both the offline and online settings.

Recall that the offline setting refers to planning the stops in advance

before the commencement of the journey. In contrast, the online

https://doi.org/https://doi.org/10.1145/3557915.3560982
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setting is more flexible and plans stops during the journey itself,

allowing it to adapt to dynamic variables such as traffic conditions

and facilities closings. In addition to offline vs online, a different di-

mension for categorizing the pit stop problem is whether the stops

are homogeneous (i.e., provide the same resource) or heterogeneous

(i.e. provide a variety of resources). Some navigation software pro-

vide planning for individual services separately; e.g., many electric

vehicles (EV) have inbuilt software to plan charging stops along a

route (e.g., Tesla, Volvo). On the other hand, some services provide

generic tools for trip planning involving a heterogeneous set of pit

stops to avail facilities such as food, fuel, and others
1
. To distin-

guish between these cases, we consider two versions of the pit stop

problem, a single resource and a multi-resource variant.

Our algorithmic results are the following:

• For the offline pit stop problem, we give an optimal algo-
rithm. Interestingly, we show that this algorithm can also

be incorporated into route planning. I.e., given a graph rep-

resenting the road network, a source-destination pair, and

the map of resource locations, the algorithm finds a route

from the source to the destination along with pit stops on

this route that minimizes the total length of the journey.

• For the online pit stop problem, we give an algorithm that

achieves a constant approximation of the optimal solu-

tion for a single resource. Unfortunately, this algorithm does

not generalize to multiple resources; indeed, we give a lower

bound showing that a bounded approximation factor can-

not be obtained for the online problem even with just two

resources. Therefore, we design heuristics for solving the

online pit stop problem in the multi-resource setting.

Next, we empirically evaluate our algorithms on real world maps,

and compare them to baseline greedy solutions. We focus on road

trips with an electric vehicle (EV) and consider both a single re-

source (battery charging) and multiple resources (battery and food)

in our experiments. Our experiments show that our algorithms

consistently outperform greedy baseline solutions for both settings.

1.2 Related Work
Our problem can be broadly classified as a vehicle routing problem

(VRP), an area that has been widely studied in the operations re-

search and approximation algorithms communities (see [15, 32] for

books on VRP in operations research; in approximation algorithms,

some of the well-studied variants include orienteering [3, 5, 8],

dial-a-ride [7, 16, 17], and capacitated VRP [6, 18, 25]). In the offline

setting, our algorithms are inspired by classical DP solutions to

shortest path problems, such as Dijkstra’s and Bellman-Ford’s algo-

rithms (e.g., [10]). The work in [21] solves the gas station problem,

which is a special case of the pit stop problem, specifically offline

with a single resource. In the online setting, perhaps the closest

to our problem is the so called Canadian Traveler Problem (CTP)

where the goal is to find shortest path solutions in a graph that is

revealed in parts. The complexity of algorithms for CTP have been

studied in [4, 28, 29] and branch and bound type solutions explored

in [1, 13]. The main point of difference between these problems and

the pit stop problem is the constraint that the route must ensure

the traveller does not run out of any resource during the journey.

1
e.g., https://trips.furkot.com/

We are not aware of previous work in the shortest path literature

under such “periodic replenishment” constraints.

The online pit stop problem also falls under the general umbrella

of decision-making under uncertainty. Indeed, our problem can

be thought of as a complement to the classic secretary problem

(e.g., [12, 14, 22, 27]) and prophet inequalities (e.g. [2, 19, 20, 23,

24, 31]). In fact, while the latter problems put an upper bound on

the number of selected items with the values of future items being

uncertain, the online pit stop problem does exactly the opposite, i.e.,

puts a lower bound on the number of stops where the cost of future

stops is uncertain. Nevertheless, what again distinguishes the pit

stop problem is the periodicity of the constraint, i.e., that the number

of stops is not simply lower bounded by a minimum threshold but

that there is a limit to the gap between two consecutive stops. This

makes our problem unique compared to the existing literature, and

requires new tools that we explore in this paper.

On the more practical side, there has been work that studies

the problem of minimizing charging or refuelling cost of electric

vehicles or vehicles in general. Lin et. al. in [9, 26] considered the

problem of minimizing energy and travel cost for a fleet of electric

vehicles. Other works [30, 33] focused on optimizing the use of

electric charging stations via routing vehicles to the appropriate

station. Unlike our work, the above papers do not provide provable

guarantees for the algorithms they propose, and do not consider

online versions of their problems.

2 MODEL
We first consider the single resource variant of the pit stop problem.

We use the refueling application to describe the problem, although

it applies equally well for any other service being availed during

the trip. The goal of the problem is to select refueling stops along a

prescribed route. We denote the start of the route by location 0 and

the destination by location 𝑡 . (The route may be defined in units of

time rather than distance, or in terms of some other parameter. This

detail is not relevant to the problem formulation itself, and is hence

omitted.) There are 𝑛 candidate stops along the route. Each stop 𝑣 is

at location 𝑣 ∈ (0, 𝑡) along the route. The cost of the stop is denoted
𝑐𝑣 , and represents the overhead of making this stop. We denote by

𝑙𝑣 the fuel level of the vehicle when it returns to the route, i.e., the

vehicle can travel till location (𝑣 + 𝑙𝑣) without refueling again. We

also define the fuel capacity of the vehicle by 𝑅, which is an upper

bound on the fuel level 𝑙𝑣 for any stop 𝑣 .

In the offline problem, the entire set of 𝑛 candidate stops, their

locations, costs, and fuel levels are available offline to the algorithm.

In contrast, the online problem is defined using a look-ahead param-
eter 𝑑 , and the details of a candidate stop are revealed only when

the stop is within distance 𝑑 of the vehicle’s location. We will be

evaluating our online algorithms using the standard benchmark

of competitive ratio, which is the worst-case (over all instances)

ratio of the cost suffered by the algorithm versus that of an optimal

(offline) solution. For simplicity, we also assume that the vehicle

starts with fuel level 𝑅, i.e., at full capacity.

