next up previous
Next: Computer Science Faculty Up: Guide to Degree Programs Previous: Ph.D. Program

Computer Science Course Descriptions

By University convention, the numbering of courses is grouped by hundreds according to level of difficulty:

0- 99:
Introductory undergraduate courses
Intermediate and advanced undergraduate courses. These courses may also be suitable for graduate students under certain circumstances; the Director of Graduate Studies (DGS) should be consulted.
Courses for graduate students and advanced undergraduate students. Most courses are open to juniors and seniors with adequate preparation.
Courses for graduate students

Within each hundred, the courses are numbered in order to reflect their particular subareas of computer science:

General, programming, and programming theory.
Architecture and modeling.
Foundations and complexity. (Exception: the designation Computer Science 49S is required by Trinity College and is used to specify the first year seminar course.)
Numerical analysis.
Computational science.
Artificial intelligence.
Reserved for future use.
Reading, research, and topics.

1. Computer Science Fundamentals. (QR) An overview for students not intending to major in computer science. Computer programming, numeric and symbolic computation, electric circuits, architectures, translation, time complexity, noncomputability and artificial intelligence. Not open to students having credit for Computer Science 6 or higher. One course. Biermann and staff

4. Introduction to Programming. (QR) A study of clear thinking and problem solving using the computer. Representation, problem decomposition and structured programming. Students learn a modern computer language and develop skills by solving a variety of symbolic and numerical problems. Not intended as an introduction to the major.

One course. Staff

6. Introduction to Program Design and Analysis I. (QR) Problem-solving techniques using a computer, top down decomposition and object-oriented solution methodologies, introduction to programming, programming in the C/C++ language, introduction to UNIX and programming environments, recursion, analysis of execution times, linked data structures, searching and sorting. Normally the first course for majors in Computer Science who have no programming experience.

One course. Astrachan, Ramm or Rodger

49. First-Year Seminar. Topics vary each semester offered. One course. Staff

100. Programming Design and Analysis II. (QR) A continuation of Computer Science 6 or 8. Overview of advanced data structures and analysis of algorithms, data abstraction and abstract data types, object-oriented programming, proofs of correctness, complexity, and computability.

Prerequisite: Computer Science 6. One course. Astrachan or Rodger

100E. Programming Design and Analysis II. (QR) Same as Computer Science 100, except designed for students with considerable programmig background who have not taken Computer Science 6. Overview of advanced data structures and analysis of algorithms, data abstraction and abstract data types, object-oriented programming, proofs of correctnesss, complexity, and computability. One course. Staff

104. Computer Organization and Programming. (QR) Computer structure, machine language, instruction execution, addressing techniques, and digital representation of data. Computer systems organization, logic design, microprogramming and interpreters. Symbolic coding and assembly systems. Prerequisite: Computer Science 100 or consent of instructor. One course. Ramm and staff

106. Programming Languages. (QR) Syntax and semantics of programming languages. Compilation, interpretation, and programming environments; including programming languages such as Algol, PL/1, Pascal, APL, LISP, and Prolog. Exercises in programming. Prerequisite: Computer Science 104. One course. Staff

108. Software Design and Implementation. (QR) Techniques for design and construction of reliable, maintainable and useful software systems. Programming paradigms and tools for medium to large projects: revision control, UNIX tools, performance analysis, GUI, software engineering, testing, documentation. Prerequisite: Computer Science 100. One course. Astrachan

109. Program Design and Construction. (QR) Substantial programs. Design specifications, choice of data structures, estimation of programming effort, stepwise development and program-testing methodology. Programming teams and human factors in system implementation. Advanced topics in use of a procedural language and file management.

Prerequisite: Computer Science 104. One course. Staff

110. Introduction to Operating Systems. (QR) Basic concepts and principles of multi-programmed operating systems. Processes, interprocess communication, CPU scheduling, mutual exclusion, deadlocks, memory management, I/O devices, file systems, protection mechanisms.

Prerequisites: Computer Science 100 and 104. One course. Staff

120L. Introduction to Switching Theory and Logic Design. (QR) See C-L: Electrical Engineering 151L. One course. Marinos

130. Introduction to the Design and Analysis of Algorithms. (QR) Design and analysis of efficient algorithms for sorting, searching, dynamic programming, graph algorithms, fast multiplication and others; nondeterministic algorithms and computationally hard problems.

