
Caching with Time Windows
Anupam Gupta

anupamg@cs.cmu.edu

Computer Science Department,

Carnegie Mellon University

Pittsburgh, PA, USA

Amit Kumar

amitk@cse.iitd.ac.in

Department of Computer Science and

Engineering,

IIT Delhi

New Delhi, India

Debmalya Panigrahi

debmalya@cs.duke.edu

Department of Computer Science,

Duke University

Durham, NC, USA

ABSTRACT
We consider the (weighted) Paging with Time Windows (PageTW)

problem, which is identical to the classical weighted paging prob-

lem but where each page request only needs to be served by a

given deadline. This problem arises in many practical applications

of online caching, such as the “deadline” I/O scheduler in the Linux

kernel and video-on-demand streaming. From a theoretical perspec-

tive, this generalizes the caching problem to allow delayed service,

a line of work that has recently gained traction in online algorithms.

(e.g., Emek et al. STOC ’16, Azar et al. STOC ’17, Azar and Touitou

FOCS ’19, etc.).

Our main result is an 𝑂 (log𝑘 log𝑛)-competitive algorithm for

the PageTW problem on 𝑛 pages with a cache of size 𝑘 . This sig-

nificantly improves on the previous best bound of 𝑂 (𝑘) (Azar et al.
(STOC ’17).

We also consider the offline PageTW problem, for which we give

an 𝑂 (1) approximation algorithm and prove APX-hardness. These

are the first results for the offline problem; even NP-hardness was

not known before our work.

At the heart of our algorithms is a novel “hitting-set” LP relax-

ation of the PageTW problem that overcomes the Ω(𝑘) integrality
gap of the natural LP for the problem. To the best of our knowledge,

this is the first example of an LP-based algorithm for an online

algorithm with delays/deadlines.

CCS CONCEPTS
•Theory of computation→Approximation algorithms anal-
ysis; Caching and paging algorithms.

KEYWORDS
Online caching, approximation algorithms

ACM Reference Format:
Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. 2020. Caching with

Time Windows. In Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC ’20), June 22–26, 2020, Chicago, IL, USA.ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3357713.3384277

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384277

1 INTRODUCTION
Caching/paging is one of the most widely studied problems in on-

line algorithms. In this problem, page requests from a universe of 𝑛

pages arrive over time, and have to be served by swapping pages

in and out of a cache that can hold only 𝑘 < 𝑛 pages at a time.

In weighted paging, each page 𝑝 has a weight 𝑤𝑝 , and the goal

is to minimize the sum of weights of evicted pages. But, in some

situations, page requests do not need to be served immediately

and can be delayed up to a given deadline. For instance, in mixed

workload environments such as in cloud computing or operating

systems, requests from time-sensitive applications (such as inter-

active ones) have short deadlines, but batch processes can tolerate

longer wait times. (Indeed, the “deadline” I/O scheduler in the Linux

kernel is precisely for this purpose, although the way it currently

handles deadlines is not very sophisticated [1].) A different applica-

tion arises in network streaming, e.g., in video-on-demand, where a

server needs to cache segments appearing in multiple video streams

(see, e.g., [13, 15]). Depending on when these segments are required,

various streams set different deadlines for each of these segments.

In all these applications, the key feature is that individual page re-

quests can be delayed, but only until a given deadline. Specifically,

the request 𝑟𝑡 = (𝑝,𝑑) at time 𝑡 for a page 𝑝 includes a deadline

𝑑 , and the algorithm must ensure that the page is in the cache at

some time in the interval [𝑡, 𝑑]. We call this the (weighted) Paging
with Time Windows (PageTW) problem.

Our main result is an 𝑂 (log𝑘 log𝑛)-competitive algorithm for

the PageTW problem. This significantly improves upon the previous

best deterministic bound of𝑂 (𝑘) due to Azar et al. [4]. Furthermore,

since PageTW generalizes the classical paging problem, a natural

lower bound on the competitive ratio is Ω(log𝑘), which we match

up to the factor of𝑂 (log𝑛). At the heart of our algorithm is a novel

“hitting-set” LP relaxation of the PageTW problem that overcomes

the Ω(𝑘) integrality gap (see Section A.2) of the natural LP relax-

ation for this problem. From a theoretical perspective, the PageTW
problem is in the category of online optimization problems with

delays/deadlines that has attracted significant interest recently (e.g.,

[3–5, 9, 10, 16]). To the best of our knowledge, our work is the first

example of an LP-based algorithm in this line of research. Given

the great success of LP-based techniques in online algorithms in

general, we hope that our work spurs further progress in this area.

We now state our main theorem.

Theorem 1.1 (Online Algorithm). There is an 𝑂 (log𝑘 log𝑛)-
competitive randomized algorithm for the PageTW problem in the
online setting, where 𝑛 is the number of pages and 𝑘 is the size of the
cache.

1125

https://doi.org/10.1145/3357713.3384277
https://doi.org/10.1145/3357713.3384277

STOC ’20, June 22–26, 2020, Chicago, IL, USA Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

p2

p3

p4

p1

Timeline

Pages

p5 ?

?

?

?

?

Figure 1: A two-dimensional view of page requests and evic-
tions. The crosses represent page requests and stars repre-
sent page evictions. This illustration is for a cache of size
3.

We also study the offline version of the PageTW problem, where

the request sequence is given up-front. The first question is tracta-

bility: since weighted paging is solvable in polynomial time offline,

it is conceivable that so is PageTW. We show that the PageTW
problem is APX-hard. We complement this lower bound with an

𝑂 (1)-approximation for the offline PageTW problem.

Theorem 1.2 (Offline Algorithm). The PageTW problem is
NP-hard (and APX-hard) even when the cache size 𝑘 = 1, and the
pages have unit weight. Moreover, there is an 𝑂 (1)-approximation
algorithm, based on rounding a linear program to show a constant
integrality gap.

1.1 Our Techniques
To begin with, recall the “interval covering” IP formulation for the

weighted paging problem [6, 20]:

min

∑
𝑝,𝑗

𝑤𝑝𝑥𝑝,𝑗 :
∑
𝑝≠𝑝𝑡

𝑥𝑝,𝑗 (𝑝,𝑡) ≥ 𝑛 − 𝑘 ∀𝑡, 𝑥𝑝,𝑗 ∈ {0, 1} ∀𝑝, 𝑗
 .

For every page 𝑝 , define an interval starting at each request for it,

and ending just before the next request. Because of the request, this

page 𝑝 must be present in the cache at the start of each such interval,

but may be evicted at some subsequent point: the IP variable 𝑥𝑝,𝑗 ∈
{0, 1} indicates if a page is evicted before its next request. While this

IP does not explicitly indicate when a page is evicted, any online

algorithm solving it must raise a variable 𝑥𝑝,𝑗 from 0 to 1 at a

specific time between the 𝑗th and (𝑗 + 1)st request for page 𝑝 . We

visualize this using a 2-dimensional picture indexed by the pages

and time, recording the eviction of page 𝑝 at time 𝑡 by putting a

star at location (𝑝, 𝑡) (see Fig. 1). In classical paging, the intervals

for any page partition its row into disjoint, tightly-fitting segments.

The capacity constraint of the cache forces the following property:

of the 𝑛 intervals (for different pages) containing time 𝑡 (these are

indexed 𝑗 (𝑝, 𝑡) for page 𝑝), at least 𝑛−𝑘 contain a star at some time

≤ 𝑡 . In other words, at least 𝑛 − 𝑘 pages must have been evicted

from the cache since their last request.

The situation is more complex in PageTW. Previously, it sufficed

to record page evictions, because page insertions were entirely

dictated by the requests: whenever a page is requested, it must be

inserted in the cache if it were evicted after its previous request.

So, for an insertion to be feasible, it suffices to just ensure that

sufficiently many pages are evicted since their previous request. In

PageTW, however, page requests can be fulfilled at a later time, so

evictions alone do not completely describe the state of the cache.

One option is to explicitly encode page insertions via IP variables,

but then we need packing constraints on these variables to enforce

the size of the cache. Handling such packing constraints in online

IPs seems beyond the scope of current techniques in online algo-

rithms. Another idea is to reduce the ambiguity of when pages

are inserted in the cache, e.g., by enforcing that all page insertions

are done the end of their request intervals (if the page is not in

the cache at the beginning of the interval). This would be a useful

property, because the state of the cache could then be completely

described by variables for page evictions. This property, however,

is false: forcing a page request to be satisfied at the start/end of its

request interval can be much costlier than doing it somewhere in

the middle. E.g., if a heavy page is being evicted, we should serve

some outstanding light requests while there is an empty slot in the

cache (see Section A.1).

The Hitting Set IP Relaxation. To overcome these challenges, we

first re-interpret the interval covering IP for classical paging. We

again use 𝑥𝑝,𝑡 variables (saying page 𝑝 is evicted at time 𝑡). The

cache-size constraint at any time 𝑡 ′ insists that at least 𝑛 − 𝑘 pages

are evicted at times ≤ 𝑡 ′ since their last request. To implement this,

we define an interval for each page 𝑝 starting at the last request

for 𝑝 and ending at 𝑡 ′, and write a covering constraint saying at

least 𝑛 − 𝑘 of these intervals have a star within them (i.e., 𝑥𝑝,𝑡 = 1

for times 𝑡 within these intervals). Note: there is nothing special

about the last request for a page before 𝑡 ′—we could have written

these constraints for every choice of request of every page before

𝑡 ′. The additional constraints would be redundant given the one

containing the last requests, and would unnecessarily lead to an

exponential-sized IP.

In the PageTW problem, however, the request intervals for a

page might overlap, or may even be nested, so it is easier to write

constraints for every request, rather than to identify some (non-

canonical) last request before time 𝑡 ′. Extending the previous intu-

ition, we define the following intervals for time 𝑡 ′: corresponding
to a request interval 𝐼 = (𝑠 (𝐼), 𝑒 (𝐼)) for a page with 𝑠 (𝐼) < 𝑡 ′, there
is a constraint interval (𝑠 (𝐼),max(𝑒 (𝐼), 𝑡 ′)). Note that if the request
interval extends beyond 𝑡 ′, i.e., 𝑒 (𝐼) > 𝑡 ′, then we must extend

the constraint interval rightwards to 𝑒 (𝐼), since the page might be

served after 𝑡 ′. Now, we enforce the same constraint as earlier: for

any choice of such constraint intervals, one for each distinct page,

at least 𝑛 − 𝑘 must have a star in them. We call these constraint

intervals the right extensions of their respective request intervals at
time 𝑡 ′ (see Fig. 2 for an example).

In classical paging, these constraints are valid even if we exclude

the page currently requested at time 𝑡 ′. In other words, of the

remaining 𝑛−1 pages, the constraint ensures that at least 𝑛−𝑘 have
been evicted ensuring a cache slot for the currently requested page.

All feasible solutions satisfy this constraint since the requested page

must be in the cache at time 𝑡 ′. This stronger constraint, however,
does not hold for PageTW. If we write the above constraints for

𝑛 − 1 pages, then it would reserve a cache slot for the remaining

page at the current time, thereby excluding feasible solutions that

do not satisfy this property. Conversely, the (weaker) constraints

1126

Caching with Time Windows STOC ’20, June 22–26, 2020, Chicago, IL, USA

t t

It

Figure 2: The left figure illustrates right extensions Rext(𝐼 , 𝑡) for request intervals 𝐼 shown by solid lines. The dotted lines show
how these intervals are extended. The figure on the right shows double extensions Dext(𝐼 , 𝑡), with the critical interval 𝐼𝑡 in red.

summing over all 𝑛 (and not 𝑛 − 1) pages are not sufficient: they do

not reserve a cache slot for a requested page at any time during the

request interval.

So we need a new set of constraints. These reserve a cache slot

for a page 𝑝 within each request interval 𝐼𝑡 = (𝑠𝑝 , 𝑡𝑝) for it. Let us
exclude this page 𝑝 and choose a request 𝐼 = (𝑠 (𝐼), 𝑒 (𝐼)), where
𝑒 (𝐼) ≤ 𝑡𝑝 , for each of the remaining 𝑛 − 1 pages. For each such

request (say for a page 𝑝 ′), consider a different extended constraint

interval (min(𝑠, 𝑠 (𝐼)), 𝑡𝑝). Now we are guaranteed that in any fea-

sible solution, one of two things happens: either page 𝑝 ′ resides
in the cache for the entire extended interval (min(𝑠𝑝 , 𝑠 (𝐼)), 𝑡𝑝) and
therefore also for the sub-interval (𝑠𝑝 , 𝑡𝑝), or it is “hit” (inserted
or evicted) during the constraint interval. Since page 𝑝 must be

served in its request interval (𝑠𝑝 , 𝑡𝑝), at most 𝑘 − 1 pages can be

resident in the cache during (𝑠𝑝 , 𝑡𝑝), i.e, at least 𝑛 − 𝑘 of the 𝑛 − 1
pages are hit during these extended constraint intervals. We call

these extended intervals double extensions of their request intervals
for time 𝑡𝑝 (again, see Fig. 2). Our “hitting set” IP comprises these

two sets of requests, for right extensions and double extensions.

We give details of this formulation in §2.

