KEY-PROBLEMS AND KEY-METHODS IN

COMPUTATIONAL GEOMETRY

Herbert Edelsbrunner
Institutes for Information Processing
Technical University of Graz
Schießstattgasse 4a, A-8010 Graz, Austria.

ABSTRACT: Computational geometry, considered a subfield of computer science, is concerned with the computational aspects of geometric problems. The increasing activity in this rather young field made it split into several reasonably independent subareas. This paper presents several key-problems of the classical part of computational geometry which exhibit strong interrelations. A unified view of the problems is stressed, and the general ideas behind the methods that solve them are worked out.

INTRODUCTION

How can the field of computational geometry be defined and what are the characteristics of key-problems and key-methods in this area? Without attempting to answer these hardly defined questions, we believe that, from the present point of view, computational geometry can be described as the discipline that is concerned with the computational aspects of geometrical questions. So far, the overwhelming majority of problems dealt with in the field are low-dimensional, that is, defined in the plane or in three dimensions. We also believe, that key-problems and key-methods in the area are those that possess mathematical beauty and simplicity coupled with computational efficiency and broad influence.
Although few earlier publications exist, computational geometry was properly started by the doctoral thesis of Shamos [Sh]. He came up with the first and most influencing classification into problems around convex hulls, closest-point problems, and intersection problems. A period of flourishing activity on these issues, on rectangle problems, and on dynamization of data structures followed. Today, we are convinced to recognize three mainstreams, however classified according to a different type of criterion: (i) The investigation of underlying mathematical principles, (ii) considerable effort to work out implementation details which have been neglected in the early days, and (iii) a constant challenge of the field by renewing activity on the borderline between computational geometry and more practical areas of computer science such as pattern recognition, cluster analysis, computer graphics, linear programming, robotics, VLSI design, database theory, computer-aided design, and others.

The primary goal of this paper is to present a small collection of problems and methods of computational geometry that are considered central by the author. Part I exhibits problems that are related to each other in various ways. We believe that these relationships allow for a reasonably consistent treatment. Part II discusses the general methods that are exploited to efficiently solve the problems of Part I. Finally, conclusions are offered.

1. The post-office

Let S be a set of points that minimizes in S is called the nearest neighbour set. Following kind of point q, determine if q has a unique nearest neighbour.

This problem is:
After being mentioned, geometry, that is, O(\log n) defines a subdivision of S. A point location, preprocessing ti

2. (Order-1) Voronoi

For any two points of points at least, S is called the half-planes, V(s)
1. The post-office problem.

Let S be a set of n points (or sites) in the Euclidean plane \mathbb{E}^2. A site s that minimizes the distance to a query point q not necessarily in S is called the nearest neighbour of q. The post-office (or nearest neighbour) problem requires storing S such that queries of the following kind can be answered with little effort: Given a query point q, determine a nearest neighbour of q. In non-degenerate cases, q has a unique nearest neighbour. In Figure 1, the site b is the nearest neighbour of q.

This problem is motivated from database theory and cluster analysis. After being mentioned in [Kn] it became heavily examined in computational geometry. The first solution that answers a query in optimal, that is, $O(\log n)$ time was suggested in [ShH]: For each site s compute the locus of points q such that s is a nearest neighbour of q. This defines a subdivision of \mathbb{E}^2, namely the so-called (order-1) Voronoi diagram of S. A query can now be answered by locating a query point, that is, by determining the region of the subdivision that contains it. Anticipating results on constructing Voronoi diagrams and on point location, this leads to a solution with $O(n)$ space, $O(n \log n)$ preprocessing time, and $O(\log n)$ query time.

2. (Order-1) Voronoi diagrams.

For any two points s and t of S, let $H(s,t)$ be the closed halfspace of points at least as close to s as to t. $V(s) = \{q | q \in H(s,t), t \neq s \in S \}$ is called the Voronoi polygon of s. Being the intersection of $n-1$ halfplanes, $V(s)$ is a convex polygon with at most $n-1$ edges. The

![Figure 1: Order-1 Voronoi diagram.](image-url)
totality of Voronoi polygons for all sites in S makes up the (order-1) Voronoi diagram $1-$VOD(S) of S. Recall the equivalence of this definition to the one given in Section 1. 1-VOD(S) consists of regions, edges, and vertices (see Figure 1). Following from Euler's theorem on plane graphs, 1-VOD(S) has at most $3n-6$ edges and $2n-4$ vertices, for $n \geq 3$.