In the more general multi-resource pit stop problem, there are 𝑘

types of resources that deplete over time. For simplicity, we assume

that a unit of travel depletes a unit of each resource type, but we also

note that our results easily generalize to the setting where resources
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deplete at arbitrary and non-uniform rates for each portion of the

trip and at each stop. Let 𝑅𝑞 be the capacity with respect to resource

𝑞 and let 𝑙𝑣𝑞 be the level of resource 𝑞 after making stop 𝑣 . When

we make stop 𝑣 with entry level 𝑙𝑞 for a given resource 𝑞, we may

decide to replenish it to 𝑙𝑣𝑞 or leave it as is and suffer the 𝑐𝑣 cost

on it, depending on what is more beneficial. (Note that this is not

a concern for the single resource case since we would not stop

at the location where the replenishment level is lower than the

incoming resource level. But, in the multi-resource case, we might

need to stop because of some other resource, which forces us to

decide whether to replenish a different resource or not.) Hence, the

exit level of resource 𝑞 will be max{𝑙𝑣𝑞, 𝑙𝑞 − 𝑐𝑣}. If 𝑙 is a vector of
resource levels, we write 𝑢𝑣 (𝑙) for the exit levels after stopping at
𝑣 , which are defined as explained above. Again, the objective is to

plan a minimum cost schedule of stops subject to not running out

of any resource.

In the offline setting, we also briefly discuss the multi-resource

pit stop problem on a graph, i.e., when the trip route is decided

in conjunction with the stops before the commencement of the

journey. This incorporates the pit stop problem in route planning

itself, which might be relevant in situations that involve controlled

environmentswith limited uncertainty (for instance, when planning

a route using dedicated High Occupancy Vehicle (HOV) lanes). In

this case, the algorithm returns a route from the source to the

destination along with the stops to minimize cost subject to not

running out of any resource during the trip. We note that this more

general problem is less natural in the online setting since route

planning is typically done prior to the trip. In any case, it is easy to

show strong lower bounds that rule out any competitive algorithm

for the online problem on a general graph instead of a fixed route.

3 OFFLINE PIT STOP PROBLEM
In this section, we consider the offline version of the pit stop prob-

lem, i.e., where the entire instance with all potential stops are

available to the algorithm.

3.1 Single Resource
Even though this particular version is solved in [21], we present

a dynamic program (DP) to optimally solve the offline pit stop

problem as it facilitates the discussion of the more general case. We

use𝐶 (𝑣, 𝑙) to denote the optimal cost of reaching 𝑡 from 𝑣 with fuel

𝑙 ∈ 𝐿𝑣 at 𝑣 . The DP is based on the following recurrence, where 𝑣 ′ is
the stop that immediately follows 𝑣 (note that 𝑣 ′ − 𝑣 is the distance
between them):

𝐶 (𝑣, 𝑙) = min

{
𝐶 (𝑣 ′, 𝑙 − (𝑣 ′ − 𝑣)), 𝑐𝑣 +𝐶 (𝑣 ′, 𝑙𝑣 − (𝑣 ′ − 𝑣))

}
(1)

with the following initial conditions:

𝐶 (𝑣, 𝑙) = ∞, ∀𝑣, 𝑙 < 0 and 𝐶 (𝑡, 𝑙) = 0, ∀𝑙 ≥ 0. (2)

Intuitively, this recurrence chooses between the two options of

stopping and refueling at 𝑣 versus skipping 𝑣 . Let 𝐿𝑣 be the set of

possible fuel levels at location 𝑣 . Note that the cardinality of this

set is bounded by the number of stops 𝑛, since there are at most as

many possible fuel levels at 𝑣 as potential stops to refuel at before

reaching it. For every 𝑣 , we only need to compute 𝐶 (𝑣, 𝑙) for 𝑙 ∈ 𝐿𝑣 .

Theorem 3.1. Solving the offline pit stop problem recurrence back-
wards from 𝑡 computes the optimal cost 𝐶 (0, 𝑅) in 𝑂 (𝑛2) time.

Proof. First we explain correctness. The initial conditions (2)

ensure the optimal cost 𝐶 (𝑡, 𝑙) is correct for every 𝑙 . Now suppose

we have the correct optimal cost for every 𝑙 ∈ 𝐿𝑣′ for some given

𝑣 ′ > 0. We will argue that recurrence (1) computes the correct

optimal cost𝐶 (𝑙, 𝑣) for every 𝑙 ∈ 𝐿𝑣 , for the stop 𝑣 that immediately

precedes 𝑣 ′. There are two options given any fuel level 𝑙 : either

charge or not. The DP considers both of these options, the first

term in the min function is the option to skip the stop and move on

to the next location with fuel levels depleted by 𝑣 ′ − 𝑣 . The second
term is to refuel at 𝑣 , which suffer a cost of 𝑐𝑣 but updates the fuel

level at 𝑣 to 𝑙𝑣 , followed by the same depletion of 𝑣 ′ − 𝑣 to reach 𝑣 ′

from 𝑣 . Using the inductive hypothesis at 𝑣 ′, we can now claim that

the DP identifies the smaller of these two optimal as the optimal

cost at 𝑣 with level 𝑙 .

The time complexity of the DP is 𝑂 (𝑛2). There are 𝑛 stops and

for each stop 𝑣 there are at most 𝑛 possible levels in 𝐿𝑣 . Hence, there

are𝑂 (𝑛2) values𝐶 (𝑙, 𝑣) to be computed and each such computation

takes constant time. □

3.2 Multiple Resources
The DP can be generalized to the case of multiple resources as we

explain in the rest of the section. We omit details on optimality,

which follows similarly to the fuel only case. Let 𝐿𝑣𝑞 be the set of

possible levels of resource 𝑞 at location 𝑣 . Let 𝐿𝑣 = ×𝑞𝐿𝑣𝑞 be all

the possible vectors of resource levels at 𝑣 . We write 𝐶 (𝑣, 𝑙) for the
optimal cost of reaching 𝑡 from 𝑣 with resource levels 𝑙 ∈ 𝐿𝑣 at 𝑣 .
Below, we write e for the vector of 𝑘 ones, where 𝑘 is the number

of resources. The DP is based on the following recurrence, where

𝑣 ′ is the stop that immediately follows 𝑣 :

𝐶 (𝑣, 𝑙) = min

{
𝐶 (𝑣 ′, 𝑙 − (𝑣 ′ − 𝑣)e), 𝑐𝑣 +𝐶 (𝑣 ′, 𝑢𝑣 (𝑙) − (𝑣 ′ − 𝑣)e)

}
.

and the initial conditions:

𝐶 (𝑣, 𝑙) = ∞, ∀𝑣, 𝑙 ∈ 𝐿𝑣 such that some 𝑙 𝑗 < 0.