Solving the Hitting Set IP Online. Loosely, we extend ideas from

Bansal et al. [6] for solving the weighted paging IP online to our hit-

ting set IP. There are some challenges, however. Firstly, the hitting

set IP is of exponential size, since we wrote covering constraints for

every choice of request interval for every page. Secondly, unlike

in weighted paging, there are two sets of constraints, one on 𝑛 − 1
pages and the other on 𝑛 pages; the weighted paging IP only has

the first set. Thirdly, the decision variables are for (𝑝, 𝑡) pairs, and
do not uniquely correspond to constraint intervals. Nevertheless,

we show that, as long as the request intervals for the pages are

“non-nested”, the techniques of [6] can be adapted to our hitting

set IP. When the request intervals are nested, we solve the problem

on two carefully selected subsets of the input where the request

intervals are non-nested; then we show, somewhat surprisingly,

that the combined solution satisfies the general instance. The com-

petitive ratio of this algorithm is𝑂 (log𝑘), asymptotically the same

as weighted paging. This algorithm appears in §4.

Converting IP Solution to Cache Schedule Online. As described
earlier, the IP solution only gives us a set of stars, indicating “hits”

for each page where each hit might either represent insertion or

eviction of the page from the cache. Moreover, the IP solution does

not necessarily give all the insertions and evictions. E.g., in the case

of instantaneous request intervals representing classical weighted

paging, our IP is identical to the standard interval covering IP and

only gives page evictions. Indeed, the bulk of our technical work is

in converting a feasible IP solution to an actual cache schedule that

satisfies all requests. This is further complicated by the fact that

this translation has to be done online.

The main difficulty is the following: when a request interval 𝐼 for

a page 𝑝 arrives, we don’t know how long to wait before serving

it. For instance, suppose the IP has a “hit” for a heavy page. The

example in Section A.1). shows that we must use this opportunity

to serve requests for light pages that are currently waiting. But,

which pages should we serve? Suppose we serve a page 𝑝 at some

time 𝑡 ∈ 𝐼 by loading 𝑝 in the cache, and evict it soon after to serve

other light pages. Now if another interval 𝐼 ′ for 𝑝 arrives after 𝑡

and 𝐼 ′ overlaps with (or is even nested in) 𝐼 , it is clear that we

should have waited to load 𝑝 till 𝐼 ′ arrives. In the offline case, we

can use a reverse-delete step where we undo such mistakes. But, in

the online setting, we must find a careful balance between waiting

“long enough” and servicing outstanding requests. Specifically, we

build a tree structure over the request intervals (which may not

be laminar in general), and use the structural properties to argue

that our algorithm can find a balance between these two competing

goals. The online conversion algorithm appears in §3.

While we cannot show that our algorithm achieves the ultimate

goal of being 𝑂 (log𝑘)-competitive, we do not know any worse

gaps for our approach. Indeed, the fact that the integrality gap of

the hitting set formulation is constant, as evidenced by our offline

solution, gives us hope that the ideas here will lead to further

improvements.

1.2 Related Work
Azar et al. [4] study the online service problem with delays, where

a single server services requests in a metric space. Each request

has an associated monotone delay function that gives the cost of

serving requests at each time after its arrival. The server pays for the

total movement plus delay costs. They give an 𝑂 (ℎ3)-competitive

algorithm for HSTs of height ℎ. They extend the result to 𝑘 servers

at a loss of a factor of 𝑘 , which gives an 𝑂 (𝑘)-competitiveness for

PageTW. (Progress on related problems appears in [5].) A related

problem is online multilevel aggregation [9] where a single server

sits at the root of a tree, requests arrive at the leaves, and the server

1127

STOC ’20, June 22–26, 2020, Chicago, IL, USA Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

occasionally goes to service some subset of requests and returns to

the root. The cost is again the sum of movement and delay costs.

Buchbinder et al. gave an 𝑂 (ℎ)-competitive algorithm for ℎ-level

HSTs [10], improving on [9]; the model itself combines elements

of TCP acknowledgment [18] and online joint replenishment [11].

Online problems with delays were first proposed by Emek et al. [16]

for online matching; see [2, 3] for other work.

In the classical paging/caching problem with instantaneous re-

quests, each interval is of length zero and must be satisfied immedi-

ately. Belady’s offline algorithm (Farthest in Future) is optimal for

the number of evictions [8]; in contrast, the offline PageTW problem

is APX-hard. We know deterministic 𝑘-competitive and randomized

𝑂 (ln𝑘)-competitive algorithms; both are optimal [17, 19].Weighted
paging is equivalent to the 𝑘-server problem on a weighted star,

so deterministic 𝑘-competitiveness follows from the algorithm 𝑘-

server on trees [12]. Bansal et al. [6] gave a randomized 𝑂 (ln𝑘)-
competitive algorithm for weighted paging, illustrating the power

of the primal-dual technique for these problems. They used an

interval covering IP give by [7, 14], which we extend in our work.

Paper Outline. In Section 2, we describe the new IP formulation

for PageTW. In Section 3, we show how a solution to this IP can be

used to generate a caching schedule online. Then we turn to solving

the IP online in Section 4. We defer the proof of the APX-hardness

of PageTW to the full version, and give some illustrative examples

in Section A. Finally, we give the offline algorithm for PageTW in

Section B.

2 PROBLEM DEFINITION AND IP
RELAXATION

Formally, there is a universe of 𝑛 pages. The cache can hold 𝑘

pages at any time. Each page 𝑝 incurs a cost when we evict it

from the cache, which is denoted by its weight 𝑤 (𝑝) ≥ 0. Each

request specifies a page 𝑝 and an interval 𝐼 = [𝑠 (𝐼), 𝑡 (𝐼)]: the page
𝑝 has to be in the cache at some time during this interval 𝐼 . Since

the only times of interest in the problem are the start and end

times of intervals, we assume without loss of generality (wlog)

that 𝑠 (𝐼), 𝑒 (𝐼) ∈ Z, so the interval 𝐼 := [𝑠 (𝐼), . . . , 𝑒 (𝐼)]. Note that in
the traditional paging problem, each interval 𝐼 contains a single

timestep, i.e., 𝐼 = {𝑡} for some 𝑡 . In the online setting, a request

comprising the identity of the page and the end time of the interval

𝑒 (𝐼) (i.e., the deadline) is revealed at its start time 𝑠 (𝐼). This is known
as the clairvoyant setting in the literature; strong lower bounds are

known for the more restricted non-clairvoyant setting where the

deadline is revealed when it is reached [4].

We now write a “hitting set” integer programming relaxation

for this problem: this IP does not capture the PageTW problem

exactly, but we show that (a) it contains only valid constraints, and

hence provides a lower bound on the optimal cost, (b) it can be

solved approximately in polynomial time, and (c) the “relaxation”

gap is small, i.e., a solution to this IP can be used to obtain a feasible

solution to the original PageTW problem.

The IP has Boolean variables 𝑥𝑝𝑡 for each page-time pair (𝑝, 𝑡),
with this variable being set if the page 𝑝 is “hit” at time 𝑡 : it is either

brought into or evicted from the cache at time 𝑡 . We assume that

for each time 𝑡 ∈ Z, there is exactly one request interval 𝐼 having

𝑒 (𝐼) = 𝑡 ; this incurs no loss of generality, since we can remove

timesteps with no deadlines, and split times with multiple intervals

ending at it. Hence each request interval 𝐼 corresponds to a unique

page page(𝐼) ∈ [𝑛]. For time 𝑡 , let 𝐼𝑡 and 𝑝𝑡 be the unique interval

ending at time 𝑡 , and its corresponding page; we call these the

critical interval and page for time 𝑡 .

As described in the introduction, we use two sets of extensions

for request intervals to define these constraints (See Figure 2.):

if 𝑠 (𝐼) ≤ 𝑡 =⇒
right extension of 𝐼 Rext(𝐼 , 𝑡) := [𝑠 (𝐼), . . . ,max(𝑡, 𝑒 (𝐼))] .

if 𝑒 (𝐼) ≤ 𝑡 =⇒
double extension of 𝐼 Dext(𝐼 , 𝑡) := [min(𝑠 (𝐼𝑡), 𝑠 (𝐼)), . . . , 𝑡] .

The “Hitting Set IP” is the following for variables 𝑥𝑝𝑡 ∈ {0, 1}:

min

∑
𝑝,𝑡

𝑤 (𝑝) 𝑥𝑝,𝑡 (IP)∑
𝐼 ∈C

∑
𝑡 ′∈Rext(𝐼 ,𝑡)

𝑥page(𝐼),𝑡 ′ ≥ 1 ∀𝑡 ∀C with 𝑘 requests for distinct

pages starting before 𝑡 (R1)∑
𝐼 ∈C

∑
𝑡 ′∈Dext(𝐼 ,𝑡)

𝑥page(𝐼),𝑡 ′ ≥ 1 ∀𝑡 ∀C with 𝑘 − 1 requests for

distinct pages (excluding 𝑝𝑡) ending before 𝑡

(D1)

In the appendix, we show both these sets of constraints are valid:

Claim 1. The constraints (R1) and (D1) are valid for any solution
to PageTW.

3 SOLVING PAGETW ONLINE USING ONLINE
SOLUTION TO (IP)

Now that we have the IP, we need to solve it (it has an exponential

number of constraints), and show how to convert a solution to this

IP into one for the PageTW problem. Indeed, (IP) does not have

any explicit capacity constraints, so we need to extract a “schedule”

from this solution in an online manner. In this section we show the

latter step; we will show how to solve the IP in Section 4.

Theorem 3.1. There is an efficient online algorithm that converts
an 𝛼-competitive integral solution to (IP) into a valid solution for the
PageTW instance, with competitive ratio of 𝑂 (𝛼 log𝑛) .

In the rest of the paper, we move between solutions 𝑥 to (IP) and

their characteristic set 𝐴★ := {(𝑝, 𝑡) | 𝑥𝑝,𝑡 = 1}. Visually, thinking
of time as the 𝑥-axis and the 𝑛 pages as the 𝑦-axis, the solution 𝐴★

corresponds to a set of “stars” in the 2-dimensional plane. We list

some properties of the online solution 𝐴★𝑡 to (IP) (which should

satisfy all the constraints corresponding to times 𝑡 and earlier)

maintained by the algorithm in Section 4.

(A1) Monotonicity: 𝐴★𝑡 ⊆ 𝐴★𝑡+1 for all 𝑡 .
(A2) The past preserving property: At time 𝑡 the algorithm only

adds stars corresponding to times 𝑡 or later. Ideally, at time

𝑡 , it should only add stars at time 𝑡 , with the following ex-

ception.

(A3) The sparsity property: for every page 𝑝 , 𝐴★𝑡 contains at most

one star (𝑝, 𝑡 ′) with 𝑡 ′ > 𝑡 . Furthermore, if 𝐴★𝑡 has such a

1128

Caching with Time Windows STOC ’20, June 22–26, 2020, Chicago, IL, USA

star, then it hits all the request intervals for 𝑝 which contain

time 𝑡 . In fact, our online algorithm for PageTW does not

need to know the exact location of the stars after time 𝑡— it

just needs to know the set of pages 𝑝 for which the solution

𝐴★𝑡 contains such a star.

The main idea of the algorithm is that if the cache is full and we

need to evict a heavy page 𝑝 , we should spend about𝑤 (𝑝) amount of

weight in serving other outstanding requests at time 𝑡 . The requests

that need to be serviced need to be carefully chosen, because there

are conflicting goals: (i) we want to service the cheaper requests,

because this way we can service many of these, (ii) we want to go by

EDF (Earliest Deadline First) order because the ones ending soon are

more critical, and finally (iii) we prefer to service the requests which

are hit by the solution 𝐴★𝑡 because we can directly pay for these

service costs. Interestingly, we show that we can simultaneously

take care of all of these three requirements. Moreover, we can

identify a weight𝑤 such that we can take care of all outstanding
requests which are cheaper than𝑤 and are not hit by 𝐴★𝑡 .

3.1 The Online Algorithm for
Non-Overlapping Requests

Algorithm 1: ConvertOnline(Online (IP) solution 𝐴★𝑡)
1 foreach 𝑡 = 0, 1, . . . do
2 let 𝐼𝑡 be the interval with deadline 𝑡 , and let

𝑝𝑡 ← page(𝐼𝑡)
3 if cache 𝐶 (𝑡) full and 𝐼𝑡 not satisfied then
4 evict the least-weight page 𝑝min in 𝐶 (𝑡)
5 if 𝑤 (𝑝𝑡) ≤ 2𝑤 (𝑝min) then
6 𝑍★← ∅.

7 for every page 𝑝 in 𝐶 (𝑡) do
8 𝐼

𝑝
𝑡 ← the request interval 𝐼 with page(𝐼) = 𝑝
and largest ending time 𝑒 (𝐼) < 𝑡 .

9 if Dext(𝐼𝑝𝑡 , 𝑡) is hit by 𝐴★𝑡 then add 𝑝 to 𝑍★.

10 𝑈 ← unsatisfied request intervals active at time

𝑡 (one per page, page requests are disjoint).

11 𝑈 ◦ ← {𝐼 ∈ 𝑈 | ∄𝑡 ′ ∈ 𝐼 with (page(𝐼), 𝑡 ′) ∈ 𝐴★𝑡 }
be intervals in𝑈 not hit by 𝐴★𝑡

12 serve and evict all requests in𝑈 \𝑈 ◦.
13 let𝑈 ◦≤𝑤 and 𝑍 ∗≤𝑤 denote pages in𝑈 ◦ and 𝑍★

respectively with weight at most𝑤 .

14 let 𝑝★ be a page in 𝑍★ such that

𝑤 (𝑈 ◦≤2𝑤 (𝑝★)) ≤ 2 ·𝑤 (𝑍★≤𝑤 (𝑝★)).
15 evict all pages in 𝑍★≤𝑤 (𝑝★) .

16 serve and evict all requests in𝑈 ◦≤2𝑤 (𝑝★) .

17 if 𝐼𝑡 not satisfied then bring page 𝑝𝑡 into cache.

