CPS104
Computer Organization and Programming
Lecture 16: Memory Systems

Dietolf (Dee) Ramm
Oct 25, 1999
http://www.cs.duke.edu/~dr/cps104.html
Today’s Lecture

Outline

• Memory
• Review
• Big Picture of Memory
• Memory Technology
 – SRAM
 – DRAM

Reading

Chapter 7
• The Five Classic Components of a Computer

• Today’s Topic: Memory System
Where Are We?

You are here.

Software

Interface Between HW and SW

Hardware

Instruction Set Architecture, Memory, I/O
Review: Computer Memory

• Memory is a large linear array of bytes.
 – Each byte has a unique address (location).
 – Byte of data at address 0x100, and 0x101

• Most computers support byte (8-bit) addressing.

• Data may have to be aligned on word (4 byte) or double word (8 byte) boundary.
 – int is 4 bytes
 – double precision floating point is 8 bytes

• 32-bit v.s. 64-bit addresses
 – we will assume 32-bit for rest of course, unless otherwise stated
Our Naïve View of Memory

- **Instruction Address**
- **Ideal Instruction Memory**
- **Registers**
- **ALU**
- **Ideal Data Memory**

Memory

```
<table>
<thead>
<tr>
<th>Rd</th>
<th>Rs</th>
<th>Rt</th>
<th>Imm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>
```

- **Data Address**
- **Data Out**

PC

Data In

- **Clk**

32 32-bit Registers
Question

• What issues do we need to worry about in implementing the memory system?
The memory hierarchy

System Organization

Memory Bus

I/O Bridge

Core Chip Set

Memory

Processor

Cache

I/O Bus

Disk Controller

Graphics Controller

Network Interface

Disk

Graphics

Network
Processor and Caches

- Processor Module
 - Processor
 - Registers
 - Datapath
 - Internal Cache
 - Control
 - External Cache

To main memory
Why is it called DRAM?
Memory Technology

• Random Access:
 – “Random” is good: access time is the same for all locations
 – DRAM: Dynamic Random Access Memory
 » High density, low power, cheap, slow
 » Dynamic: needs to be “refreshed” regularly
 » Main memory
 – SRAM: Static Random Access Memory
 » Low density, high power, expensive, fast
 » Static: content will last “forever” (until lose power)
 » Caches

• “Not-so-random” or “Direct” Access Technology:
 – Access time varies from location to location and from time to time
 – Examples: Disk, CDROM

• Sequential Access Technology: access time linear in location (e.g., Tape)
Random Access Memory (RAM) Technology

• Why do computer professionals need to know about RAM technology?
 – Processor performance is usually limited by memory latency and bandwidth.
 – **Latency:** The time it takes to access a word in memory.
 – **Bandwidth:** The average speed of access to memory (Words/Sec).
 – As IC densities increase, lots of memory will fit on processor chip
 » Tailor on-chip memory to specific needs.
 - Instruction cache
 - Data cache
 - Write buffer

• What makes RAM different from a bunch of flip-flops?
 – **Density:** RAM is much more dense
 – **Speed:** RAM access is slower than flip-flop (register) access.
Technology Trends

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic:</td>
<td>2x in 3 years</td>
</tr>
<tr>
<td>DRAM:</td>
<td>4x in 3 years</td>
</tr>
<tr>
<td>Disk:</td>
<td>2x in 3 years</td>
</tr>
</tbody>
</table>

DRAM

<table>
<thead>
<tr>
<th>Year</th>
<th>Size</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>64 Kb</td>
<td>250 ns</td>
</tr>
<tr>
<td>1983</td>
<td>256 Kb</td>
<td>220 ns</td>
</tr>
<tr>
<td>1986</td>
<td>1 Mb</td>
<td>190 ns</td>
</tr>
<tr>
<td>1989</td>
<td>4 Mb</td>
<td>165 ns</td>
</tr>
<tr>
<td>1992</td>
<td>16 Mb</td>
<td>145 ns</td>
</tr>
<tr>
<td>1995</td>
<td>64 Mb</td>
<td>120 ns</td>
</tr>
</tbody>
</table>
Static RAM Cell

6-Transistor SRAM Cell

• **Write:**
 1. Drive bit lines (bit=1, bit=0)
 2. Select row

• **Read:**
 1. Precharge bit and bit to Vdd (set to 1)
 2. Select row
 3. Cell pulls one line low (pulls to 0)
 4. Sense amp on column detects difference between bit and bit
Typical SRAM Organization: 16-word x 4-bit
• Write Enable is usually active low (WE_L)
• Din and Dout are combined to save pins:
 – A new control signal, output enable (OE_L) is needed
 – WE_L is asserted (Low), OE_L is disasserted (High)
 » D serves as the data input pin
 – WE_L is disasserted (High), OE_L is asserted (Low)
 » D is the data output pin
 – Both WE_L and OE_L are asserted:
 » Result is unknown. Don’t do that!!!
Typical SRAM Timing