Prerequisites: Computer Science 100 or equivalent and three semesters of college mathematics. One course. Staff

140. Mathematical Foundations of Computer Science. (QR) An introduction to theoretical computer science including studies of abstract machines, the language hierarchy from regular sets to recursively enumerable sets, non-computability and the complexity theory.

Prerequisites: Computer Science 100 and Mathematics 103. One course. Loveland or Rodger

148. Logic and Its Applications. (QR) Prerequisite: a course in logic or consent of instructor. See C-L: Mathematics 188; also C-L: Philosophy 150. One course. Staff

149S. Problem Solving Seminar. (QR)

Techniques for attacking, solving, and writing computer programs for challenging computational problems. Algorithmic and programming language tool kits. Course may be repeated. Consent of instructor required. Half course. Staff

150. Introduction to Numerical Methods and Analysis. (QR) Theory, algorithms, and software that concern numerical solution of linear equations, approximation and interpolation of functions, numerical solution of nonlinear equations, and numerical solution of ordinary differential equations. Prerequisites: Computer Science 6; Mathematics 31; 32; 104 or 111.

One course. Staff

170. Methodologies in Artificial Intelligence. (QR) Theories of representation and search in artificial intelligence. Logic, semantic networks, production rules, frames, distributed models, and procedural representations; algorithmic and heuristic search.

One course. Biermann or Loveland

191, 192. Independent Study. Directed reading and research for qualified juniors. Consent of instructor and Director of Undergraduate Studies required. One course each. Staff

193, 194. Independent Study. Directed readings and research for qualified seniors. Consent of instructor and Director of Undergarduate Studies required. One course each. Staff

195. Computer Science Internship. Open to computer science majors engaging in industrial work experience only. A faculty member will supervise a program of study related to the work experience, including a substantive paper containing significant analysis and interpretation on a computer science-related topic. Consent of director of internship programs required. Prerequisites: Computer Science 104 and 108. One course. Staff

196. Topics in Computer Science. (QR) Topics from various areas of computer science, changing each year. Prerequisites: Computer Science 100 or equivalent. One course. Staff

206. Programming Languages. (QR) Information binding, data structures and storage, control structures, recursion, execution environments, input/output; syntax and semantics of languages; study of PL/1, Fortran, Algol, APL, LISP, SNOBOL, and SIMULA; exercises in programming.

Prerequisite: Computer Science 100. c Wagner

208. Programming Methodology. (QR) Practical and theoretical topics including structured programming, specification and documentation of programs, debugging and testing strategies, choice and effective use of programming languages and systems, psychology of computer programming, proof of correctness of programs, analysis of algorithms, and properties of program schemata.

Prerequisite: Computer Science 100. c Staff

210. Operating Systems. (QR) Fundamental principles of operating system design applied to state-of-the-art computing environments (multiprocessors and distributed systems) including process management (coscheduling and load balancing), shared memory management (data migration and consistency), and distributed file systems.

c Chase or Ellis

212. Distributed Information Systems. (QR) Principles and techniques for sharing information reliably and efficiently in computer networks, ranging from high-speed clusters to global-scale networks (for example, the Internet). Topics include advanced distributed file systems, distributed programming environments, replication, caching and consistency, transactional concurrency control, reliable update and recovery, and issues of scale and security for Internet information services. Prerequisites: Computer Science 210, or Computer Science 110 and 214, or consent of instructor. c Chase

214. Computer Networks and Distributed Systems. (QR) Basic systems support for process-to-process communications across a computer network. The TCP/IP protocol suite and the Berkeley sockets application programs interface. Development of network application programs based on the client-server model. Remote procedure call and implementation of remote procedure call.

Prerequisite: knowledge of the C programming language. c Staff

216. Data Base Methodology. (QR) Basic concepts and principles. Relational, hierarchical, and network approaches to data organization; data entry and query language support for database systems; theories of data organization; security and privacy issues. Not open to student who have taken Computer Science 241.