𝐶 (𝑡, 𝑙) = 0, ∀𝑙 ∈ 𝐿𝑣 such that 𝑙 ≥ 0.

Here 𝑢𝑣 (𝑙) is the function that updates resource levels at stop 𝑣 ,

as described in Section 2. The number of values to compute in the

DP table is at most

∑
𝑣 |𝐿𝑣 | ≤ 𝑛𝑘+1 and each one is computed in

constant time, thus giving an overall run time of𝑂 (𝑛𝑘+1). Typically,
the number of resource types 𝑘 is much smaller than the number of

candidate stops 𝑛 and can be treated as a constant. The algorithm’s

run time then is polynomial in 𝑛.

3.3 General Graph and Multiple Resources
In this section we consider the graph multi-resource pit stop prob-

lem. Our input graph is 𝐺 and there are 𝑘 types of resources. Let 𝐿

denote the maximum number of different levels of each resource.

We now set up a shortest path problem whose solution yields the

optimal route including stops for the pit stop problem.

The nodes of the transformed graph𝐺 ′ are constructed as follows.
For each node 𝑣 in 𝐺 , the transformed graph 𝐺 ′ has a set of 𝐿𝑘

nodes labeled (𝑣𝑖𝑛, 𝑙) and another 𝐿𝑘 nodes labeled (𝑣𝑜𝑢𝑡 , 𝑙) where
𝑙 is a vector of resource levels. Node (𝑣𝑖𝑛, 𝑙) corresponds to arriving
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at stop 𝑣 with resource levels 𝑙 and node (𝑣𝑖𝑛, 𝑙) corresponds to
departing from stop 𝑣 with resource levels 𝑙 .

The edges of𝐺 ′ are added as follows. Let 𝑐 be the distance from

𝑣 to 𝑣 ′ in 𝐺 . Then for every 𝑙 ≥ 𝑐e (recall that e denotes the vector
of 𝑘 ones), we add an edge from (𝑣𝑜𝑢𝑡 , 𝑙) to (𝑣 ′𝑖𝑛, 𝑙 −𝑐e). This edge is
assigned a length of 0 in𝐺 ′. We also add an edge from each (𝑣𝑖𝑛, 𝑙)
to (𝑣𝑜𝑢𝑡 , 𝑢𝑣 (𝑙)), where𝑢𝑣 (·) is the resource update function for stop
𝑣 . The length of this edge is equal to the cost of the stop, 𝑐𝑣 .

It is not difficult to see that the edges of the first type correspond

to the feasible trips between stops, whereas edges of the second

type correspond to actually making stop 𝑣 . Resource updates and

costs are tracked exactly during trips and stops. If we want to get

from node 𝑠 to node 𝑡 starting with resource levels 𝑙 , we may run

a shortest path algorithm on the transformed graph from node

(𝑠, 𝑙) and stop when we reach the first node of the form (𝑡, 𝑙 ′), for
any 𝑙 ′. This recovers the minimum cost schedule of stops on the

graph. Since the transformed graph𝐺 ′ has 2𝐿𝑘𝑛 nodes and at most

as many edges (since every vertex in 𝐺 ′ has out-degree at most

1), the running time of Dijkstra’s shortest path algorithm on 𝐺 ′ is
𝑂 (𝐿𝑘𝑛(log𝑛 + 𝑘 log𝐿)).

4 ONLINE PIT STOP PROBLEM
In this section, we consider the pit stop problem in the online setting,

i.e., where stops are only visible within a lookahead distance of 𝑑

from the current location of the vehicle.

4.1 Single Resource
First, we consider the version of the problem where fuel is the only

resource. We first prove that when 𝑑 < 𝑅 then any algorithm is

arbitrarily bad when compared to the optimal solution.

Theorem 4.1. If 𝑑 < 𝑅, then any algorithm for the online pit stop
problem has an arbitrarily large competitive ratio.

Proof. We construct an instance with two candidate stops. Stop

1 is at location 1 and Stop 𝑅 at location 𝑅. The destination 𝑡 is at

location 𝑅 + 1. We have 𝑐1 = 1, 𝑙1 = 𝑅 and 𝑙𝑅 = 1. The cost 𝑐𝑅 is

unknown as it is beyond the look-ahead distance 𝑑 . In effect the

algorithm has to pick one of the two stops in order to get to the

destination, without knowing the cost of Stop 𝑅. An adversary can

then easily set the cost of Stop 𝑅 to be 0 or ∞ depending on the

choice that the algorithm makes at Stop 1 and make the algorithm’s

choice arbitrarily worse than that of the optimal solution. □

Given the above lower bound, we assume that 𝑑 ≥ 𝑅 for the

remainder of this section. Specifically, we prove that we can get

constant competitive ratio when 𝑑 = 𝑅. Note that the optimal solu-

tion does not depend on the value of 𝑑 , and hence this immediately

implies a constant competitive ratio for any value of 𝑑 ≥ 𝑅. For the

remainder of the section we will assume that 𝑡 is a multiple of 𝑅.

This is an assumption that simplifies our analysis and algorithm

description and is in effect without loss of generality due to the

following simple transformation: We may turn the true destination

into a stop of zero cost which offers fuel level 𝑅 and place a dummy

destination at the next location that is a multiple of 𝑅.