In this section, we assume that no two request intervals for the

same page overlap—that is, for any pair of requests 𝐼 , 𝐼 ′ for the
same page, 𝐼 ∩ 𝐼 ′ = ∅. This gives a simpler algorithm than for the

general case, which follows the same approach but has to deal with

the case that multiple request intervals for the same page may try

t

It

s

p2
p3
p4
p5

p7
p8

p6
I6
I7

p1

I8

?
?

?
?

?
?

Figure 3: Illustration of the definitions used in Algorithm 1.
The request intervals for each page are shown in one hor-
izontal line (these do not overlap in our example). Focus
on time 𝑡 : the cache has pages 𝐶 (𝑡) = {𝑝1, . . . , 𝑝4}. The page
𝑝5 = page(𝐼5) is critical at time 𝑡 , with critical interval 𝐼𝑡 =

[𝑠, 𝑡]. The solution 𝐴★ is given by the stars, each of which
corresponds to a star (𝑝, 𝑡) in the natural manner. The set
𝑍★ = {𝑝1, 𝑝2, 𝑝3} and assuming 𝐼6, 𝐼7, 𝐼8 are unsatisfied at time
𝑡 , the set𝑈 ◦ = {𝐼6, 𝐼7}.

to charge to the same star in 𝐴★𝑡 . (See §3.2 for the online algorithm

for the general case, and Section B for the offline algorithm).

Algorithm 1 shows how to convert an online solution 𝐴★𝑡 to (IP)

into a feasible solution to the underlying PageTW instance. At

each time 𝑡 , we begin with some pages 𝐶 (𝑡) in the cache. If the

unique request 𝐼𝑡 ending at time 𝑡 is not already satisfied, and the

cache is full, we evict the cheapest page 𝑝min in the cache. We then

potentially serve some other pending requests by bringing in and

then evicting them, and also potentially remove some other pages

from the current cache. (These services and removals help pay for

evicting 𝑝min.)

Specifically, for every page 𝑝 in 𝐶 (𝑡), define 𝐼𝑝𝑡 to be the most

recent request for 𝑝 which ends before 𝑡 — this is well-defined

because requests don’t overlap. Define 𝑍★ to be the pages in 𝐶 (𝑡)
for which the interval Dext(𝐼𝑝𝑡 , 𝑡) is hit by 𝐴★𝑡 . (Since Dext(𝐼

𝑝
𝑡 , 𝑡)

ends at time 𝑡 , this only requires the knowledge of stars in 𝐴★𝑡 at or

before time 𝑡). We can directly pay for evicting these pages from

the cache. But the situation is tricky—some Dext(𝐼𝑝
𝑡 ′, 𝑡
′) for a future

time 𝑡 ′ may also be hit by the same star in 𝐴★𝑡 . So we evict a subset

of 𝑍★—ones for which we are sure that the corresponding stars of

𝐴★𝑡 won’t be charged again in the future.

To do this, the first simple observation is that we need to do

this charging only when the critical page is not much heavier than

the cheapest page in the cache, else we can charge the eviction

to the much heavier page in the cache. We define 𝑈 to be the set

of outstanding requests at time 𝑡 and 𝑈 ◦ to be the subset of 𝑈

which are not hit by 𝐴★𝑡 (lines 10–11)—by the sparsity property,

these are the pages 𝑝 for which 𝐴★𝑡 does not currently have a star

beyond time 𝑡 . We service all the requests in𝑈 \𝑈 ◦ immediately (we

service a request by loading the corresponding page in the cache,

and “evict a request” by evicting the corresponding page from the

cache)—these request intervals are hit by 𝐴★𝑡 and can be directly

paid for (because of the non-overlapping intervals). It is trickier

to decide which requests in𝑈 ◦ to service. In Lemma 3.2 we show

there is a page 𝑝★ in 𝑍★ such that𝑤 (𝑈 ◦≤2𝑤 (𝑝★)) ≤ 2 ·𝑤 (𝑍★≤𝑤 (𝑝★)),
where the notation 𝑋≤𝑎 denotes all the stars in 𝑋 of weight at

1129

STOC ’20, June 22–26, 2020, Chicago, IL, USA Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

most 𝑎. We service all the requests in𝑈 ◦≤2𝑤 (𝑝★) and evict the pages

𝑍★≤𝑤 (𝑝★) . This ensures that all the remaining unsatisfied requests

are much heavier than the current pages remaining in the cache.

By the observation at the start of this paragraph, the stars in 𝐴★𝑡
which are being charged for the eviction of 𝑍★≤𝑤 (𝑝★) are not going
to be charged again.

Finally, we serve 𝐼𝑡 by bringing 𝑝𝑡 = page(𝐼𝑡) into the cache if

still needed. Observe that the cache𝐶 (𝑡 + 1) at the start of time 𝑡 + 1
is contained within 𝐶 (𝑡) ∪ {𝑝𝑡 }, since all other pages we satisfy at

time 𝑡 are also evicted. Moreover, if𝐶 (𝑡) was full, the cheapest page
in 𝐶 (𝑡) is evicted, and other pages from 𝐶 (𝑡) may be evicted too.

3.1.1 The Analysis. We first need some supporting claims to show

that the algorithm is well-defined, and then bound the cost. The

proof of the following claim is deferred to the appendix.

Claim 2. Suppose a page 𝑝 is evicted from the cache at time 𝑡1
but is in the cache at the end of time 𝑡2 > 𝑡1. Then there must exist a
request interval 𝐼 for page 𝑝 with 𝑡1 < 𝑠 (𝐼) ≤ 𝑒 (𝐼) ≤ 𝑡2.

We now show that the algorithm is well-defined.

Claim 3. The set 𝑍★ defined in lines 6–9 is non-empty.

Proof. For each page 𝑝 ∈ 𝐶 (𝑡), let 𝐼𝑝𝑡 be the request interval

defined in line 8—such a request interval exists because of Claim 2

(we assume that the cache is empty initially). Applying the IP con-

straint (D1) to time 𝑡 and these 𝑘 request intervals implies that at

least one of their doubly-extended intervals is hit by 𝐴★𝑡 , and hence

the corresponding page belongs to 𝑍★. □

Lemma 3.2. There exists a page 𝑝★ ∈ 𝑍★ such that

𝑤 (𝑈 ◦≤2𝑤 (𝑝★)) ≤ 2𝑤 (𝑍★≤2𝑤 (𝑝★)) .

Proof. We first claim that |𝑈 ◦ | ≤ |𝑍★ |. Indeed, define a set of
𝑘 + 1 request intervals as follows. For each page 𝑝 ∈ 𝐶 (𝑡) \ 𝑍★,
consider the request interval 𝐼

𝑝
𝑡 for page 𝑝 as defined in line 8. Since

𝑝 ∉ 𝑍★, we must have (𝑝, 𝑡 ′) ∉ 𝐴★𝑡 for all times 𝑡 ′ ∈ Dext(𝐼𝑝𝑡 , 𝑡). But
since the interval ends before 𝑡 , we get Rext(𝐼𝑝𝑡 , 𝑡) ⊆ Dext(𝐼𝑝𝑡 , 𝑡)
and so 𝐴★𝑡 does not hit the right-extended interval for 𝐼

𝑝
𝑡 either.

To this collection of 𝑘 − |𝑍★ | intervals, add the request intervals

corresponding to𝑈 ◦—all these request intervals contain 𝑡 , so the
right-extension operation does not extend them. Moreover, we

have at most one interval per page, and they are all unsatisfied, so

the collection now has |𝑈 ◦ | + 𝑘 − |𝑍★ | many intervals for distinct

pages. And none of their right-extensions are hit by 𝐴★𝑡 , so by

constraint (R1) this collection has size at most 𝑘 . This proves that

|𝑈 ◦ | ≤ |𝑍★ |.
Let 𝐴 be the set of pages in 𝑍★ and 𝐵 the set of pages in𝑈 ◦. We

set up a bipartite graph on (𝐴, 𝐵) with an edge between 𝑝 ∈ 𝐴 and

𝑝 ′ ∈ 𝐵 if𝑤 (𝑝 ′) ≤ 2𝑤 (𝑝). If this graph has a perfect matching, then

𝑤 (𝐵) ≤ 2𝑤 (𝐴). We choose 𝑝★ to be the highest-weight page in

𝑍★.

Else such a perfect matching does not exist. Let 𝐴′ ⊆ 𝐴 be a

minimal Hall set, and 𝐵′ be the neighborhood of 𝐴′. Let 𝑎 be any
page in𝐴′. The pages in𝐴′\{𝑎} can be matched with 𝐵′. Therefore,
𝑤 (𝐵′) ≤ 2𝑤 (𝐴′ \ {𝑎}) ≤ 2𝑤 (𝐴′). Now choose 𝑝★ to be the highest

weight page in 𝐴′, to get𝑤 (𝑈 ◦≤2𝑤 (𝑝★)) ≤ 2𝑤 (𝑍★≤𝑤 (𝑝★)). □

Therefore when we reach line 14, a page 𝑝★ of the desired form

exists, and the algorithm is well-defined. Finally the next claim,

whose proof is deferred to the appendix, shows that the request

interval 𝐼𝑡 gets served.

Claim 4. Suppose 𝐼𝑡 is unsatisfied at time 𝑡 . If𝑤 (𝑝𝑡) ≤ 2𝑤 (𝑝min),
then the page 𝑝𝑡 belongs to either 𝑈 \𝑈 ◦ in line 12 or to 𝑈 ◦≤2𝑤 (𝑝★)
in line 16, and is served and evicted. Else 𝑝𝑡 is served by line 17, and
remains in the cache.

3.1.2 The Cost Guarantee. We want to bound the total cost in-

curred till time 𝑇 . The high-level cost analysis goes as follows. If

the cache has room we can just satisfy 𝐼𝑡 , so suppose the cache is

full and we need to pay to evict 𝑝min. If the page 𝑝𝑡 is twice as heavy

as 𝑝min, we can charge 𝑝min to 𝑝𝑡 and pay when 𝑝𝑡 is subsequently

evicted. Else, if the unsatisfied intervals crossing time 𝑡 which are

hit by 𝐴★𝑡 have large weight, i.e., if𝑤 (𝑈 \𝑈 ◦) ≥ 𝑤 (𝑝min), we can
serve and evict them and then charge to them—this can pay for

𝑝min. Finally, we evict some pages from the current cache that are

hit by 𝐴★𝑡 : they pay for both evicting 𝑝min and for serving some

more of the outstanding requests. These pages are evicted from the

cache to ensure they are not charged again.

We now show how to pay for the possible evictions in lines 4,

12, and 15-16 (since bringing in pages is for free). We maintain the

invariant that each page 𝑝 in the cache has at most𝑤 (𝑝) “load” on
it; pages outside the cache have zero load. The load measures the

evictions which have not been paid for till now. If we bring in 𝑝𝑡
and if𝑤 (𝑝𝑡) ≥ 2𝑤 (𝑝min), its load becomes the load of 𝑝min plus the

cost of evicting 𝑝min; thus the total load on 𝑝𝑡 is at most its weight,

and 𝑝𝑡 remains in the cache, maintaining the invariant. At the end

of the algorithm, the total load over all pages is at most the weight

of the pages in the cache, which is at most the optimum cost. This

adds one to the competitive ratio. Else if 𝑤 (𝑝𝑡) < 2𝑤 (𝑝min), we
evict at least one page in 𝑍★ (by Claim 3) and can charge evicting

𝑝min to the eviction of that page—which we show below how to

charge to 𝐴★
𝑇
.

Next: we charge evicting 𝑈 \ 𝑈 ◦ to 𝑤 (𝐴★
𝑇
) as follows. Each

interval in 𝑈 \𝑈 ◦, say for page 𝑝 , contains some star at (𝑝, 𝑡 ′) in
𝐴★𝑡 (and hence in 𝐴★

𝑇
, and we can charge to star). Since the request

intervals for a page are disjoint (by our simplifying assumption),

(𝑝, 𝑡) cannot lie in any other request interval for 𝑝 , and will not be

charged by line 12 again.

Finally, we charge the eviction cost for lines 15-16. This cost is

𝑂 (𝑤 (𝑍★≤𝑤 (𝑝★))) by our choice of 𝑝★ in line 14. Observe that for

each page 𝑝 𝐼 in 𝑍★≤𝑤 (𝑝★) , the doubly-extended interval Dext(𝐼
𝑝
𝑡 , 𝑡)

is hit by an star at (page(𝐼), 𝑡 ′) ∈ 𝐴★𝑡 for some 𝑡 ′ ≤ 𝑡 , so we want

to charge to this star of 𝐴★𝑡 . Moreover, each page in 𝑍★≤𝑤 (𝑝★) is

at least as heavy as 𝑝min, so any of these stars of 𝐴★𝑡 can pay to

evict 𝑝min (and its load). We finally show that no star of 𝐴★
𝑇
can be

charged twice in this manner.

Lemma 3.3. No star in𝐴★
𝑇
can be charged twice because of evictions

in lines 15-16.

Proof. For a contradiction, suppose an star at (𝑞, 𝑡𝑞) ∈ 𝐴★𝑇 is

charged twice, at time 𝑡1 and time 𝑡2. Hence, at both these times

𝑞 was in the cache and was evicted in line 15, so all unsatisfied

pages that were active at these times and had weight ≤ 2𝑤 (𝑞) were

1130

Caching with Time Windows STOC ’20, June 22–26, 2020, Chicago, IL, USA

definitely served by line 16. (We will contradict this implication of

our assumption.)