Prerequisites: Computer Science 104 and either 109 or equivalent. c Staff

218. Compiler Construction. (QR) Models and techniques used in the design and implementation of assemblers, interpreters, and compilers. Lexical analysis, compilation of arithmetic expressions and simple statements, specifications of syntax, algorithms for syntactic analysis, code generation, and optimization techniques.

c Wagner

220. Advanced Computer Architecture I. (QR) Fundamental aspects of advanced computer architecture design and analysis, with consideration of interaction with compilers, operating systems, and application programs. Topics include processor design, pipelining, caches (memory hierarchies), virtual memory, and advanced storage systems, and simulation techniques. Advanced topics include a survey of parallel architectures and future directions in computer architecture. Prerequisite: Computer Science 104 or equivalent. c Kedem, Lebeck, or Wagner

221. Advanced Computer Architecture II. (QR) Fundamental aspects of parallel computer architecture design and analysis, including hardware/software tradeoffs, interactions with compilers, operating systems, run-time libraries, and parallel applications. Topics include parallel programming, message passing, shared memory, cache coherence, cache consistency, bus-based shared memory, distributed shared memory, interconnection networks, synchronization, on-chip parallelism. Prerequisite: Computer Science 220 or equivalent. c Lebeck

222. Introduction to VLSI Systems. A first course in VLSI design with CMOS technologies. A study of devices, circuits, fabrication technology, logic design techniques, subsystem design and system architecture. Modeling of circuits and subsystems. Testing of gates, subsystems and chips, and design for testability. The fundamentals of full-custom design, and some semi-custom design.

Prerequisites: Electrical Engineering 151 or equivalent; Electrical Engineering 161 or equivalent. c Staff

223. Application Specific VLSI Design. (QR) Introductory VLSI design course. Modern design methods and technology for implementing applications specific integrated circuits (ASICs). Semicustom design methodology, semicustom VLSI technologies such as gate arrays, standard cell and FPGAs; the use of ASIC Computer Aided Design (CAD) tools. Mapping algorithms into high performance silicon implementation. Prerequisite: course in logic design. c Kedem

225. Fault-Tolerant and Testable Computer Systems. Not open to students who have taken Computer Science 207. Prerequisite: Electrical Engineering 151L or equivalent. See C-L: Electrical Engineering 254. c Marinos

226. Mathematical Methods for Systems Analysis I. (QR) Basic concepts and techniques used in the stochastic modeling of systems. Elements of probability, statistics, queuing theory, and simulation. Prerequisites: four semesters of college mathematics. C-L: Electrical and Computer Engineering 255. c Trivedi

230. Design and Analysis of Algorithms. (QR) Design and analysis of efficient algorithms. Algorithmic paradigms. Applications include sorting, searching, dynamic structures, graph algorithms, randomized algorithms. Computationally hard problems. NP completeness.

Prerequisite: Computer Science 100 or equivalent. c Agarwal or Reif

232. Mathematical Analysis of Algorithms. (QR) Techniques for efficient implementation and precise analysis of computer algorithms. Combinatorial mathematics and elementary probability. Emphasis on obtaining exact closed-form expressions describing the worst-case and average-case time and space requirements for particular computer algorithms, whenever possible. Asymptotic methods of analysis for obtaining approximate expressions in situations where exact expressions are too difficult to obtain or to interpret.

Prerequisites: Mathematics 103 and 104 or equivalents. c Vitter

234. Computational Geometry. (QR) Models of computation and lower-bound techniques; storing and manipulating orthogonal objects; orthogonal and simplex range searching, convex hulls, planar point location, proximity problems, arrangements, linear programming and parametric search technique, probabilistic and incremental algorithms.

Prerequisite: Computer Science 230 or equivalent. c Agarwal or Reif

235. Topics in Data Compression. (QR) Emphasis on the redundancies found in textual, still-frame images, video, and voice data, and how they can be effectively removed to achieve compression. The compression effects in information processing. Additional topics may include information theory, the vulnerability of compressed data to transmission errors, and the loss of information with respect to the human visual system (for image data). Available compression technologies and the existing compression standards. Prerequisites: Computer Science 130 and 208 or Computer Science 254 or Electrical Engineering 282. c Markas or staff

236. Parallel Algorithms. (QR) Models of parallel computation including parallel random access machines, circuits, and networks; NC algorithms and P-completeness; graph algorithms, sorting algorithms, network routing, tree contraction, string matching, parsing algorithms; randomization and derandomization techniques.