Before presenting our full algorithm, we discuss some special

cases of the problem and the algorithms that solve them within a

constant approximation. Our algorithm for the general case will

then be a conceptual generalization of these tailored solutions.

4.1.1 𝑐𝑣 = 1 for all stops. First, we consider a special case of our
problem where all stops have a unit cost but might offer different

fuel levels. One simple approach for this setting is to pick the last

stop that the vehicle can reach as the next refueling spot. This

algorithm however falls short if this last stop offers a small amount

of fuel. A better choice, therefore, is to pick the stop that will offer

a fuel level such that we can travel the furthest, namely maximize

𝑣 + 𝑙𝑣 . Indeed, this turns out to the optimal strategy in this case.

4.1.2 𝑙𝑣 = 𝑅 for all stops. Our second special case is one where

all stops offer the maximum amount of fuel but their costs differ.

Intuitively, in this setting we would like to pick the cheapest stop

within our look-ahead range. However, this strategy perform poorly

in the following setting: Consider a dense sequence of stops where

the first one has unit cost and each stop costs an arbitrarily small 𝜖

more than the previous one. The above algorithm will pick every

single one of these stops, whereas the optimal solution picks only

one stop every 𝑅 steps. Correcting for this leads to the following

algorithm: Find the cheapest stop in our look-ahead range. Suppose

it has cost 𝑐 . Scale that cost by a constant parameter 𝛼 and pick

the latest stop in our range that has a cost at most 𝛼𝑐 . Setting, for

example, 𝛼 = 2 gives an algorithm with constant competitive ratio.

We omit the details of the argument since the proof of our main

result that we describe next subsumes it. The main takeaway from

this special case is that we need to round costs up to constants to en-

sure that the algorithm is not too sensitive to small cost differences

between stops.

4.1.3 General Case. We now present our algorithm for the general

case, Algorithm 1. The algorithm sets milestones every 𝑅 steps. At

all times, the algorithm computes, for every fuel level 𝑙 , optimal

solutions (using the offline DP) from the current location (say 𝑣) to

the next milestone (say 𝑥) and from 𝑥 to 𝑣 + 𝑅 such that the fuel

level at 𝑥 is at least 𝑙 (lines 4-7). Note that these optimal solutions

can be obtained, since the algorithm has visibility on all stops up

to 𝑥 + 𝑑 ≥ 𝑥 + 𝑅. Among these solutions for different fuel levels,

the algorithm chooses (lines 8-9) the one that has maximum fuel

level at 𝑥 , under the constraint that its cost is within 𝛼 times the

minimum cost (𝛼 > 2 is a parameter that we will optimize later.)

This solution is now used to upgrade the plan from 𝑣 to 𝑥 as follows.

The algorithm, “purchases” this upgraded schedule of stops up to

the milestone, by which we mean that the algorithm commits to

making each one of these stops when reaching it. This allows the

algorithm to reset the cost of these purchased stops to 0 (lines 10-

11). When we eventually get to the milestone, the algorithm also

purchases the stops that are after it (lines 13-16).

We now prove that this algorithm has a constant competitive

ratio. First, we introduce some notation. Let 𝑝0 = 0, 𝑝1 = 𝑅, 𝑝2 = 2𝑅,

. . . , 𝑝𝑡/𝑅 = 𝑡 be the milestones of the instance. Now, let 𝑐∗
𝑖
be the

cost incurred by the optimal set of stops, 𝑂𝑃𝑇 , between 𝑝𝑖−1 and
𝑝𝑖 . Also, let 𝑆

𝑖
1
, 𝑆𝑖

2
, . . . , 𝑆𝑖

𝑘𝑖
, be the sets of stops 𝑆𝑙

∗
𝐿
(in line 8) when

moving in [𝑝𝑖−1, 𝑝𝑖 ) and in iterations of the while loop in which the

algorithm actually purchased new stops. Similarly, let 𝑆𝑖
1
, 𝑆𝑖

2
, . . . , 𝑆𝑖

𝑘𝑖
be the upgraded sets of stops that the algorithm actually purchased
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Algorithm 1: Online Pit Stop Algorithm

Input: Capacity 𝑅, stop info 𝑁 = {𝑐𝑣, 𝑙𝑣}𝑣 , destination 𝑡 ,

parameter 𝛼

Output: Set of stops 𝑆
1 𝑆 ← ∅; 𝑓 ← 𝑅; 𝑣 ← 0; 𝑥 ← 𝑅 // Variables: stops

set, current fuel level, location, and milestone

2 while 𝑣 ≠ 𝑡 do
3 ℎ ← 𝑣 + 𝑅 // Planning horizon

4 for all possible fuel levels 𝑙 ∈ 𝐿𝑣 do
// Get optimal to the milestone and from

the milestone to the horizon for 𝑙

5 𝑆𝑙
𝐿
← GetOpt(𝑣, 𝑓 , 𝑥, 𝑙, 𝑁 )

6 𝑆𝑙
𝑅
← GetOpt(𝑥, 𝑙, ℎ, 0, 𝑁 )

7 end

8 𝑙∗ ← argmin𝑙=0,1,...,𝑅

{
𝑐 (𝑆𝑙

𝐿
∪ 𝑆𝑙

𝑅
)
}

9 ˆ𝑙 ← max𝑙=0,1,...,𝑅

{
𝑙 : 𝑐 (𝑆𝑙

𝐿
) ≤ 𝛼 · 𝑐 (𝑆𝑙∗

𝐿
)
}
// Get

highest fuel solution within 𝛼 of the best

10 𝑆 ← 𝑆 ∪ 𝑆 ˆ𝑙
𝐿

// Add stops until the milestone

11 𝑐𝑢 ← 0 for all 𝑢 ∈ 𝑆 ˆ𝑙
𝐿

// Update “purchased” stops

12 𝑓 ← 𝑢𝑣 (𝑓 ) // Refuel

13 if 𝑣 = 𝑥 − 1 then
14 𝑆 ← 𝑆 ∪ 𝑆 ˆ𝑙

𝑅
// Add all stops at milestone

15 𝑥 ← 𝑥 + 𝑅 // Update the milestone

16 end
17 𝑓 ← 𝑓 − (𝑛𝑒𝑥𝑡 (𝑣) − 𝑣) // Fuel at the next stop

18 𝑣 ← 𝑛𝑒𝑥𝑡 (𝑣) // Move to the next stop

19 end
20 return 𝑆

in line 10 and (for the last set only) line 14. Finally, let 𝑇 𝑖
be the set

added by line 14 when on 𝑝𝑖 − 1.