(Order-1) Voronoi diagrams are known in mathematics since $[V]$. Optimal algorithms for construction are given in $[ShH]$ and $[Br]$. Borrowing from $[Br]$ and $[EOS]$, we propose the construction via the following geometric transform: Embed E^2 in the xy-plane of E^3 and associate each site $s=(s_x,s_y)$ with the halfspace $h(s): z \geq 2s_x x + 2s_y y - (s_x^2 + s_y^2)$. (The plane bounding $h(s)$ is tangent to the paraboloid $P: z=x^2+y^2$ and touches P at the vertical projection of s onto P.) 1-VOD(S) can now be obtained by vertical projection of $\bigcap_{s\in S} h(s)$ onto the xy-plane.

3. Point location search.

Let G be a subdivision induced by a plane graph with m edges. G consists of regions, edges, and vertices. The point location search problem requires storing G in a data structure that supports efficient answering of the following kind of queries: For a query point q find the region (or edge or vertex) of G that contains q. An obvious application of such a data structure is to solve the post-office problem using the Voronoi diagram of the sites. Few of the numerous other applications can be found in $[K]$ and $[EGS]$.

The first optimal solution (that requires $O(m)$ space and $O(\log m)$ query time) unfortunately without any practical significance was published in $[LT]$. Simpler yet optimal data structures well attractive for practical use were later suggested in $[K]$ and $[EGS]$. Lack of space prevents us from describing the latter two substantially different approaches.

4. Higher-order Voronoi diagrams

Such as the search, there are the regions $H(t,s)$, $t \in [0,1]$, of non-empty the order-k Voronoi diagram the regions $\bigcap_{s \in S} H(t,s)$. The nearest neighbour search for the ordered Voronoi diagram V_S can be performed using the Voronoi diagram of the sites. Few of the numerous other applications can be found in $[K]$ and $[EGS]$.

To the best of our knowledge, the method derived in Section 2, i.e., $P(s_x^2+s_y^2)$, is the only way to find the nearest neighbour in $[K]$ and $[EGS]$. Lack of space prevents us from describing the latter two substantially different approaches.

5. Convex hull

For S a set

Such as the order-1 Voronoi diagram serves for nearest neighbour search, there is a generalization of the diagram to solve k-nearest neighbour search for fixed positive integer k: For a query point q report the k sites closest to q. For \(T \subseteq S \), we call \(V(T) = \{ q | q \in H(t,s), t \in T \text{ and } s \in S-T \} \) the Voronoi polygon of \(T \). The totality of non-empty Voronoi polygons of subsets \(T \) of \(S \) with \(|T| = k \) is called the order-\(k \) Voronoi diagram k-VOD(S) of \(S \). Figure 2 shows the order-3 Voronoi diagram for the point-set of Figure 1. Where space permits the regions are labelled with the three nearest sites. The three nearest neighbours of the query point q as depicted are a, b, and c.

![Figure 2: Order-3 Voronoi diagram.](image)

To the best knowledge of the author, order-\(k \) Voronoi diagrams are invented by [ShH]. [L] shows that k-VOD(S) consists of \(O(k(n-k)) \) regions, edges, and vertices, and also gives an \(O(k^2 n \log n) \) time algorithm to construct it. A different and intuitively more appealing method derives from using the geometric transform also outlined in Section 2: For each site \(s = (s_x, s_y) \), the plane \(p(s) \): \(z = 2s_x x + 2s_y y - (s_x^2 + s_y^2) \) touches the paraboloid \(p(z) = x^2 + y^2 \) in the vertical projection of \(s \) onto \(F \). For each edge \(e \) in the arrangement \(A \) of planes obtained, we let \(a(e) \) denote the number of planes strictly above \(e \). The vertical projection onto the xy-plane of the skeleton of edges \(e \) with \(a(e) = k-1 \) yields the order-\(k \) Voronoi diagram ([EOS]).