Write Timing:

Read Timing:

Typical SRAM Timing

2^N words
x M bit
SRAM

Write Timing:

Read Timing:

Typical SRAM Timing

2^N words
x M bit
SRAM

Write Timing:

Read Timing:
1-Transistor Memory Cell (DRAM)

• **Write:**
 - 1. Drive bit line
 - 2. Select row

• **Read:**
 - 1. Precharge bit line to Vdd (1)
 - 2. Select row
 - 3. Cell and bit line share charges
 » Very small voltage changes on the bit line
 - 4. Sense (fancy sense amp)
 » Can detect changes of ~1 million electrons
 - 5. Write: restore the value

• **Refresh**
 - 1. Just do a dummy read to every cell.
Introduction to DRAM

- Dynamic RAM (DRAM):
 - Refresh required
 - Very high density
 - Low power (.1 - .5 W active, .25 - 10 mW standby)
 - Low cost per bit
 - Pin sensitive (few pins):
 » Output Enable (OE_L)
 » Write Enable (WE_L)
 » Row address strobe (ras)
 » Col address strobe (cas)
Classical DRAM Organization (square)

- Row and Column Address together:
 - Select 1 bit a time
Typical DRAM Organization

- Typical DRAMs: access multiple bits in parallel
 - Example: 2 Mb DRAM = 256K x 8 = 512 rows x 512 cols x 8 bits
 - Row and column addresses are applied to all 8 planes in parallel
• Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low

• Din and Dout are combined (D):
 – WE_L is asserted (Low), OE_L is disasserted (High)
 » D serves as the data input pin
 – WE_L is disasserted (High), OE_L is asserted (Low)
 » D is the data output pin

• Row and column addresses share the same pins (A)
 – RAS_L goes low: Pins A are latched in as row address
 – CAS_L goes low: Pins A are latched in as column address
 – RAS/CAS edge-sensitive
Every DRAM access begins at:

- The assertion of the RAS_L
- 2 ways to write: early or late v. CAS

Early Wr Cycle: WE_L asserted before CAS_L
Late Wr Cycle: WE_L asserted after CAS_L
Every DRAM access begins at:
- The assertion of the RAS_L
- 2 ways to read: early or late v. CAS

Early Read Cycle: OE_L asserted before CAS_L
Late Read Cycle: OE_L asserted after CAS_L
Increasing Bandwidth - Interleaving

Access Pattern without Interleaving:

- Start Access for D1
- D1 available
- Start Access for D2

Access Pattern with 4-way Interleaving:

- Access Bank 0
- Access Bank 1
- Access Bank 2
- Access Bank 3

We can Access Bank 0 again
SPARCstation 20’s Memory System Overview

Memory Bus (SIMM Bus) 128-bit wide datapath

Memory Controller

Processor Bus (Mbus) 64-bit wide

Memory Module 0
Memory Module 1
Memory Module 2
Memory Module 3
Memory Module 4
Memory Module 5
Memory Module 6
Memory Module 7

External Cache

SuperSPARC Processor

Instruction Cache

Data Cache

Register File
Fast Memory Systems: DRAM specific

- **Multiple RAS accesses: several names (page mode)**
 - 64 Mbit DRAM: cycle time = 100 ns, page mode = 20 ns

- **New DRAMs?**
 - *Synchronous DRAM*: Provide a clock signal to DRAM, transfer synchronous to system clock
 - *RAMBUS*: reinvent DRAM interface (*Intel will use it*)
 » Each Chip a module vs. slice of memory
 » Short bus between CPU and chips
 » Does own refresh
 » Variable amount of data returned
 » 1 byte / 2 ns (500 MB/s per chip)
 - *Cached DRAM (CDRAM)*: Keep entire row in SRAM, Gershon Kedem
Summary of Memory Technology

• **DRAM is slow but cheap and dense:**
 – Good choice for presenting the user with a BIG memory system
 – Uses one transistor, must be refreshed.

• **SRAM is fast but expensive and not very dense:**
 – Good choice for providing the user FAST access time.
 – Uses six transistors, holds state as long as power is supplied.

• **GOAL:**
 – Present the user with large amounts of memory using the cheapest technology.
 – Provide access at the speed offered by the fastest technology.

• **Next Time: Caches**