Main result proof plan. We will first show that, as the vehicle

moves towards any given milestone, the costs of successive so-

lutions computed by the DP of line 5 increase by a multiplicative

factor 𝛼−1. This will suggest that the cost of the last such computed

solution dominates all previous ones (within a constant approxima-

tion). We prove this in Lemma 4.2. Next we will show that the cost

of any such solution of line 5 is bounded by a constant multiple of

the cost that an optimal solution suffers until the next milestone.

We prove this in Lemma 4.3. Combining these two lemmas shows

that the sum of all solutions computed at line 5 is bounded by a

constant multiple of the cost suffered by the optimal solution in the

same area. We will finally combine with the fact that, due to line 9,

the costs of purchased stop sets are always within a constant of the

DP solutions of line 5, to get that the algorithm achieves a constant

competitive ratio.

Lemma 4.2. For every 𝑖, 𝑗 , it holds that 𝑐 (𝑆𝑖
𝑗
) ≥ (𝛼 − 1) · 𝑐 (𝑆𝑖

𝑗−1).

Proof. We begin by tracing how and why the algorithm has

chosen these sets. The algorithm at some point computed set 𝑆𝑖
𝑗

as part of the best solution to go from the current location 𝑣 to

𝑣 + 𝑅. Specifically, that was the best set of stops to buy in order

to reach the milestone 𝑝𝑖 . Suppose the corresponding cost at the

time of calculation was 𝑐 . The algorithm possibly upgraded this

solution to 𝑆𝑖
𝑗
, which it actually purchased at cost at most 𝛼𝑐 . Before

reaching the milestone, the algorithm computed 𝑆𝑖
𝑗+1 as the best

way to reach the milestone on the way from 𝑣 ′ > 𝑣 to 𝑣 ′ + 𝑅. We

note that at that point, the algorithm had already purchased stops

𝑆𝑖
𝑗
to reach the milestone at a given fuel level 𝑓 . This implies that

the algorithm switched to 𝑆𝑖
𝑗+1 in order to have a higher fuel level

𝑓 ′ > 𝑓 at the milestone.

Suppose, for the sake of contradiction, that 𝑐 (𝑆𝑖
𝑗
) < (𝛼 − 1) ·

𝑐 (𝑆𝑖
𝑗−1). We argue that the algorithm should have purchased 𝑆𝑖

𝑗
∪

𝑆𝑖
𝑗+1 instead of 𝑆𝑖

𝑗
in the previous round of purchases. We get:

𝑐 (𝑆𝑖𝑗 ∪ 𝑆
𝑖
𝑗+1) ≤ 𝑐 (𝑆𝑖𝑗 ) + 𝑐 (𝑆

𝑖
𝑗+1) < 𝛼 · 𝑐 (𝑆𝑖𝑗 ) = 𝛼𝑐.

We observe that the cost of these stops is also at most 𝛼𝑐 and the

induced fuel level at the milestone is 𝑓 ′ > 𝑓 , which means that line

9 would not have picked 𝑆𝑖
𝑗
. This gives a contradiction. □

Lemma 4.3. The following hold:

(1) For every 𝑖 ∈ [1, 𝑡/𝑅 − 1] and every 𝑗 = 1, 2, . . . , 𝑘𝑖 , we get
𝑐 (𝑆𝑖

𝑗
) ≤ 𝑐∗

𝑖
+ 𝑐∗

𝑖+1.
(2) For every 𝑖 ∈ [1, 𝑡/𝑅 − 1], we get 𝑐 (𝑇 𝑖 ) ≤ 𝑐∗

𝑖
+ 𝑐∗

𝑖+1.

(3) For 𝑖 = 𝑡/𝑅, we get 𝑐 (𝑆𝑡/𝑅
𝑗
) ≤ 𝑐∗

𝑛/𝑅 .

Proof. We first consider 𝑖 ∈ [1, 𝑡/𝑅 − 1]. We argue that, at the

beginning of every interval [𝑝𝑖−1, 𝑝𝑖 ), we have a high enough fuel

level or have purchased enough stops to reach any location where

the optimal solution 𝑂𝑃𝑇 refuels in this window. Note that at least

one such stop exists since there must be at least one stop every 𝑅

steps. There are two cases for each stop: either it is on 𝑝𝑖−1, in which
case our claim holds trivially since the vehicle is already there, or

it is somewhere in [𝑝𝑖−1 + 1, 𝑝𝑖 − 1]. In this case, we distinguish

between the first window 𝑖 = 1 and any other window after that. For

the first window, the fact that we start with the same fuel level as

the optimal solution, ensures our claim holds and we can reach the

stop under consideration. For subsequent windows, the property is

given by the declaration of Algorithm 1. At location 𝑝𝑖−1 − 1 and
because of line 14, the algorithm purchases enough stops to be able

to reach 𝑝𝑖 − 1, which proves our claim.