Let 𝐼
𝑞
𝑡1
and 𝐼

𝑞
𝑡2
be the corresponding intervals defined in line 8

for the page 𝑞. Claim 2 shows that 𝐼
𝑞
𝑡2
starts after 𝑡1. But we know

that 𝑡𝑞 ≤ 𝑡1, since (𝑞, 𝑡𝑞) was charged at time 𝑡1, and so 𝑡𝑞 ∉ 𝐼
𝑞
𝑡2
. So,

in order for (𝑞, 𝑡𝑞) to hit the doubly-extended interval Dext(𝐼𝑞𝑡2 , 𝑡2),
it must be the case that the critical interval 𝐼𝑡2 contained the time

𝑡𝑞 (and hence time 𝑡1 ∈ [𝑡𝑞, 𝑡2]). Let 𝑝𝑡2 denote page(𝐼𝑡2). Then
𝑤 (𝑝𝑡2) ≤ 2𝑤 (𝑞), else we would merely have evicted the cheapest

page at time 𝑡2 and not reached lines 15-16 again. This means 𝑝𝑡2 had

weight at most 2𝑤 (𝑞), and the request 𝐼𝑡2 was active and remained

unsatisfied at the end of time 𝑡1, which contradicts the implication

above. □

This proves Theorem 3.1 (without losing the extra log𝑛 factor)

in the case of non-overlapping requests for any page 𝑝 . The general

case gets trickier. Indeed, consider the example with a page 𝑝 having

request intervals [𝑡1, 𝑡], [𝑡2, 𝑡], . . . , [𝑡𝑘 , 𝑡], where 𝑡1 < 𝑡2 < . . . <

𝑡𝑘 < 𝑡 . Suppose we have a star (𝑝, 𝑡) ∈ 𝐴★𝑡1 . Consider a time 𝑡 ′ ∈
[𝑡1, 𝑡] when the algorithm reaches line 10. If any of these intervals

is not satisfied at 𝑡 ′, then they will get counted in 𝑈 \𝑈 ◦, and so

we will charge the star at (𝑝, 𝑡) for servicing 𝑝 at time 𝑡 ′. But this
can happen for multiple values of 𝑡 ′, and we have only one star in

𝐴★ to charge to. Moreover, we cannot say that we will take care of

all these requests at the ending time 𝑡—since all the pages in the

cache may be very expensive at that time. In the off-line case (which

appears in Section B), one can add a reverse delete step, where we
look at all these times when we service some of these requests, and

realize that a subset of them would suffice. However, we discuss

the more involved online case in the next section.

3.2 Online Algorithm for the General Setting
The algorithm from Section 3.1 assumes the requests for a page are

non-overlapping. We now extend it to handle overlapping requests

in an online fashion. Algorithm 2 gives the online algorithm.We call

a request interval 𝐼 non-dominating if it does not contain another

request interval for 𝑝𝑎𝑔𝑒 (𝐼)—we knowwhether 𝐼 is non-dominating

only at time 𝑒 (𝐼). Notice that the definition of 𝐼
𝑝
𝑡 in line 8 looks

only at non-dominating intervals.

Since the request intervals for a particular page are no longer

disjoint, we do not serve and evict all the intervals in𝑈 \𝑈 ◦ when
we create space at time 𝑡 (as Algorithm 1 would do in line 12).

Instead we only serve the requests hit by 𝐴★𝑡 before time 𝑡 , and

some small set of requests that are hit by 𝐴★𝑡 after time 𝑡 . As shown

in the example at the end of Section 3.1 serving all such requests

may lead to unbounded number of chargings to a star in 𝐴★
𝑇
. These

requests are considered in the earliest deadline order and their total

weight is a constant times the weight of the cheapest page in 𝑍★

(denoted by 𝑝†). It is also worth noting that we perform these steps

only if 𝐼𝑡 is hit by 𝐴
★
𝑡 (line 12).

It is also worth noting that line 16 is the only place in the algo-

rithm where we need to know the right end-point of an existing

request for a page.

By Lemma 3.2 the page 𝑝★ in line 19 exists, and hence the algo-

rithm is well-defined. For the correctness we need to show that each

page is served. Indeed, for an unsatisfied request 𝐼𝑡 at its deadline

Algorithm 2: ConvertOnline((IP) solution 𝐴★𝑡 appearing

online)

1 foreach 𝑡 = 0, 1, . . . do
2 let 𝐼𝑡 be the interval with deadline 𝑡 , and let

𝑝𝑡 ← page(𝐼𝑡)
3 if cache 𝐶 (𝑡) full and 𝐼𝑡 not satisfied then
4 evict the least-weight page 𝑝min in 𝐶 (𝑡)
5 if 𝑤 (𝑝𝑡) ≤ 2𝑤 (𝑝min) then
6 𝑍★← ∅.

7 for every page 𝑝 in 𝐶 (𝑡) do
8 𝐼

𝑝
𝑡 ← non-dominating request interval 𝐼

with page(𝐼) = 𝑝 and largest ending time

𝑒 (𝐼) < 𝑡 .
9 if Dext(𝐼𝑝𝑡 , 𝑡) is hit by𝐴★𝑡 then add 𝐼

𝑝
𝑡 to 𝑍★.

10 𝑈 ← unsatisfied request intervals active at time

𝑡 (one per page, if there are multiple choose

one with earliest deadline).

11 𝑈 ◦ ← {𝐼 ∈ 𝑈 | ∄𝑡 ′ ∈ 𝐼 with (page(𝐼), 𝑡 ′) ∈ 𝐴★𝑡 }
be intervals in𝑈 not hit by 𝐴★𝑡 .

12 if 𝐼𝑡 ∉ 𝑈 ◦ then
13 𝑈★

𝑡 ← request intervals 𝐼 in (𝑈 \𝑈 ◦) which
are hit by 𝐴★𝑡 at some time ≤ 𝑡 .

14 serve and evict all requests in𝑈★
𝑡 .

15 evict the cheapest page 𝑝† in 𝑍★ (this may

be the same as 𝑝min)

16 sort intervals in𝑈 \ (𝑈 ◦ ∪𝑈★
𝑡) with weights

≤ 2𝑤𝑝† in ascending order of end-times.

17 serve and evict a maximal prefix of these

intervals with total weight at most 4𝑤𝑝† .

18 let𝑈 ◦≤𝑤 and 𝑍★≤𝑤 denote pages in𝑈 ◦ and 𝑍★

with weight at most𝑤 .

19 let 𝑝★ be a page in 𝑍★ such that

𝑤 (𝑈 ◦≤2𝑤 (𝑝★)) ≤ 2 ·𝑤 (𝑍★≤𝑤 (𝑝★)).
20 evict all pages in 𝑍★≤𝑤 (𝑝★) .

21 serve and evict all requests in𝑈 ◦≤2𝑤 (𝑝★) .

22 if 𝐼𝑡 not satisfied then bring page 𝑝𝑡 into cache.

𝑡 , either 𝑝𝑡 has twice the weight of 𝑝min and is handled in line 22.

Else, either the request interval 𝐼𝑡 is hit by 𝐴
★
𝑡 and so it belongs to

𝑈★
𝑡 and is served/evicted in line 14, or it is not hit by 𝐴★𝑡 and so

belongs to𝑈 ◦≤2𝑤 (𝑝★) (by Claim 4) and is served/evicted in line 21.

It remains to estimate the total eviction cost of this algorithm.

3.2.1 The Cost Analysis. Consider the run of the algorithm until

time 𝑇 ; we bound the total cost incurred until this time, in terms

of𝑤 (𝐴★
𝑇
). Observe that evictions can only happen on lines 4, 14–

17, and 20–21. The first and the last of these can be dealt with

as in Section 3.1. Indeed, paying for 𝑝min and its load is done by

either putting a load on 𝑝𝑡 if 𝑤 (𝑝𝑡) ≥ 2𝑤 (𝑝min) or else at least

one other page from 𝐶 (𝑡) is evicted and charged for, and we can

handle 𝑝min by charging a constant factor more. The total cost

1131

STOC ’20, June 22–26, 2020, Chicago, IL, USA Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

incurred during lines 20–21 is at most 2𝑤 (𝐴★
𝑇
), since the proof for

Lemma 3.3 remains unchanged. Indeed, at each time 𝑡 when we

perform those evictions, we charge the stars in 𝐴★
𝑇
which hit the

intervals in 𝑍★≤𝑤 (𝑝★) , and these stars are never charged again due

to Lemma 3.3.

It remains to bound the cost incurred during lines 14–17. Let

𝔗 ⊆ [𝑇] contain the times when we reach those lines. Let 𝑍★𝑡 , 𝑈𝑡 ,

𝑈 ◦𝑡 , and 𝑈
★
𝑡 denote the corresponding sets at time 𝑡 , and 𝑝

†
𝑡 , 𝑝

★
𝑡

denote the pages chosen in lines 15 and 19. The evictions in line 14

are easy to pay for, andwe defer the proof of the following statement

to the appendix.

Claim 5. ∪𝑡 ∈𝔗 𝑤 (𝑈★
𝑡) ≤ 𝑤 (𝐴★𝑇).

Some more notation: let 𝑈
†
𝑡 be the prefix of request intervals

serviced in line 17. For a time 𝑡 ∈ 𝔗, define the effective cost at time

𝑡 to be𝑤 (𝑝†𝑡) +𝑤 (𝑈
†
𝑡)—this is the remaining cost incurred at time

𝑡 in lines 15,17. For an interval [𝑎, 𝑏], let 𝐴★𝑡 [𝑎, 𝑏] denote the set
of (𝑝, 𝑡 ′) in 𝐴★𝑡 where 𝑡 ′ ∈ [𝑎, 𝑏]. Let 𝑃★𝑡 [𝑎, 𝑏] be the set of pages
corresponding to which there is at least one star in 𝐴★𝑡 [𝑎, 𝑏]. Note
that𝑤 (𝑃★𝑡 [𝑎, 𝑏]) ≤ 𝑤 (𝐴★𝑡 [𝑎, 𝑏]) for any time 𝑡 and interval [𝑎, 𝑏].

Claim 6. Suppose times 𝑡1, 𝑡2 ∈ 𝔗 are such that 𝑡1 < 𝑡2 and 𝐼𝑡2
contains time 𝑡1. Then the effective cost at time 𝑡1 is at most at most
5

2
𝑤 (𝑃★𝑡2 [𝑡1, 𝑡2]).

Proof. By design, 𝑤 (𝑈 †𝑡1) ≤ 4𝑤 (𝑝†𝑡1), so the effective cost at

time 𝑡1 is at most 5𝑤 (𝑝†𝑡1). Thus it suffices to bound𝑤 (𝑝†𝑡1). Since
𝑡2 ∈ 𝔗, the interval 𝐼𝑡2 was not served at time 𝑡1. The possible

reasons are:

(1) The interval 𝐼𝑡2 ∈ 𝑈 ◦𝑡1 and𝑤 (𝑝𝑡2) > 2𝑤 (𝑝★𝑡1). Since𝑤 (𝑝
†
𝑡1
) ≤

𝑤 (𝑝★𝑡1) by the choice of 𝑝
†
𝑡1
, so 𝑤 (𝑝†𝑡1) <

1

2
𝑤 (𝑝𝑡2). Since 𝐼𝑡2

is hit by 𝐴★𝑡2
(because 𝑡2 ∈ 𝔗), the past preserving property

of the online solution 𝐴★ implies that there must be a star

at (𝑝𝑡2 , 𝑡 ′) in 𝐴★𝑡2 for some 𝑡 ′ ∈ [𝑡1, 𝑡2]. Therefore,𝑤 (𝑝𝑡2) ≤
𝑤 (𝑃★𝑡2 [𝑡1, 𝑡2]).

(2) 𝐼𝑡2 ∉ 𝑈
◦
𝑡1
but 𝑤 (𝑝𝑡2) > 2𝑤 (𝑝†𝑡1), so it was not considered in

the sorted ordering (in line 16). However, 𝐼𝑡2 was not in 𝑈
★
𝑡1
,

so it was hit by 𝐴★𝑡1
at some time after 𝑡1—this means𝑤 (𝑝𝑡2)

is counted in𝑤 (𝑃★𝑡1 [𝑡1, 𝑡2]). So𝑤 (𝑝
†
𝑡1
) ≤ 1

2
𝑤 (𝑃★𝑡1 [𝑡1, 𝑡2]).

(3) 𝐼𝑡2 ∉ 𝑈 ◦𝑡1 and 𝑤 (𝑝𝑡2) ≤ 2𝑤 (𝑝†𝑡1) but we did not add 𝐼𝑡2

to 𝑈
†
𝑡1

at time 𝑡1: So 𝑤 (𝑈 †𝑡1) must have been more than

4𝑤 (𝑝†𝑡1)−𝑤 (𝑝𝑡2) ≥ 2𝑤 (𝑝†𝑡1).We added intervals to𝑈
†
𝑡1
in the

earliest-deadline-first order, so all theweight added to𝑤 (𝑈 †𝑡1)
before considering 𝐼𝑡2 belongs to 𝑤 (𝐴★𝑡1 [𝑡1, 𝑡2]). Chaining
these inequalities,𝑤 (𝑝†𝑡1) ≤

1

2
𝑤 (𝑈 †𝑡1) ≤

1

2
𝑤 (𝑃★𝑡1 [𝑡1, 𝑡2]).

Since 𝐴★𝑡1
⊆ 𝐴★𝑡2 , we get the desired result. □

Claim 7. Suppose 𝑡1, 𝑡2 ∈ 𝔗 are such that 𝑡1 < 𝑡2, and 𝐼𝑡2 does
not contain 𝑡1. Suppose 𝑝

†
𝑡1
= 𝑝
†
𝑡2
—call this page 𝑝†—then there is an

star for (𝑝†, 𝑡 ′) in 𝐴★𝑡2 for some 𝑡 ′ ∈ (𝑡1, 𝑡2].