Prerequisite: Computer Science 230 or equivalent. c Reif

240. Computational Complexity. (QR) Turing machines, undecidability, recursive function theory, complexity measures, reduction and completeness, NP, NP-Completeness, co-NP, beyond NP, relativized complexity, circuit complexity, alternation, polynomial time hierarchy, parallel and randomized computation, algebraic methods in complexity theory, communication complexity.

Prerequisite: CPS 140 or equivalent. c Agarwal

250. Numerical Analysis. (QR) Error analysis, interpolation and spline approximation, numerical differentiation and integration, solutions of linear systems, nonlinear equations, and ordinary differential equations.

Prerequisites: knowledge of an algorithmic programming language, intermediate calculus including some differential equations, and Mathematics 104. C-L: Mathematics 221 and Statistics 273. c Rose or Sun

252. Numerical Methods for Partial Differential Equations. (QR) Survey of theory, algorithms, and codes for the numerical solution of nonlinear partial differential equations of initial value and boundary value type. Topics include finite-difference, spectral, and finite-element representations; stability of time-discretization techniques; adaptive spatial meshes; multigrid and preconditioned conjugate gradient techniques; solution on parallel computers. Prerequisite: Computer Science 250. C-L Mathematics 222. c Rose or Sun

254. Numerical Linear Algebra. (QR) Solution of large, sparse linear systems of equations. Storage schemes, graph theory for sparse matrices, different orderings to minimize fill, block factorizations, iterative methods, analysis of different splittings, conjugate gradient methods. Eigenvalue problems, QR factorization, Lanczos method, power method and inverse iteration, Rayleigh quotient.

Prerequisite: Computer Science 250 or equivalent. C-L: Mathematics 223. c Rose or Sun

260. Introduction to Computational Science. Introduction for students and faculty to computing resources that facilitate research involving scientific computing: contemporary computers, programming languages, numerical software packages, visualization tools, and some basic issues and methods for high performance algorithm design.

Prerequisites: Programming experience in Fortran or C, calculus, numerical linear algebra or equivalent. c Greenside, Rose, or Sun

264. Nonlinear Dynamics. (QR) Introduction to the mathematical theory of nonlinear dynamics, and how this theory compares with physical experiments, with applications to biology (Turing states and morphogenesis), computer science (randomness and computability), mathematics (chaos and strange attractors), and physics (pattern formation and transition to turbulence).

Prerequisites: Computer Science 6, Mathematics 111, and Physics 51L, 52L. C-L: Physics 213. c Behringer or Greenside

266. Communication, Computation, and Memory in Biological Systems. (QR) Communication and memory in biological systems: voltage sensitive ion channels, hormone-receptor interactions, and initiation and control of Rna/DNA synthesis. Models of signaling and memory are developed and related to electronic signaling schemes. Prerequisites: Computer Science 100, two semesters of college chemistry, and four semesters of college mathematics. c Starmer

270. Artificial Intelligence. (QR) Heuristic versus algorithmic methods; programming of games such as chess; theorem proving and its relation to correctness of programs; readings in simulation of cognitive processes, problem solving, semantic memory, analogy, adaptive learning.

Prerequisite: Computer Science 100 or consent of instructor. c Biermann or Loveland

271. Numeric Artificial Intelligence. (QR) Introduction to the core areas of artificial intelligence from a quantitative perspective. Topics include planning in deterministic and stochastic domains; reasoning under uncertainty, optimal decision making; computer speech, computer vision, and robotics; machine learning, supervised and reinforcement learning; natural language processing; agents. Minimal overlap with Computer Science 270. Prerequisite: Computer Science 100 or consent of instructor. c Littman

274S. Computational Linguistics Seminar. (QR) Readings and research seminar on topics related to the processing of English or other natural languages: syntax, semantics, pragmatics, discourse, and others.

Prerequisite: Computer Science 270 or consent of the instructor. c Biermann

300. Computer Science Research Seminar. The course is designed to orient first-year graduate students and provide an in-depth look at the research projects going on in the department. The course also emphasizes the necessary skills for research investigation and presentation in computer science. In particular, instruction is given in how to formulate research problems or projects, identify goals, and present results. (Concentration on the problem-solving aspect of research is the focus of the research project or thesis during the following semester.) Students will make and critique technical presentations, both oral and written.

3 units. Staff

312. Operating Systems Theory. Advanced study of theoretical aspects of operating systems emphasizing models and control of concurrent processes, processor scheduling, and memory management.