Since we can reach the stops where 𝑂𝑃𝑇 refuels in this window

and since we can follow the schedule of 𝑂𝑃𝑇 after it all the way to

𝑝𝑖+1, the cost of any solution computed in line 8, will be at most

𝑐∗
𝑖
+𝑐∗

𝑖+1, as long as the vehicle has not driven past the last of𝑂𝑃𝑇 ’s

stops in the window. We will now consider the case when the

vehicle has driven past the last such stop 𝑣 . Consider the moment

the vehicle reached 𝑣 . The optimal solution follows a path from 𝑣

to 𝑝𝑖+1 that costs at most 𝑐∗
𝑖
+ 𝑐∗

𝑖+1, hence, we have an option from

𝑣 to 𝑣 + 𝑅 ≤ 𝑝𝑖+1 that costs at most that much. The algorithm will

either add such a set of stop 𝑃 or upgrade the stops before 𝑝𝑖 so

that the fuel level at 𝑝𝑖 is larger than what 𝑃 achieves (line 9). In

both cases the algorithm purchases any stops necessary to reach

the first stop of 𝑃 after 𝑝𝑖 . Hence, as we move between 𝑣 and 𝑝𝑖 ,

there will always exist an option that costs at most 𝑐∗
𝑖
+ 𝑐∗

𝑖+1 and
carries the vehicle all the way to 𝑝𝑖+1, which is always more than
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distance 𝑅 away from any location in [𝑣, 𝑝𝑖 ]. This proves that in
this scenario as well, line 8 will find a set that costs at most 𝑐∗

𝑖
+𝑐∗

𝑖+1.
This completes item 1 of the lemma.

It is not hard to see that the above reasoning is sufficient to prove

item 2 of the lemma as well. Upon reaching 𝑝𝑖 − 1, the algorithm
can still reach the first stop of 𝑃 after 𝑝𝑖 and hence can achieve a

cost of at most 𝑐∗
𝑖
+ 𝑐∗

𝑖+1 for 𝑇
𝑖
.

Finally we prove the claim for 𝑖 = 𝑛/𝑅, i.e., item 3 of the lemma.

Similarly to the 𝑖 ∈ [1, 𝑡/𝑅 − 1] case, when at 𝑝𝑡/𝑅−1, we have a
high enough fuel level or have purchased enough stops to reach the

stops where 𝑂𝑃𝑇 refuels in this window. This follows identically

as in the first paragraph of this proof. Hence, it follows that there

exists a plan that takes us to location 𝑡 and costs at most 𝑐∗
𝑡/𝑅 . The

algorithm will add the corresponding stops and terminate. □

Theorem 4.4. Algorithm 1 is (8 + 4
√
2)-competitive.

Proof. The competitive ratio of the algorithm now follows from

the above lemmas using a sequence of inequalities. Let 𝐴𝐿𝐺 be the

solution returned by the algorithm and 𝑂𝑃𝑇 an optimal solution.

We get:

𝑐 (𝐴𝐿𝐺) =
𝑡/𝑅∑
𝑖=1

𝑘𝑖∑
𝑗=1

𝑐 (𝑆𝑖𝑗 ) + 𝑐 (𝑇
𝑖 ) ≤

𝑡/𝑅∑
𝑖=1

𝑘𝑖∑
𝑗=1

𝛼𝑐 (𝑆𝑖𝑗 ) + 𝑐 (𝑇
𝑖 ),

where the inequality follows from line 9 of Algorithm 1. By Lemma

4.2 we get that for every 𝑗 , 𝑐 (𝑆𝑖
𝑗−1) ≤ 𝑐 (𝑆𝑖

𝑗
)/(𝛼 − 1). Applying

multiple times we get that for every 𝑗 , 𝑐 (𝑆𝑖
𝑗
) ≤ 𝑐 (𝑆𝑖

𝑘𝑖
)/(𝛼 − 1) 𝑗 .

Hence, we get:

𝑐 (𝐴𝐿𝐺) ≤
𝑡/𝑅∑
𝑖=1

𝛼

𝑘𝑖∑
𝑗=1

𝑐 (𝑆𝑖
𝑘𝑖
)

(𝛼 − 1) 𝑗
+ 𝑐 (𝑇 𝑖 )

≤
𝑡/𝑅∑
𝑖=1

𝛼 · 𝛼 − 1
𝛼 − 2 · 𝑐 (𝑆

𝑖
𝑘𝑖
) + 𝑐 (𝑇 𝑖 ).

Lemma 4.3 shows that every 𝑐 (𝑆𝑖
𝑘𝑖
) and 𝑐 (𝑇 𝑖 ) are at most 𝑐∗

𝑖
+ 𝑐∗

𝑖+1.
Then, we get:

𝑐 (𝐴𝐿𝐺) ≤
𝑡/𝑅∑
𝑖=1

(𝛼 · 𝛼 − 1
𝛼 − 2 + 1) (𝑐

∗
𝑖 + 𝑐

∗
𝑖+1) ≤ 2(𝛼 · 𝛼 − 1

𝛼 − 2 + 1)𝑐 (𝑂𝑃𝑇 ).

Optimizing for the value of 𝛼 , we get 𝛼 = 2 +
√
2 and a competitive

ratio of 8 + 4
√
2. □

Run time. The time complexity of the algorithm is dominated by

the number of calls to the DP (i.e., to GetOpt), which computes

an optimal solution time quadratic in 𝑛, as explained in Section 3.1.

The while loop of line 2 runs 𝑛 times and the for loop of line 4, at

most |𝐿𝑣 | ≤ 𝑛 times per each iteration of the while loop, for a total

of 𝑂 (𝑛2) calls to the DP and a run time of 𝑂 (𝑛4). We note that our

experimental evaluation shows that the algorithm is much faster

in practice and always completes in a few tens of milliseconds on a

single core for realistic instances.

4.2 Multiple Resources
First, we show that there is no online algorithm with a provable

guarantee even with only two resource types.

Theorem 4.5. The competitive ratio of any algorithm for the online
pit stop problem with more than one resource types is unbounded.

We defer the proof to the full version due to space limitations.