Proof. Page 𝑝† is evicted at time 𝑡1, and so it must have been

brought in by an unsatisfied request 𝐼 ; this request must start after

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13

12 8

11 4
62

Figure 4: Illustration of 𝐹 : the intervals on the left are 𝐼𝑡 for
𝑡 ∈ 𝔗 (note that these intervals are identified using their
right end-points). The corresponding forest 𝐹 is shown on
the right.

𝑡1 (else it would be satisfied at 𝑡1) and end before 𝑡2 (since 𝑝
†
is in

the cache at time 𝑡2). We claim that 𝐼
𝑝†

𝑡2
is also contained in (𝑡1, 𝑡2].

Suppose not. So 𝑠 (𝐼𝑝
†

𝑡2
) ≤ 𝑡1 .

The interval 𝐼 is either itself non-dominating, or contains a non-

dominating request for 𝑝†. In either case, there is a non-dominating

request interval for 𝑝† which is contained in (𝑡1, 𝑡2]—call this 𝐼 ′ (it
could be same as 𝐼). Now, 𝐼 ′ is not designated as 𝐼

𝑝†

𝑡2
. It must be the

case that 𝑡 (𝐼𝑝
†

𝑡2
) ≥ 𝑡 (𝐼 ′). But then 𝐼𝑝

†

𝑡2
contains 𝐼 ′, which contradicts

the fact that it is non-dominating.

Since 𝐼𝑡2 is also contained in (𝑡1, 𝑡2], we see that Dext(𝐼𝑝
†

𝑡2
, 𝑡2) is

also contained in (𝑡1, 𝑡2]. Since 𝑝† ∈ 𝑍★ at time 𝑡2, Dext(𝐼𝑝
†

𝑡2
, 𝑡2) is

hit by 𝐴★𝑡2
. This proves the claim. □

The Charging Forest. Motivated by Claims 6 and 7, we define a

directed forest 𝐹 = (𝔗, 𝐸) as follows. For time 𝑡 ∈ 𝔗, if time 𝑡 ′ is
the smallest time such that 𝑡 ′ > 𝑡 and the critical interval 𝐼𝑡 ′ for

𝑡 ′ contains 𝑡 , we define 𝑡 ′ to be the parent of 𝑡 , i.e., we add an arc

(𝑡, 𝑡 ′). If no such time 𝑡 ′ > 𝑡 exists, then 𝑡 has no parent (i.e., zero

out-degree). The following lemma gives some natural properties of

the forest 𝐹 ; the proof is deferred to the appendix.

Lemma 3.4. Suppose 𝑡, 𝑡 ′ ∈ 𝔗 and 𝑡 < 𝑡 ′.
(a) If 𝐼𝑡 ′ contains 𝑡 , then 𝑡 ′ is an ancestor of 𝑡 in 𝐹 .
(b) If 𝑡 ′ is not an ancestor of 𝑡 in 𝐹 , then then any node 𝑡 ′′ in the

subtree rooted at 𝑡 ′ satisfies 𝑡 ′′ > 𝑡 .

We now divide pages and times into classes. For each class 𝑐 , we

will consider a sub-forest 𝐹𝑐 of 𝐹 . We say that a page 𝑝 is of class
𝑐 if 𝑤 (𝑝) lies in the range [2𝑐 , 2𝑐+1). We say that a node 𝑡 in the

charging forest 𝐹 is of class 𝑐 if the corresponding page 𝑝
†
𝑡 is of

class 𝑐 . Let 𝑉 𝑐
be the vertices of class 𝑐 in 𝐹 . Let 𝐹𝑐 be the minimal

sub-graph of 𝐹 which preserves the connectivity between 𝑉 𝑐
(as

in 𝐹). So the leaves of 𝐹𝑐 belong to 𝑉 𝑐
, but there could be internal

vertices belonging to other classes. We now show how to account

for the cost incurred for the vertices in 𝑉 𝑐
. Let 𝐴★

𝑇
(𝑐) be the total

weight of the stars in 𝐴★
𝑇
corresponding to pages of class 𝑐 . We say

that a node in 𝐹𝑐 is a lone-child if it is the only child of its parent.

Claim 8. The total effective cost incurred during the leaf nodes in
𝐹𝑐 and the internal nodes of class 𝑐 in 𝐹𝑐 which are not lone-children
is 𝑂 (𝐴★

𝑇
(𝑐)).

Proof. The effective cost incurred during each time of class 𝑐 is

a constant times 2
𝑐
. Since the number of internal nodes which are

not lone children is bounded above by the number of leaf nodes,

it is enough to bound the effective cost incurred at the leaf nodes.

1132

Caching with Time Windows STOC ’20, June 22–26, 2020, Chicago, IL, USA

For a page 𝑝 of class 𝑐 , let 𝐹𝑐 (𝑝) be the leaf nodes 𝑡 in 𝐹𝑐 for which
𝑝
†
𝑡 = 𝑝 . Let the times in 𝐹𝑐 (𝑝) in increasing order be 𝑡1, 𝑡2, . . . , 𝑡𝑘 .

Note that 𝐼𝑡𝑖 does not contain 𝑡𝑖−1 for 𝑖 = 2, . . . , 𝑘—otherwise 𝑡𝑖 will

be an ancestor of 𝑡𝑖−1 (Lemma 3.4). Claim 7 now implies that 𝐴★
𝑇

contains a star for page 𝑝 during (𝑡𝑖−1, 𝑡𝑖]. Thus, the total effective
cost incurred during 𝐹𝑐 (𝑝) can be charged to the stars in 𝐴★

𝑇
corre-

sponding to page 𝑝 . Since all the leaf nodes in 𝐹𝑐 belong to class 𝑐 ,

he result follows. □

It remains to account for the times in 𝑉 𝑐
which have only one

child in 𝐹𝑐 .

Claim 9. Let 𝑡1 and 𝑡2 be two distinct times of class 𝑐 which are
lone-child nodes in 𝐹𝑐 . Let 𝑡 ′

1
and 𝑡 ′

2
be the parents of 𝑡1 and 𝑡2 respec-

tively. Then the intervals [𝑡1, 𝑡 ′
1
] and [𝑡2, 𝑡 ′

2
] are internally disjoint.

Proof. Suppose not. Say 𝑡1 < 𝑡2 ≤ 𝑡 ′
1
. First assume 𝑡 ′

2
> 𝑡 ′

1
. Then

𝐼𝑡 ′
2

contains 𝑡 ′
1
and so 𝑡 ′

2
must be an ancestor of 𝑡 ′

1
. If 𝑡 ′

1
is same as

𝑡2, then the result follows easily, otherwise 𝑡 ′
1
is a descendant of 𝑡2

(since 𝑡 ′
2
has only one child). But then 𝑡 ′

1
< 𝑡2, a contradiction.

The other case happens when 𝑡 ′
2
< 𝑡 ′

1
. In this case 𝐼𝑡 ′

1

contains 𝑡 ′
2

(since it contains 𝑡1 and 𝑡1 < 𝑡 ′
2
). If 𝑡1 = 𝑡

′
2
, the result again follows

trivially. Otherwise 𝑡 ′
2
is a descendant of 𝑡1, a contradiction. □

The above Claim along with Claims 6 and 8 show that the total

cost incurred by times of class 𝑐 can be charged to 𝑤 (𝐴★
𝑇
). Thus,

if there are 𝐾 different classes, we get 𝑂 (𝐾) approximation. To

convert this into𝑂 (log𝑛) approximation, we observe the following

refinement of Claim 6. For a class 𝑐 , times 𝑡1 < 𝑡2, let 𝐴
★
𝑇
(𝑐, [𝑡1, 𝑡2])

be the stars of 𝐴★
𝑇
[𝑡1, 𝑡2] which are of class 𝑐 .

Claim 10. Suppose times 𝑡1, 𝑡2 ∈ 𝔗 are such that 𝑡1 < 𝑡2 and 𝐼𝑡2
contains time 𝑡1. Let 𝑝

†
𝑡1
be of class 𝑐 . Then the effective cost at time

𝑡1 is at most at most

10

©«
𝑐∑

𝑐′=𝑐−log𝑛−3
𝑤 (𝐴★𝑇 (𝑐

′, [𝑡1, 𝑡2])) +
∑
𝑐′>𝑐

𝑤 (𝐴★
𝑇
(𝑐 ′, [𝑡1, 𝑡2])
2
𝑐′−𝑐

ª®¬ .
Proof. Claim 6 shows that𝑤 (𝑃★

𝑇
[𝑡1, 𝑡2]) is at least

𝑤 (𝑝†𝑡
1

)
2

. Let

𝑃 ′ be the pages of weight at most𝑤 (𝑝†)/4𝑛 in 𝑃★
𝑇
[𝑡1, 𝑡2]—since the

total weight of these pages is at most𝑤 (𝑝†)/4. Thus the pages of
class 𝑐− log𝑛−2 and higher contribute at least half of𝑤 (𝑃★

𝑇
[𝑡1, 𝑡2]).

Further, if 𝑃★
𝑇
[𝑡1, 𝑡2] contains a page 𝑝 of weight higher than𝑤 (𝑝),

then we can just charge it 𝑤 (𝑝†𝑡1) (and may not even charge to

other pages in 𝑃★
𝑇
[𝑡1, 𝑡2]). The desired result now follows from

Claim 6. □

Claims 8 and 9 along with Claim 10 imply that the total cost

incurred during times of class 𝑐 is a constant times

𝑐∑
𝑐′=𝑐−log𝑛−3

𝑤 (𝐴★𝑇 (𝑐
′)) +

∑
𝑐′>𝑐

𝑤 (𝐴★
𝑇
(𝑐 ′))

2
𝑐′−𝑐 .

Summing over all classes yields Theorem 3.1.

t1 t2

Ipt1

Ipt2

Figure 5: Illustration of 𝐼𝑝𝑡 and 𝑅𝑝𝑡 : the figure shows several
request intervals for a page 𝑝. The intervals 𝐼𝑝𝑡1 and 𝐼𝑝𝑡2 for
two times 𝑡1 and 𝑡2 are shown in solid red lines. These are
extended using dotted red lines to 𝑅𝑝𝑡1 and 𝑅

𝑝
𝑡2
respectively.

4 SOLVING THE INTEGER PROGRAM
We show how to solve the integer program (IP). Not only does it

have an exponential number of constraints, it happens to have an

unbounded integrality gap. For the toy problem of picking 𝑛 − 𝑘
out of 𝑛 items, all of unit weight, any feasible solution has cost at

least 𝑛 − 𝑘 . Using variables 𝑥𝑖 ∈ [0, 1] indicating if we pick item 𝑖 ,

we can write linear constraints for every choice C of 𝑘 + 1 items:∑
𝑖∈C 𝑥𝑖 ≥ 1. Now setting 𝑥𝑖 = 1

𝑘+1 for all 𝑖 gives a fractional

solution of cost
𝑛

𝑘+1 ≪ 𝑛 − 𝑘 . But the fix is simple: we can replace

these exponentially-many constraints by a single constraint

∑
𝑖 𝑥𝑖 ≥

𝑛−𝑘 to get an integral LP. We will emulate this approach and write

compact LPs with bounded integrality gaps.

It will be convenient to handle the constraints related to the right

and double extensions separately, in §4.1 and §4.2 respectively. This

at most doubles the cost of the solution. We will rely on existing

algorithms for special instances of interval cover, where we pick

intervals of the timeline so that each time is covered by 𝑛 − 𝑘 inter-

vals. These special instances are called “tiled” since the intervals

come in 𝑛 groups (one for each page), and the intervals for each

group partition the entire timeline. More formally, an input of the

tiled interval cover problem (TiledIC) is specified as follows: for

each page 𝑝 ∈ [𝑛], we have a collection I𝑝 of disjoint intervals that

cover the entire timeline, with each such interval having weight

𝑤𝑝 . The goal is to pick a minimum weight subset of intervals from

I = ∪𝑝I𝑝 such that every time 𝑡 is covered by at least 𝑛−𝑘 of these

selected intervals. The offline algorithms for this tiled interval cover
problem rely on total-unimodularity, and the online ones reduce the

interval-cover problem to the classical paging; details are deferred

to the full version.

4.1 Solving for the Right Extensions
Constraints

The idea for solving (IP) is conceptually simple: first, we sparsify

the constraints (and use the integrality-gap removal idea above)

to get a more compact and better integer program. Then for each

page we choose a set of (interval, time) pairs such that the right

extensions for these are disjoint and maximal. We extend these

extended intervals to cover all of time, view this as a tiled interval

cover instance with demand 𝑛 − 𝑘 , and solve it. Then we show that

picking the start and end of each interval chosen in the interval

cover solution is also a solution to the constraints (R1).

1133

STOC ’20, June 22–26, 2020, Chicago, IL, USA Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

Figure 6: Illustration of K𝑝 : the figure shows several inter-
vals 𝑅𝑝𝑡 for a page 𝑝. The colored intervals are the ones se-
lected by the greedy algorithm, and the extended ones (us-
ing dashed lines and the matching color) form K𝑝 .