Prerequisites: Computer Science 226 and 210. 3 units. Chase, Ellis or Wagner

320. Advanced Topics in Digital Systems. A selection of advanced topics from the areas of digital computer architectures and fault-tolerant computer design.

See C-L: Electrical and Computer Engineering 352. 3 units. Marinos

322. CMOS VLSI Design. A second course in VLSI, aimed at the design of VLSI systems in CMOS. The main thrusts of the course will be (1) to provide enough background in the theory of CMOS circuits to understand circuit level trade-offs; (2) to introduce a symbolic design system and its supporting software, which greatly aid the design process; and (3) to examine sample chip designs with an eye to understanding competitive design methodologies. Students will complete a CMOS-oriented project comprising the design and implementation of either a hardware or a software subsystem.

Prerequisite: Computer Science 222 or equivalent. C-L: Electrical and Computer Engineering 361. 3 units. Kedem

326. Systems Modeling. Advanced study of analytical models of systems; queuing model and its parameterization and validation. Methods for computer solutions of some models. Prerequisites: Computer Science 226 and 210. 3 units. Trivedi

327. Seminar in Computer Systems Analysis. Topics in computer systems analysis, especially for fault-tolerant systems, including reliability, availability and performance analysis, comparative analysis of architectures, performability, analytic and numerical solution techniques, stochastic Petri nets, simulation. 1 to 3 units. Staff

337. VLSI Algorithms. Algorithmic and systems aspects of VLSI. Topics include theoretical studies of the layout problem, array logic, placement and routing, fault-tolerance in VLSI designs, design for testability, the design of networks of processors, and cost trade-offs in VLSI designs. Each student will complete an in-depth study of a topic approved by the instructor.

Prerequisites: Computer Science 230 and either 222 or 322. 3 units. Staff

350. Topics in Numerical Mathematics. Advanced topics in numerical mathematics to be selected from areas of current research. Prerequisites: Computer Science 250 and 252. 3 units. Greenside, Rose, or Sun

364. Advanced Topics in Nonlinear and Complex Systems. Survey of current research topics that may include: advanced signal analysis (wavelets, Karhunen-Loeve decomposition, multifractals), bifurcation theory (amplitude and phase equations, symmetry breaking), spatiotemporal chaos, granular flows, broken ergodicity, complexity theory of dynamical systems, and adaptive systems (genetic algorithms, neural networks, artificial life). Quantitative comparisons between theory, simulations, and experiments will be emphasized.

Prerequisite: Computer Science/Physics 264 required; Physics 230, 231, and 303 or equivalents are strongly recommended as further background. C-L: Physics 313. 3 units. Behringer, Greenside, or Palmer

370. Seminar in Artificial Intelligence. Topics in artificial intelligence, such as natural language understanding, learning, theorem proving and problem solving, search methodologies. Topics will vary from semester to semester. Includes research literature reading with student presentation. 1 to 3 units. Staff

376. Advanced Topics in Artificial Intelligence. Course content will vary from year to year and will include a detailed study of one or more of the following: mechanical theorem proving, natural language processing, automatic program synthesis, machine learning and inference, representations of knowledge, language for artificial intelligence research, artificial sensorimotor systems, and others.

Prerequisite: Computer Science 270. 3 units. Biermann or Loveland

391. Internship. The student is required to gain practical computer science experience by taking a job in industry. The student writes a report about this experience. Requires prior consent from the student's advisor and from the Director of Graduate Studies. Pass/fail grading only. May be repeated with permission of the advisor and the Director of Graduate Studies. 1 unit. Staff

395. Research. Instruction in methods used in the investigation of original problems. Individual work and conferences. 1 to 6 units. All members of the graduate staff

Courses Currently Unscheduled

310. Topics in Operating Systems (formerly Computer Science 332).

340. Theory of Computation (formerly Computer Science 325).

Courses Offered at the University of North Carolina at Chapel Hill

Comp 145. Software Engineering Laboratory
Comp 171. Natural Language Processing
Comp 230. File Management Systems
Comp 236. Computer Graphics
Comp 238. Raster Graphics
Comp 254. Picture Processing and Pattern Recognition
Comp 265. Architecture of Computers

next up previous
Next: Computer Science Faculty Up: Guide to Degree Programs Previous: Ph.D. Program

Duke Department of Computer Science