Algorithm 2: Online Multi-Resource Pit Stop Algo-

rithm

Input: Look-ahead 𝑑 , capacities vector 𝑅, stop info

𝑁 = {𝑐𝑣, 𝑙𝑣}𝑣 , destination 𝑡

Output: Set of stops 𝑆
1 𝑆 ← ∅; 𝑓 ← 𝑅; 𝑣 ← 0; 𝑥 ← 𝑅 // Variables: stops

set, current fuel level, location, and milestone

2 while 𝑣 ≠ 𝑡 do
3 ℎ ← 𝑣 + 𝑑 // Planning horizon

4 𝑆 ′ ← GetOpt(𝑣, 𝑓 , ℎ, 0, 𝑁 ) // Get the best set of

stops from 𝑣 at level 𝑓 to 𝑥 at level 𝑙

5 𝑆 ← 𝑆 ∪ 𝑆 ′ // Add stops to the solution

6 𝑐𝑢 ← 0 for all 𝑢 ∈ 𝑆 ˆ𝑙
𝐿

// Update “purchased” stops

7 𝑓 ← 𝑢𝑣 (𝑓 ) // Replenish resource levels

8 𝑓 ← 𝑓 − (𝑛𝑒𝑥𝑡 (𝑣) − 𝑣)𝑒 // Spend resources

9 𝑣 ← 𝑛𝑒𝑥𝑡 (𝑣) // Move to the next stop

10 end
11 return 𝑆

Given the above impossibility result, we design a heuristic for

the multiple resource case, Algorithm 2. Our heuristic resembles

a simplified version of Algorithm 1, in the sense that it computes

an optimal solution on the set of visible stops and follows it until

something better is recomputed once further stops become visible.

Specifically, at every location 𝑣 , the algorithm computes an optimal

solution to reach ℎ = 𝑑 + 𝑣 (where 𝑑 is the look-ahead parameter).

This is done by invoking the multi-resource offline algorithm from

the previous section and computing the corresponding optimal set

of stops 𝑆 ′. This set 𝑆 ′ is added to the set of “purchased” stops 𝑆 ,

i.e., the algorithm commits to stop at these locations and their costs

are set to 0. This computation is repeated at each location and the

overall solution is the collection of all stops added by the individual

solutions.

Run time. As in the case of the single resource algorithm, the multi-

resource algorithm’s run time is also dominated by calls to the

DP subroutine (GetOpt), which has a 𝑂 (𝑛𝑘+1) run time (since it

invokes the multi-resource variant of the offline algorithm). The

while loop is repeated 𝑛 times, which gives an overall run time

of 𝑂 (𝑛𝑘+2). As in the case of a single resource, our experimental

evaluation shows that the algorithm is much faster than this worst

case run time bound in practice and always completes in a few tens

of milliseconds on a single core for realistic instances.

5 EXPERIMENTAL EVALUATION
In this section we evaluate the performance of our algorithms

using real data. We focus on road trips with an electric vehicle (EV).

Initially we consider the pit stop problem with a single resource, the

battery level of the EV, and subsequently we add the consumption

of food by the passengers as a second consideration. We compare

the performance of our algorithms against the following baselines.
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Baseline 1 (Greedy). Pick a stop if and only if it is the last stop

for battery/food before we run out of battery/food.

Baseline 2 (Cheap Greedy). Pick a stop if and only if it is the

cheapest stop for battery/food before we run out of battery/food.

These are natural baselines for the problem and, moreover, they

are the algorithmic solutions for the special cases discussed in

Sections 4.1.1 and 4.1.2. To provide intuition on the behavior of the

baselines, consider a single-resource instance where we begin at

location 0 and want to reach location 2𝑅. There are three candidate

stops: one at location 𝑅/2, which costs 1 and provides fuel 𝑅, one

at location 𝑅 which costs 3 and provides fuel 𝑅, and one at location

3𝑅/2 which costs 1 and provides fuel 𝑅/2.
The Greedy baseline skips past stop 𝑅/2 since there is enough

fuel to reach stop 𝑅. It then selects to charge at 𝑅, before driving all

the way to the destination.

Cheap Greedy refuels at 𝑅/2, given that the stops in range are

𝑅/2 and 𝑅, and the former is the cheaper one. Then Cheap Greedy

skips stop 𝑅, since the stops in range at that point are 𝑅 and 3𝑅/2
and the latter is cheaper. Cheap Greedy ends up picking 𝑅 and 3𝑅/2.

Note that Greedy suffers a cost of 3 whereas Cheap Greedy

suffers 2. If we were to modify the cost of stops 𝑅/2 and 3𝑅/2 from
1 to 2, the algorithms would make the exact same decisions and

Greedy will have a cost of 3 vs 4 for Cheap Greedy.

For each family of instances (single-resource and two-resource),

we conduct two types of experiments. For the first one, we assign

costs to the stations that are given by characteristics provided in

the data (detour cost, charging speed). We call these the static costs
of the stations. For the second type, we add a random cost to each

station that models uncertain road congestion and service waiting

times. This is an important aspect of our model, as it tests how the

different algorithms can handle uncertainty in costs and, hence,

unforeseeable conditions with respect to traffic, service queues, etc.

For this second type of experiment we consider the following third

baseline of interest.

Baseline 3 (Static Cost Optimal). Compute an optimal solu-

tion on the static costs of the stations.

The Static Cost Optimal baseline solves the problem assuming

knowledge of all station static costs. In this sense it is very powerful

compared to our algorithm and the other baselines, which can only

observe the stations within the look-ahead range. However, this

baseline cannot observe the random costs that are added to the

stations. Note that when the random costs are relatively small, this

baseline will perform very close to optimal and in the absence of

random costs it will be exactly optimal.

The performance comparison between algorithms is done in

terms of the average competitive ratio over 1000 instances for each

experiment. The optimal solutions are computed by the offline DPs

we describe in Sections 3.1 and 3.2.

5.1 Experimental Set Up
We extract locations and kW values of EV charging stations in Eu-

rope and distances between them from a popular Maps API. We also

extract information about which of these stations include restau-

rants on site. We construct instances for the pit stop problem by

Figure 1: The competitive ratio of our algorithm and the
baselines for different instance sizes.

randomly selecting endpoints from this set of stations and comput-

ing the shortest route between them that has a station in proximity

at least once every 100 km. The resulting instances have from very

few up to approximately 200 candidate stations. There were no

instances with mode than 200 candidate stations.

We assume we are routing an electric vehicle vehicle with a

range of 300 km and that passengers need to feed at least once

every 500 km. In the first round of experiments we ignore the food

resource and solve instances of the single-resource pit stop problem.