Now for the details: for any page 𝑝 ∈ [𝑛] and time 𝑡 , the interval

𝐼
𝑝
𝑡 is defined as the request interval 𝐼 = [𝑠 ′, 𝑡 ′] for page 𝑝 with

ending time 𝑡 ′ ≤ 𝑡 , whose start time 𝑠 ′ is the largest (see Figure 5
for an example). Now suppose we write the constraints:∑
𝑝∈S

min

(
1,

∑
𝑡 ′∈Rext(𝐼𝑝𝑡 ,𝑡)

𝑥𝑝,𝑡 ′
)
≥ 1, ∀ 𝑡, ∀ (𝑘 + 1)-subsets S of pages

This is a subset of the constraints from (R1), and hence the solution

to this can only have lower cost. To avoid the integrality gap, we

write a single constraint for each time, to get the integer program.

min

𝑥 ∈{0,1}𝑛𝑇

∑
𝑝,𝑡

𝑤𝑝 𝑥𝑝,𝑡 (IP-R)∑
𝑝

min

(
1,

∑
𝑡 ′∈Rext(𝐼𝑝𝑡 ,𝑡)

𝑥𝑝,𝑡 ′
)
≥ 𝑛 − 𝑘 ∀𝑡 (R2)

For brevity, define 𝑅
𝑝
𝑡 := Rext(𝐼𝑝𝑡 , 𝑡). Note that each 𝑅

𝑝
𝑡 = [𝑠𝑡 , 𝑡]

ends at time 𝑡 . The following observation is easy to check (recalling

that [𝑎, 𝑏] strictly contains [𝑐, 𝑑] if 𝑎 < 𝑐 ≤ 𝑏 < 𝑑).

Claim 11. For any page 𝑝 , and times 𝑡, 𝑡 ′ the interval 𝑅𝑝𝑡 is not
strictly contained in 𝑅𝑝

𝑡 ′ .

For each page 𝑝 we build amaximal subcollectionK𝑝 of disjoint

intervals from {𝑅𝑝𝑡 }𝑡 ∈[𝑇] as follows:
Sort these intervals in increasing order of their ending

times, and pick an interval if it does not intersect any

previously-picked intervals. Then we extend each in-

terval “leftwards” so that this extended interval starts

at time 𝑡 ′ + 1 if the previous interval ends at time 𝑡 ′.
Call this collection K𝑝 .

Note that each interval [𝑡1, 𝑡2] ∈ K𝑝 completely contains an

interval 𝑅
𝑝
𝑡2
that ends at time 𝑡2. Let K := ∪𝑝K𝑝 be the set of all

these new intervals. Define the weight of each interval in K𝑝 as

𝑤 (𝑝), and set the coverage requirement 𝑅 := 𝑛 − 𝑘 for all times

𝑡 . Observe that all this can be done online, where we start each

interval in K𝑝 when the previous one ends, and end it at some

later time 𝑡 as soon as some interval 𝑅
𝑝
𝑡 ends and is completely

contained within it. This gives an instance I of tiled interval cover

TiledIC, and we now show that we can solve I to get a solution for

SolveRext. As always, an integral solution 𝑥 to (R2) corresponds to

a set 𝐴★ of “stars” (𝑝, 𝑡), where 𝑥𝑝,𝑡 = 1 ⇐⇒ (𝑝, 𝑡) ∈ 𝐴★.

Lemma 4.1 (Forward Direction). If 𝐴★ satisfies (R2), there is a
solution for TiledIC of weight at most 2𝑤 (𝐴★).

Proof. We construct a solution S to I as follows: for every

(𝑝, 𝑡) ∈ 𝐴★, let 𝐾 ∈ K𝑝 be the interval containing time 𝑡 , and

𝐾 ′ ∈ K𝑝 be the interval to the right of 𝐾 . We add 𝐾 and 𝐾 ′ to S.
The weight guarantee for S follows easily.

To show that S is a feasible solution to I, fix a time 𝑡 ∈ T . Since
𝐴★ satisfies (R2), there is set 𝑃 of 𝑛 − 𝑘 pages such that for each

page 𝑝 ∈ 𝑃 , there is a a star (𝑝, 𝑡𝑝) ∈ 𝐴★ for some time 𝑡𝑝 ∈ 𝑅𝑝𝑡 . Fix
a page 𝑝 ∈ 𝑃 . Let 𝑎 be the left endpoint of 𝑅𝑝𝑡 (i.e., 𝑅

𝑝
𝑡 = [𝑎, 𝑡]). Let

𝐾𝑎 and 𝐾𝑡 be the intervals in K𝑝 containing 𝑎 and 𝑡 respectively.

We claim that there cannot be an interval in K𝑝 between 𝐾𝑎 and

𝐾𝑡 , else it would be completely within 𝑅
𝑝
𝑡 , and the 𝑅

𝑝

𝑡 ′ lying within

𝐾 would violating the not-strictly-nested property from Claim 11.

So 𝐾𝑎 ∪ 𝐾𝑡 covers all of the times in 𝑅
𝑝
𝑡 , and 𝑡𝑝 is in 𝐾𝑎 or 𝐾𝑡 . In

either of the two cases, we would have added 𝐾𝑡 into S. Thus, S
contains the interval in K𝑝 containing 𝑡 for all 𝑝 ∈ 𝑃 . This shows
that S is a feasible solution to I. □

Lemma 4.2 (Reverse Direction). Let S be a solution to the in-
stance I. Then there is a solution𝐴★ that satisfies the constraints (R1)
and has cost at most 2𝑤 (S).

Proof. We construct the solution 𝐴★ as follows: for each in-

terval 𝐾 = [𝑡1, 𝑡2] ∈ K𝑝 ∩ S, we add stars at (𝑝, 𝑡1), (𝑝, 𝑡2) to the

solution𝐴★. The weight guarantee on𝐴★ follows trivially. To show

feasibility, fix a time 𝑡 and let 𝑃 be the set of 𝑛−𝑘 pages 𝑝 for which

the solution S contains the interval 𝐾𝑝 ∈ K𝑝 that contains the time

𝑡 . Hence, for any collection C of 𝑘 + 1 intervals for distinct pages,
there must be at least one page 𝑝 in C ∩ S. We claim that the right

extension Rext(𝐼 , 𝑡) of the corresponding interval is hit by some

star in 𝐴★.

Indeed, suppose the interval 𝐾𝑝 ∈ K𝑝 ∩ S containing 𝑡 is 𝐾𝑝 =

[𝑡1, 𝑡2]. For a contradiction assume that 𝑅
𝑝
𝑡 := Rext(𝐼 , 𝑡) starts to the

right of 𝑡1 and ends before 𝑡2. In our construction ofK𝑝 , the interval

𝐾𝑝 was formed by some 𝑅
𝑝
𝑡2
ending at 𝑡2. But since our procedure

picks a maximal set in increasing order of end-times, we would

have picked 𝑅
𝑝
𝑡 instead, which gives the desired contradiction. □

Combining these with an total-unimodularity-based algorithm

for solving the interval-cover problem (whose details appear in the

full version of the paper), we infer that we can solve (IP-R) in the

offline setting losing a factor of 4.

For the online setting, the solution from Lemma 4.2 is not satis-

factory. Picking the start and end of the intervals chosen by the

interval cover procedure (which it itself being run online) causes

two problems: (i) At time 𝑡 , we add an element (𝑝, 𝑎) to our solu-

tion, where 𝑎 lies in the past (with respect to 𝑡). This violates the

past-preserving property required in §3. Thankfully, Lemma 4.2

continues to hold if we add (𝑝, 𝑡) to 𝐴★ instead of adding (𝑝, 𝑎);
this change also makes it past-preserving. (ii) The online algorithm

does not know the right end-point 𝑏 of 𝐾 at time 𝑡 , and hence

cannot add the star in the future
1
. However, we just carry along

this “to-be-added” star, and put it down when we see the end of

the interval 𝐾 ∈ K𝑝 . We have at most one such star for each page

𝑝 ; moreover, all intervals containing the current time 𝑡 are already

hit by elements added at times ≤ 𝑡 , or by this to-be-added element.

This satisfies the sparsity property of §3. To summarize:

1
The constraints in (IP-R) at time 𝑡 involve variables in the past only, but those in (R1)

involve future as well. So we need to keep track of stars which are going to put in the

future at time 𝑡 .

1134

Caching with Time Windows STOC ’20, June 22–26, 2020, Chicago, IL, USA

Lemma 4.3. There is an online 𝑂 (log𝑘)-competitive algorithm to
solve (IP-R) that satisfies the monotonicity, past-preserving, and spar-
sity properties required in §3. Moreover, there is an offline algorithm
to solve (IP-R) that is a 4-approximation.

4.2 Solving for the Double Extension
Constraints

As in the previous section §4.1, define 𝐼
𝑝
𝑡 to be the request interval

for page 𝑝 that ends no later than time 𝑡 , and which has the largest

starting time. Similarly, define 𝐷
𝑝
𝑡 := Dext(𝐼𝑝𝑡 , 𝑡) to be the double-

extension, and write the smaller set of constraints:

min

𝑥 ∈{0,1}𝑛𝑇

∑
𝑝,𝑡

𝑤𝑝 𝑥𝑝,𝑡 (IP-D)∑
𝑝 :𝑝≠𝑝𝑡

min

(
1,

∑
𝑡 ′∈𝐷𝑝

𝑡

𝑥𝑝,𝑡 ′
)
≥ 𝑛 − 𝑘 ∀𝑡 ∈ T . (D2)

For ease of notation, we refer to the above IP as SolveDext. Again,
we have chosen one double-extended interval for each page and

time, and only written the constraints for them. Moreover, we

have combined the exponentially-many constraints into one, to

reduce the integrality gap. Since there are fewer constraints, any

𝑥 satisfying constraints (D1) also satisfies (D2). Finally, observe

that we allow specifying some set T of times for which we want a

solution: for now, we think of T = [𝑇], but this generality will be

useful.

Unlike Claim 11, it is possible that an interval𝐷
𝑝
𝑡 strictly contains

another interval 𝐷
𝑝

𝑡 ′ for some page 𝑝 . The non-nesting property

of 𝑅
𝑝
𝑡 intervals (for a given page 𝑝) was crucial in the proof of

Lemma 4.1. Therefore, our solution for (IP-D) is presented in two

parts. Two intervals are non-nested if neither of them (strictly)

contains the other. In a “globally non-nested” case of SolveDext,
denoted by NonNestDext, the subset T has the property that for

every two times 𝑡1, 𝑡2 ∈ T , the corresponding critical intervals 𝐼𝑡1
and 𝐼𝑡2 are non-nested.

2
Wefirst solve globally non-nested instances

in Section 4.2.1 and then extend this solution to the general case in

Section 4.2.2.

4.2.1 Solving Globally Non-Nested Cases of SolveDext. We now

consider an instance of NonNestDext, where the set of times is

given by T – recall that the intervals 𝐼𝑡 , 𝑡 ∈ T , are non-nested. As
alluded above, we begin by showing that the intervals 𝐷

𝑝
𝑡 for any

fixed page are also non-nested.

Claim 12. Consider times 𝑡, 𝑡 ′ ∈ T and a page 𝑝 such that 𝑝 ∉

{𝑝𝑡 , 𝑝𝑡 ′}. The doubly-extended intervals Dext(𝐼𝑝𝑡 , 𝑡) and Dext(𝐼
𝑝

𝑡 ′, 𝑡
′)

are non-nested.

Proof. Suppose 𝑡 < 𝑡 ′, and 𝐷𝑝

𝑡 ′ strictly contains 𝐷
𝑝
𝑡 . Hence

𝐷
𝑝

𝑡 ′ starts strictly before 𝐷
𝑝
𝑡 . Since 𝐼

𝑝
𝑡 ends before 𝑡 ′, the starting

time of 𝐼
𝑝

𝑡 ′ is at least that of 𝐼
𝑝
𝑡 . Moreover, 𝐼𝑡 and 𝐼𝑡 ′ are themselves

non-nested by assumption, so 𝑒 (𝐼𝑡 ′) > 𝑒 (𝐼𝑡) =⇒ 𝑠 (𝐼𝑡 ′) ≥ 𝑠 (𝐼𝑡)
(recall that 𝑠 (𝐼) and 𝑒 (𝐼) denote the starting and the ending time the

interval 𝐼 respectively). This would mean that 𝐷
𝑝

𝑡 ′ starts no earlier

than 𝐷
𝑝
𝑡 , a contradiction. □

2
We already assumed that any two intervals for the same page are non-nested, but

here we require this non-nestedness property over all request intervals regardless of
their associated pages.

We now reduce the instance NonNestDext to a tiled interval

cover problem with exclusions (TiledICEx) instance: this is like the
TiledIC, but for each time 𝑡 we cannot use the interval ending at

𝑡 in the cover (or more generally, at each time 𝑡 , we are given a

page 𝑝𝑡 , and we cannot use the intervals in I𝑝𝑡 for the coverage
requirement at time 𝑡). In the full version, we show that there is a

constant factor approximation algorithm and 𝑂 (log𝑘)-competitive

algorithm for NonNestDext.
The reduction to NonNestDext instance proceeds in analogous

manner as the reduction to SolveDext in the previous section §4.1.

For each page 𝑝 , we construct a maximal subcollection K of dis-

joint intervals for {𝐷𝑝
𝑡 }𝑡 ∈T in exactly the same manner as the

corresponding construction from 𝑅
𝑝
𝑡 in Section §4.1. Again define

K := ∪𝑝K𝑝 and the weights of all the intervals in K𝑝 is equal

to 𝑤 (𝑝). Define the 𝑅 at each time to be 𝑛 − 𝑘 . The proof of the
following lemma follows along the same lines as those of Lemmas

4.1 and 4.2.

Lemma 4.4. Given a NonNestDext instance I, let I ′ be the corre-
sponding TiledICEx instance I ′ constructed above:

(i) If a solution 𝐴★ satisfies (D2), there is a solution for I ′ of
weight at most 2𝑤 (𝐴★).

(ii) Let S be a solution to I ′. Then there is a solution 𝐴★ to I
satisfying the constraints in (D1) of cost at most 2𝑤 (S).

Moreover, both the above constructions can be done efficiently.

Lemma 4.4 along with the fact that we have a 2-approximation

for TiledICEx (which appears in the full version of the paper) implies

that there is a 12-approximation algorithm for NonNestDext.
As in Lemma 4.2, the reduction from the proof of Lemma 4.4(ii)

can be carried out in an online manner. At each time 𝑡 , the online

algorithm (for NonNestDext) may add some stars at time 𝑡 and

at some points of time 𝑡 ′ > 𝑡 . Since the set of constraints (D1)

corresponding to time 𝑡 involve variables at 𝑡 and earlier only, the

online algorithm need not remember at time 𝑡 the stars which will

appear in future – it can keep track of all the stars which have

been added at time 𝑡 , and any such star which corresponds to

time 𝑡 ′ > 𝑡 will only appear at time 𝑡 ′ in the algorithm. Thus, the

algorithm satisfies the property that at any time 𝑡 , it will only add

stars corresponding to time 𝑡 – we call such algorithms present
restricted; note that this is a stronger property that past preserving

or sparsity (as mentioned in §3. We get

Lemma 4.5. There is an online 𝑂 (log𝑘)-competitive present re-
stricted algorithm to NonNestDext. Moreover, there is an offline algo-
rithm 12-approximation algorithm for NonNestDext.

4.2.2 Algorithm for the General Case of SolveDext. We now con-

sider the general setting where the intervals 𝐼𝑡 can be nested. Let

I be a general instance of SolveDext, where we want to handle all

times T . We show how to extend a solution for a non-nested sub-

instance into one for the original instanceI, while losing a constant
factor in the cost. Let us give some useful notation. Given a set of

times T , a subset N is a non-nested net if (i) for times 𝑡1 ≠ 𝑡2 ∈ N ,

their critical intervals 𝐼𝑡1 , 𝐼𝑡2 are non-nested, and (ii) for every time

𝑡 ′ ∈ T \ N , there is a time 𝑡 ∈ N such that 𝐼𝑡 ′ contains 𝐼𝑡 .

Observe that a non-nested net of set of times T can be easily

constructed by a greedy algorithm which scans the times in T from

left to right, and adds a time 𝑡 to N whenever 𝐼𝑡 does not contain

1135

STOC ’20, June 22–26, 2020, Chicago, IL, USA Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

𝐼𝑡 ′ for any 𝑡
′ ∈ N . This procedure is also online – whenever we

see a time 𝑡 , we know whether it gets added to N or not. Given

a set T of times and a non-nested net N of T , we define a map

𝜑 : T \ N → N as follows – for a time 𝑡 ∈ T \ N , 𝜑 (𝑡) is the
right-most time 𝑡 ′ ∈ N such that 𝐼𝑡 contains 𝐼𝑡 ′ .

Claim 13 (Monotone Map). Let T be a set of times, N be a
non-nested net of T and 𝜑 be the associated map as above. Then for
any 𝑡 ′

1
, 𝑡 ′
2
∈ T \ N , 𝑡 ′

1
< 𝑡 ′

2
=⇒ 𝜑 (𝑡 ′

1
) ≤ 𝜑 (𝑡 ′

2
).

Proof. Suppose there are 𝑡 ′
1
< 𝑡 ′

2
∈ T \ N such that 𝜑 (𝑡 ′

1
) =

𝑡1 > 𝑡2 = 𝜑 (𝑡 ′
2
). Let 𝐼𝑡1 = [𝑠1, 𝑡1] and 𝐼𝑡2 = [𝑠2, 𝑡2]. Since these two

intervals are non-nested, it must be the case that 𝑠1 ≥ 𝑠2. But then
𝐼𝑡 ′
2

contains 𝐼𝑡1 as well and we would have set 𝜑 (𝑡 ′
2
) = 𝑡1. □

Given an integer solution 𝑥 for SolveDext, we identify it with

a set 𝐴★ of stars, where 𝐴★ := {(𝑝, 𝑡) | 𝑥𝑝,𝑡 = 1}. For a time

𝑡 and a set of elements 𝐴★, let 𝑃 (𝐴★, 𝑡) denote the set of pages

whose doubly-extended intervals 𝐷
𝑝
𝑡 are hit by 𝐴★. I.e., we can

rephrase constraint (D2) as wanting to find a set 𝐴★ such that

𝑃 (𝐴★, 𝑡)\{𝑝𝑡 } has at least𝑛−𝑘 pages. Themain technical ingredient

is the following extension result:

Theorem 4.6 (Extension Theorem). There is an algorithm that
takes a set T ′ of times, a non-nested net N ′ ⊆ T ′, the associated
monotone map 𝜑 , and a set 𝐴★, and outputs another set 𝐵★ ⊇ 𝐴★
such that

(i) 𝑃 (𝐵★, 𝑡) ⊇ 𝑃 (𝐴★, 𝜑 (𝑡)) for all 𝑡 ∈ T ′ \ N ′, and
(ii) 𝑤 (𝐵★) ≤ 3𝑤 (𝐴★).

This algorithm can be implemented in online manner as well. More
formally, assume there is a present preserving online algorithm which
generates the set 𝐴★𝑡 at time 𝑡 ∈ T . Then there is a present preserving
online algorithm which generates 𝐵★𝑡 at time 𝑡 ∈ T and satisfies
conditions (i) and (ii) above (with 𝐴★ and 𝐵★ replaced by 𝐴★𝑡 and 𝐵

★
𝑡

respectively).

We defer the proof to the full version, and instead explain how to

use the result in the off-line setting first. We invoke the extension

theorem twice. For the first invocation, we use Thereom 4.6 with

the entire set of times T , a netN and the associated monotone map

𝜑 , and with 𝐴★ being a solution of weight at most 12 opt(I) given
by Lemma 4.5 on the sub-instance N . This outputs a set 𝐵★ with

𝑤 (𝐵★) ≤ 36 opt(I). Moreover, since𝐴★ is feasible forN ′, it follows
from the first property of Theorem 4.6 that |𝑃 (𝐵★, 𝑡) \ {𝑝𝑡 }| ≥
|𝑃 (𝐴★, 𝜑 (𝑡)) | − 1 ≥ 𝑛 − 𝑘 − 1 for every time 𝑡 ∈ T \ T ′.

For the second invocation, let T1 ⊆ T \N be the subset of times

𝑡 such that |𝑃 (𝐵★, 𝑡) \ {𝑝𝑡 }| = 𝑛 − 𝑘 − 1, i.e., those with unsatisfied

demand. We use Theorem 4.6 again, this time with T1, a net N1

and the associated monotone map 𝜑1, and a solution 𝐴★
1
obtained

by using Lemma 4.5 on the sub-instance N1. This gives us 𝐵★
1

with weight at most 36 opt(I). We output 𝐵★ ∪ 𝐵★
1
as our solution.

Somewhat surprisingly, this set 𝐵★
1
gives us the extra coverage we

want, as we show next.

Lemma 4.7 (Feasibility). For any time 𝑡 , |𝑃 (𝐵★∪𝐵★
1
, 𝑡) | \{𝑝𝑡 }| ≥

𝑛 − 𝑘 .

Proof. We only need to worry about times T1 \ N1. Consider

such a time 𝑡1. Let 𝑡2 := 𝜑1 (𝑡1) and 𝑡3 := 𝜑 (𝑡2). For sake of brevity,
let 𝑝𝑖 denote 𝑝𝑡𝑖 , and 𝐼𝑖 denote 𝐼𝑡𝑖 . Note that 𝐼3 ⊂ 𝐼2 ⊂ 𝐼1, and since

there are no nested intervals of the same page, also 𝑝1 ≠ 𝑝2 ≠ 𝑝3.

Recall: we want to show |𝑃 (𝐵★ ∪ 𝐵★
1
, 𝑡1) | \ {𝑝1}| ≥ 𝑛 − 𝑘 .

Note that 𝑃 (𝐵★, 𝑡2) contains 𝑃 (𝐴★, 𝑡3), and the latter has size at

least 𝑛 − 𝑘 by construction. Hence, for 𝑡2 to appear in T1, we must

have |𝑃 (𝐵★, 𝑡2) | = 𝑛−𝑘 and 𝑝2 ∈ 𝑃 (𝐵★, 𝑡2). SinceDext(𝐼𝑝2𝑡2 , 𝑡2) = 𝐼2,
the set 𝐵★ hits 𝐼2, and hence 𝐼1 as well: i.e., 𝑃 (𝐵★, 𝑡1) contains 𝑝2.

Since 𝑃 (𝐴★
1
, 𝑡2) \ {𝑝2} has size 𝑛−𝑘 (by construction of𝐴★

1
), and

𝑃 (𝐵★
1
, 𝑡1) contains 𝑃 (𝐴★

1
, 𝑡2), it follows that 𝑃 (𝐵★

1
, 𝑡1) \ {𝑝2} also

has size at least 𝑛 − 𝑘 . Therefore, 𝑃 (𝐵★ ∪ 𝐵★
1
, 𝑡1) has size at least

𝑛−𝑘 +1 because 𝑃 (𝐵★, 𝑡1) contains 𝑝2. This implies the lemma. □

Since𝑤 (𝐵★ ∪ 𝐵★
1
) ≤ 72opt(I), we get a 72-approximation algo-

rithm for SolveDext. It is easy to check that these arguments carry

over to the online case as well; we briefly describe the main steps.

The set N can be generated in an online manner using a greedy

algorithm (as mentioned in the beginning of this section). We in-

voke the online algorithm in Lemma 4.5 to get a present restricted

solution 𝐴★𝑡 for all 𝑡 ∈ N . Theorem 4.6 implies that the present

restricted solution 𝐵★𝑡 can be constructed at time 𝑡 . Given 𝐵★𝑡 , we

can tell whether a particular time 𝑡 qualifies for being in T1. The
same argument can now be repeated to show that we can maintain

(𝐵★
1
)𝑡 for all 𝑡 ∈ T1. Combining this with Lemma 4.5, we get

Lemma 4.8. There is an online 𝑂 (log𝑘)-competitive present re-
stricted algorithm to SolveDext. Moreover, there is an offline algorithm
72-approximation algorithm for SolveDext.

Corollary 4.9. There is a constant factor approximation algo-
rithm for (IP). Further, there is an𝑂 (log𝑘)-competitive online solution
which satisfies the past-preserving and sparsity property as in §3.

Proof. Let 𝐴★
1
and 𝐴★

2
be (offline) solutions for (R2) and (D2)

as guaranteed by Lemmas 4.3 and 4.8 respectively. Since 𝐴★
1
satis-

fies (R1) (Lemma 4.2), so does 𝐴★ := 𝐴★
1
∪ 𝐴★

2
. By definition, 𝐴★

2

satisfies the constraints (D2). Now consider a time 𝑡 , page 𝑝 ≠ 𝑝𝑡
and a request interval for 𝑝 which ends before 𝑡 . Then it is easy to

check that Dext(𝐼 , 𝑡) contains 𝐷𝑝
𝑡 . It follows that 𝐴

★
2
also satisfies

all the constraints in (D1). Thus, 𝐴★ is a feasible solution to (IP).

The online version follows analogously. Since 𝐴★
1
and 𝐴★

2
are

past preserving, so is 𝐴★. Also the sparsity of 𝐴★
1
and the fact that

𝐴★
2
does not add any star in the future implies that 𝐴★ also satisfies

the sparsity property. □

Corollary 4.9, along with Theorems 3.1 and B.1, implies Theo-

rems 1.1 and 1.2 respectively. The integrality gap of (IP) is constant

for the following reason – the integrality gap of the LP relaxations

for SolveDext and NonNestDext are 𝑂 (1), and the reductions in

Lemmas 4.1, 4.2, and 4.4 also hold between the fractional solutions

to the corresponding problems.

ACKNOWLEDGMENTS
We thank Ravishankar Krishnaswamy for valuable discussions

about this problem; many of the ideas here arose in discussions

with him. This research was done under the auspices of the Indo-

US Virtual Networked Joint Center IUSSTF/JC-017/2017. AG was

supported in part by NSF award CCF-1907820. DP was supported

in part by NSF award CCF-1535972, and an NSF CAREER award

CCF-1750140.

1136

Caching with Time Windows STOC ’20, June 22–26, 2020, Chicago, IL, USA

APPENDIX
A SOME ILLUSTRATIVE EXAMPLES
A.1 Evictions at Endpoints are Insufficient
It is easy to check that we cannot hope to service every interval

𝐼 at either 𝑠 (𝐼) or 𝑡 (𝐼), which we can do for the unweighted case.

Indeed, consider the following input: suppose 𝑘 = 1 and there is a

very heavy page which is requested at each time, and so we need

to have it in the cache at every time. Now there are 𝑛 unit weight

pages, but there request intervals are [0, 𝑛], [1, 𝑛 + 1], [2, 𝑛 + 2],
The optimal solution is to service all these requests at time 𝑛,

because then we will evict the heavy page only once. Thus, our

algorithm needs to use these windows of opportunity to service as

many cheap requests as possible.

A.2 An Integrality Gap for the Interval Hitting
LP

We now consider a natural LP relaxation for PageTWwhich extends

that for weighed caching, and show that it has large integrality

gap. We have variables 𝑥𝑝,𝐽 for pages 𝑝 and intervals 𝐽 ⊆ [𝑇],
indicating that 𝐽 is maximal interval during which the page 𝑝 is

in the cache for the entire interval 𝐽 . Recall that we are allowed

to service many requests at each timestep, so each timestep may

have up to 𝑛 loads and 𝑛 evictions. To handle this situation, we

“expand” the timeline so that all such “instantaneous” services can

be thought of as loading each page in the cache for a tiny amount

of time, and then evicting it. This will ensure that we can write a

packing constraint in the LP relaxation which says that no more

than 𝑘 pages are in the cache at any particular time.