In the second round of experiments, we consider both resources

and solve the two-resource pit stop problem.

Before we present our evaluation results, we give a short note on

the run time of our algorithms, which proved to be extremely fast

in practice. All instances in our experiments completed within 100

ms, with the highest times appearing for two-resource instances

with more than 100 candidate stops. Typical two-resource instances

and all single-resource instances were solved in at most 20 ms. The

experiments were conducted on a single 3.5 GHz core.

5.2 EV Charging Stops
In all of our experiments we consider the costs as unknown outside

the look-ahead range, which for our battery-only experiments, is

set to 300 km. We repeat the EV charging experiment twice. We

initially assign the (unknown) costs to the stations based only on

characteristics extracted from the data, i.e., the total cost of a station

is the sum of the detour required to reach it and a charging time

that is inversely proportional to the station’s kW.

Recall that Algorithm 1 is parameterized by the cost scaling

parameter 𝛼 . Recall that this parameter controls the amount by

which we allow ourselves to over-spend until the next milestone

(compared to the minimum possible cost), so we can have a higher

battery level at it. We run 1000 instances of the pit stop problem

and find that a value around 1.5 seems to be the best-performing

for our dataset. This is the value that we will use for our algorithm

in the comparisons against the baselines that follow.

Our second experiment is the first comparison between our

algorithms and the baselines. We let the algorithms run for 1000

instances and compute the average competitive ratio for each one of

them. Over all instances, the results yield 1.35 for our algorithm, 2.37

for Greedy and 1.74 for Cheap Greedy. We also group the instances

by size (i.e., number of total candidate stations) and present the
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Figure 2: The competitive ratio of our algorithm and the
baselines for different levels of uncertainty in costs.

average competitive ratio achieved by each algorithm against the

size of the instance in Figure 1. Looking at the trends, we observe

that Algorithm 1 has a very strong performance on small instances,

due to the fact that the planning done by the DP subroutine is

expected to be very close to the optimal solution for small instances.

Performance slightly degrades as the instances become larger and

finally stabilizes. The greedy algorithms do their worst on small

instances since myopic mistakes are costly when the number of

total decisions made is small. The greedy algorithms’ performance

improves on larger instances before it stabilizes, and in fact we see

that Cheap Greedymatches and sometimes slightly beats Algorithm

1 on the rare very large instances. As we will see, this is not the case

once uncertainty is introduced. The fraction of smaller instances in

the data is higher, it is very rare to encounter a trip during which the

vehicle passes near 100 or more stations. Specifically, approximately

90% of the instances are in the 0-100 candidate stations range.

Our third experiment adds synthetic costs to the stops that corre-

spond to unforeseen traffic congestion on the detours and waiting

times at the stations. Each stop draws a uniformly random cost in

[0, 𝑥], which is added to its initial cost. The extent of uncertainty

is controlled by parameter 𝑥 . In Figure 2, we present the average

competitive ratio of the algorithms against the value of 𝑥 which we

let vary from 1 hour to 4 hours. We observe that the performance

of the algorithms is not impacted too much by the extent of uncer-

tainty (at least for these realistic values of 𝑥 ) and that Algorithm 1

significantly outperforms the two greedy baseline algorithms.

The Static Cost Optimal baseline has a strong performance, as

expected, when the uncertainty is small. As uncertainty grows, and

in contrast to the other baselines, the performance of this baseline

degrades. Overall, it is worse than Algorithm 1, even though it

uses knowledge of the static costs of future stations outside the

look-ahead parameter. The fact that Algorithm 1 beats this baseline

exhibits the need for an online algorithm that works with uncertain

costs. Relying on an offline solution is not enough and, in fact, the

performance of the Static Cost Optimal baseline will keep degrading

as the random costs become large compared to the static ones (e.g.,

in applicationswhere the static costs are close to 0 such an algorithm

is in effect useless).

Figure 3: Competitive ratios of our algorithm and the base-
lines against the instance size with two resources.

Figure 4: Competitive ratios of our algorithm and the base-
lines for different levels of uncertainty with two resources.

5.3 EV Charging Stops and Restaurants
In this section we add a second resource type to our experiments,

specifically we extract information about the location of restaurants

in the vicinity of the charging stations. We label the subset of

charging stations that have a restaurant onsite as food stations as

well. We repeat the experiments of the previous section, using the

multi-resource version of our algorithm (Algorithm 2) in place of

the single-resource one (Algorithm 1), requesting that there is a

charging stop every 300 km and a food stop every 500 km.

Over all instances, the average competitive ratios were 1.68 for

our algorithm, 2.83 for Greedy, and 2.08 for cheap Greedy. Figure 3

is similar to the findings of the single-resource case for different

instance sizes. We do observe larger competitive ratios for all al-

gorithms compared to the single-resource case, as was expected.

Again we observe the expected behavior of the DP-based algorithm

slightly degrading in performance as the instance size increase,

while the opposite is true for the greedy baselines.

Figure 4, where we plot the competitive ratios of the algorithms

with different levels of cost uncertainties, also verifies the findings

of the single-resource case. Again the performance of the algorithms

is only mildly dependent on changes to the level of uncertainty,

and our algorithm outperforms the baselines.

6 CONCLUSIONS
In this paper, we considered the problem of planning stops during

a journey for availing services such as fuel/battery charge, food, or



The Pit Stop Problem: How to Plan Your Next Road Trip SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

even rest. This is a problem routinely solved by online navigation

and trip planning software that are ubiquitous today. We abstracted

its key features and modeled it as an optimization problem that we

called the pit stop problem. We gave offline and online algorithms

for this problem. Our offline algorithms are optimal, while the

online algorithms obtain a constant competitive ratio. We also

evaluated our algorithms on real world data and showed that they

significantly outperform natural greedy baselines. Perhaps the most

interesting direction of future work would be to incorporate some

of the heterogeneity between stops of difference types (say, between

a refueling stop and a detour to a scenic point of interest, one being

mandatory while the other is optional) in the optimization problem.
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