Let 𝑁 be a large enough integer (𝑁 ≥ 𝑛, where 𝑛 is the number

of distinct pages will suffice). We assume that all 𝑠 (𝐼), 𝑡 (𝐼) values for
any request interval 𝐼 are multiples of 𝑁 (this can be easily achieved

by rescaling). Let 𝐸 denote the set of end-points of the request

intervals (so each element in 𝐸 is a multiple of𝑁). As above, we have

variables 𝑥𝑝,𝐽 , where the end-points of 𝐽 are integers (which need
not be multiples of 𝑁). The idea is that between two consecutive

intervals of 𝐸, we can pack 𝑁 distinct unit size intervals, each of

which may correspond to loading and then evicting a distinct page.

We can now write the LP relaxation:

min

∑
𝑝,𝐽

𝑤 (𝑝)·𝑥𝑝,𝐽∑
𝐽 :𝐽∩𝐼≠∅

𝑥𝑝,𝐽 ≥ 1 ∀ request intervals 𝐼 with 𝑝 = page(𝐼)

(1)∑
𝑝

∑
𝐽 :𝑡 ∈𝐽

𝑥𝑝,𝐽 ≤ 𝑘 ∀ integer times 𝑡 (2)

𝑥𝑝,𝐽 ≥ 0

Theorem A.1. The above LP has an integrality gap of Ω(𝑘).

Proof. We show the integrality gap example, the proof that it

has the desired properties is deferred to the full version. Suppose

we have 𝑘 “heavy” pages with weight 𝑘 each, and 1 “light” page

with weight 1. The request intervals for each of the pages are

𝐸0, 𝐸1, . . . , 𝐸𝑇 , where 𝐸𝑖 = [𝑖𝑘𝑁, (𝑖+1)𝑘𝑁], and𝑁 and𝑇 are suitable

large parameters (𝑇, 𝑁 > 𝑘3 will suffice).

We first argue that any integral solution must have Ω(𝑇) cost.
To see this, consider the request intervals 𝐸0, 𝐸4, 𝐸8, . . . for the light

page 𝑝 . The page 𝑝 must be brought at least once during each of

these intervals – say at timeslots 𝑡0, 𝑡4, 𝑡8, . . ., where 𝑡4𝑖 ∈ 𝐸4𝑖 for
all 𝑖 . Notice that 𝐸4𝑖+2 lies strictly between 𝑡4𝑖 and 𝑡4𝑖+4, and hence

each of the heavy pages must be present at least once during 𝐸4𝑖+2.
Since there can be at most 𝑘 − 1 heavy pages in the cache at time

𝑡4𝑖 , it follows that at least one heavy page must be brought into the

cache during [𝑡4𝑖 , 𝑡4𝑖+4]. This argument shows that the cost of any

integral solution must be Ω(𝑇𝑘). □

B OFFLINE ALGORITHM FOR PAGETW
In Section 3, we gave an online algorithm for PageTW using an

online solution to (IP). We shall now prove the following offline

version of Theorem 3.1.

Theorem B.1. There is a polynomial time algorithm that converts
an 𝛼-approximate integral solution to (IP) into a solution for the
PageTW instance and has approximation ratio of 𝑂 (𝛼) .

In the offline setting, we can assume that a request interval for

a page 𝑝 does not contain another interval for the same page –

otherwise we can always remove the outer interval. Let 𝐴★ be an

integral solution to (IP), and we want to convert it to a feasible solu-

tion to the underlying PageTW instance. As discussed in Section 3,

this will be done by adding a reverse delete step to Algorithm 1

(which considered the special case when all the request intervals

for a particular page were mutually disjoint).

The algorithm is shown in Algorithm 3. The first part of the

algorithm until line 17 is same as in Algorithm 1. However, we

cannot pay for all the evictions in line 12. Therefore, we remove
some of these evictions in lines 18–23. We describe the details of

this process now. We use Sat to denote the set of requests serviced

during line 12. Let Sat𝑝 be the requests in Sat that correspond to

𝑝 (and 𝑇𝑝 be the time at which they are served), and Sat′𝑝 be a

maximal collection of disjoint intervals in Sat𝑝 . Since each of the

intervals in Sat′𝑝 is hit by a distinct element of 𝐴★, we can pay for

the service of Sat′𝑝 . We define 𝑇 ′𝑝 to be the time instances in 𝑇𝑝
which are closest on each side to the end-points of the intervals

in Sat′𝑝 , and hence |𝑇 ′𝑝 | ≤ 4|Sat′𝑝 |. It is not difficult to show that

each interval in Sat𝑝 has non-empty intersection with 𝑇 ′𝑝 , and so it

suffices to service 𝑝 only during the times in 𝑇 ′𝑝 . This is why the

algorithm is correct, and services all requests; we prove these facts

formally below.

For the analysis, we again give some supporting claims to show

that the algorithm is well-defined, and then bound the cost. The

proofs of Claim 2–3, and Lemma 3.2 remain unchanged. We restate

these here for sake of completeness.

Claim 14. Suppose a page 𝑝 is evicted from the cache at time 𝑡1
but is in the cache at the end of time 𝑡2 > 𝑡1. Then there must exist a
request interval 𝐼 for page 𝑝 with 𝑡1 < 𝑠 (𝐼) ≤ 𝑒 (𝐼) ≤ 𝑡2.

Claim 15. The set 𝑍★ defined in lines 6–9 is non-empty.

Lemma B.2. There exists a page 𝑝★ ∈ 𝑍★ such that

𝑤 (𝑈 ◦≤2𝑤 (𝑝★)) ≤ 2𝑤 (𝑍★≤2𝑤 (𝑝★)).

Lemma B.2 shows the existence of page 𝑝★ in line 14. The proof

of the following claim is same as that of Claim 4.

1137

STOC ’20, June 22–26, 2020, Chicago, IL, USA Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

Algorithm 3: ConvertOffline(IP solution 𝐴★)
1 foreach 𝑡 = 0, 1, . . . do
2 let 𝐼𝑡 be the interval with deadline 𝑡 , and let

𝑝𝑡 ← page(𝐼𝑡)
3 if cache 𝐶 (𝑡) full and 𝐼𝑡 not satisfied then
4 evict the least-weight page 𝑝min in 𝐶 (𝑡)
5 if 𝑤 (𝑝𝑡) ≤ 2𝑤 (𝑝min) then
6 𝑍★← ∅.

7 for every page 𝑝 in 𝐶 (𝑡) do
8 𝐼

𝑝
𝑡 ← the request interval 𝐼 with page(𝐼) = 𝑝
and largest ending time 𝑒 (𝐼) < 𝑡 .

9 if Dext(𝐼𝑝𝑡 , 𝑡) is hit by 𝐴★ then add 𝑝 to 𝑍★.

10 𝑈 ← unsatisfied request intervals active at time

𝑡 (one per page, page requests are disjoint).

11 𝑈 ◦ ← {𝐼 ∈ 𝑈 | ∃𝑡 ′ ∈ 𝐼 with (page(𝐼), 𝑡 ′) ∈ 𝐴★}
be intervals in𝑈 not hit by 𝐴★

12 serve and evict all requests in𝑈 \𝑈 ◦.
13 let𝑈 ◦≤𝑤 and 𝑍 ∗≤𝑤 denote pages in𝑈 ◦ and 𝑍★

respectively with weight at most𝑤 .

14 let 𝑝★ be a page in 𝑍★ such that

𝑤 (𝑈 ◦≤2𝑤 (𝑝★)) ≤ 2 ·𝑤 (𝑍★≤𝑤 (𝑝★)).
15 evict all pages in 𝑍★≤𝑤 (𝑝★) .

16 serve and evict all requests in𝑈 ◦≤2𝑤 (𝑝★) .

17 if 𝐼𝑡 not satisfied then bring page 𝑝𝑡 into cache.

18 Sat← set of requests serviced in line 12

19 for every page 𝑝 do
20 𝑇𝑝 ← set of times when request intervals in Sat for page

𝑝 are serviced (in line 12)

21 Sat′𝑝 ← maximal disjoint collection of request intervals

for page 𝑝 in Sat.
22 𝑇 ′𝑝 ← set of times in 𝑇𝑝 closest (on either side) to the

two end-points of intervals in Sat′𝑝
23 cancel all movements of 𝑝 into cache at times in 𝑇𝑝 \𝑇 ′𝑝

(during line 12).

Claim 16. Let 𝐼𝑡 be unsatisfied at time 𝑡 . If 𝑤 (𝑝𝑡) ≤ 2𝑤 (𝑝min),
then the page 𝑝𝑡 belongs to either 𝑈 \𝑈 ◦ in line 12 or to 𝑈 ◦≤2𝑤 (𝑝★)
in line 16, and is served and evicted. Else 𝑝𝑡 is served by line 17, and
remains in the cache.

The following result, whose proof is deferred to the full version,

shows that even after removing some of the services for a page 𝑝

in lines 20–23, the algorithm services all the requests in Sat𝑝 .

Claim 17. Every request interval in Sat𝑝 has non-empty intersec-
tion with 𝑇 ′𝑝 .

The above claim proves that the algorithm services all the request

intervals.

It remains to analyze the cost incurred by the algorithm. This

analysis is again very similar to that in Section 3.1.2. We defer the

details to the full version.

REFERENCES
[1] The Linux Kernel - Deadline Task Scheduling. https://www.kernel.org/doc/html/

latest/scheduler/sched-deadline.html.

[2] I. Ashlagi, Y. Azar, M. Charikar, A. Chiplunkar, O. Geri, H. Kaplan, R. M.Makhijani,

Y. Wang, and R. Wattenhofer. Min-cost bipartite perfect matching with delays.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA,
pages 1:1–1:20, 2017.

[3] Y. Azar, A. Chiplunkar, and H. Kaplan. Polylogarithmic bounds on the com-

petitiveness of min-cost perfect matching with delays. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1051–1061, 2017.

[4] Y. Azar, A. Ganesh, R. Ge, and D. Panigrahi. Online service with delay. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 551–563, 2017.

[5] Y. Azar and N. Touitou. General framework for metric optimization problems

with delay or with deadlines. CoRR, abs/1904.07131, 2019.
[6] N. Bansal, N. Buchbinder, and J. Naor. A primal-dual randomized algorithm for

weighted paging. J. ACM, 59(4):19:1–19:24, 2012.

[7] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach

to approximating resource allocation and scheduling. J. ACM, 48(5):1069–1090,

2001.

[8] L. A. Belady. A study of replacement algorithms for virtual-storage computer.

IBM Systems Journal, 5(2):78–101, 1966.
[9] M. Bienkowski, M. Böhm, J. Byrka, M. Chrobak, C. Dürr, L. Folwarczný, L. Jez,

J. Sgall, N. K. Thang, and P. Veselý. Online algorithms for multi-level aggregation.

In 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark, pages 12:1–12:17, 2016.

[10] N. Buchbinder, M. Feldman, J. S. Naor, and O. Talmon. O(depth)-competitive

algorithm for online multi-level aggregation. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 1235–1244, 2017.

[11] N. Buchbinder, T. Kimbrel, R. Levi, K. Makarychev, and M. Sviridenko. Online

make-to-order joint replenishment model: Primal-dual competitive algorithms.

Operations Research, 61(4):1014–1029, 2013.
[12] M. Chrobak, H. J. Karloff, T. H. Payne, and S. Vishwanathan. New results on

server problems. SIAM J. Discrete Math., 4(2):172–181, 1991.
[13] M. Claeys, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck, S. Latré, and F. De

Turck. An announcement-based caching approach for video-on-demand stream-

ing. In 2015 11th International Conference on Network and Service Management
(CNSM), pages 310–317, Nov 2015.

[14] E. Cohen and H. Kaplan. Lp-based analysis of greedy-dual-size. In Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January
1999, Baltimore, Maryland, USA., pages 879–880, 1999.

[15] K. De Schepper, B. De Vleeschauwer, C. Hawinkel, W. Van Leekwijck, J. Famaey,

W. Van de Meerssche, and F. De Turck. Shared content addressing protocol (scap):

Optimizing multimedia content distribution at the transport layer. In 2012 IEEE
Network Operations and Management Symposium, pages 302–310, April 2012.

[16] Y. Emek, S. Kutten, and R. Wattenhofer. Online matching: haste makes waste! In

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 333–344, 2016.

[17] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.

Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.
[18] A. R. Karlin, C. Kenyon, and D. Randall. Dynamic TCP acknowledgment and

other stories about e/(e-1). Algorithmica, 36(3):209–224, 2003.
[19] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging

rules. Commun. ACM, 28(2):202–208, 1985.

[20] N. E. Young. On-line caching as cache size varies. In Proceedings of the Second
Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 28-30 January
1991, San Francisco, California, USA., pages 241–250, 1991.

1138

https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html
https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html

	Abstract
	1 Introduction
	1.1 Our Techniques
	1.2 Related Work

	2 Problem Definition and IP Relaxation
	3 Solving <PageTW> Online using Online Solution to (IP)
	3.1 The Online Algorithm for Non-Overlapping Requests
	3.2 Online Algorithm for the General Setting

	4 Solving the Integer Program
	4.1 Solving for the Right Extensions Constraints
	4.2 Solving for the Double Extension Constraints

	A Some Illustrative Examples
	A.1 Evictions at Endpoints are Insufficient
	A.2 An Integrality Gap for the Interval Hitting LP

	B Offline Algorithm for <PageTW>
	References