5. Convex hulls.

For \(S \) a set of \(n \) points in \(\mathbb{E}^d \), the smallest convex body that con-
tains S is called the **convex hull** $\text{CH}(S)$ of S ([G]). In \mathbb{E}^2, $\text{CH}(S)$ is a bounded and convex polygon with at most n edges, in \mathbb{E}^3 it is a convex polytope with at most n vertices, $3n-6$ edges, and $2n-4$ faces, for $n \geq 3$. Several worst-case optimal (that is $O(n \log n)$ time) algorithms are known in \mathbb{E}^2 ([Gr], [PH], and others), while the divide-and-conquer approach described in [PH] yields the only $O(n \log n)$ time method in \mathbb{E}^3. On a rather coarse level, it reads as follows:

Algorithm CH(S)

1. **If** $|S|=1$ **then** $\text{CH}(S)=p$ with $S=\{p\}$
2. **else**
 - **DIVIDE:** Let S_L contain the $n/2$ leftmost points of S and let $S_R=S-S_L$.
 - **RECURSION:** Compute $\text{CH}(S_L)$ and $\text{CH}(S_R)$.
 - **MERGE:** Derive $\text{CH}(S)$ from $\text{CH}(S_L)$ and $\text{CH}(S_R)$ by "wrapping paper" around both polytopes.

Besides being an interesting problem for itself, constructing convex hulls can be exploited to compute intersections of halfspaces as e.g. required in Section 2 to build order-1 Voronoi diagrams: Each halfspace $h:ax+by+c$ is transformed into the dual vertical ray $r(h)$ extending downwards from the point $\text{top}(h)=(a/2,b/2,-c)$. Computing the lower half of the convex hull of all points $\text{top}(h)$ is equivalent to constructing the forbidden space FS for the planes that intersect all rays $r(h)$. Since these planes correspond to the points in the intersection of the halfspaces h, FS is dual to the required intersection of halfspaces. As a consequence, the $O(n \log n)$ time algorithm for convex hulls implies an $O(n \log n)$ time algorithm for FS and for order-1 Voronoi diagrams. Figure 3 illustrates the dual transform and the correspondence between FS and the intersection of halfplanes in \mathbb{E}^2.

![Figure 3: Lower convex hull and intersection of halfplanes in \mathbb{E}^2.](image)

6. **Linear prc**

The linear prc constraints in \mathbb{E} linear target considered to For our pre bounded below the y-coordina

If $|H|=n$

else

Although line

dualizing two following pro
vertical line
it such that lower edge of these observa constructing t

7. **Arrangement**

If H denotes complex $A(H)$ combinatorial number of k-dime
Thus, $\Omega(n^d)$ i
that is, of pointers to
6. Linear programming.

The linear programming problem involves a set \(H \) of \(n \) linear constraints in \(\mathbb{R}^d \) and asks for finding the point \(m \) that maximizes a linear target function while satisfying all constraints in \(H \). If \(d \) is considered to be a constant then \(O(n) \) time algorithms exist ([M]). For our presentation, we assume that \(d = 2 \), all halfplanes in \(H \) are bounded below by a non-vertical line, and \(m \) is required to minimize the \(y \)-coordinate. Then the strategy of [M] is roughly as follows:

- If \(|H| < 3 \) then use a trivial algorithm.
- Else organize the halfplanes in pairs, and find the median \(x \)-coordinate \(x^* \) of the thus defined \(n/2 \) apices.
- Examining the slope of \(f(x) = \min \{ |y| \mid (x, y) \text{ in } h, h \in H \} \) at \(x^* \) allows us to decide whether \(m \) is to the left of, on, or to the right of \(x = x^* \). Based on this decision, \(m = (x^*, f(x^*)) \) or \(n/4 \) of the halfplanes of \(H \) can be eliminated. In the latter case, the process is repeated recursively.

Although linear time is needed to carry out one level of the recursion, the geometric regression of \(|H| \) guarantees \(O(n) \) overall runtime.

Dualizing two-dimensional linear programming allows us to solve the following problem in \(O(n) \) time: For a set \(S \) of points in \(\mathbb{R}^2 \) and a vertical line \(v \), find the line \(l \) that has all points of \(S \) above or on it such that \(lv \) has maximal \(y \)-coordinate. Obviously \(l \) defines the lower edge of \(\text{CH}(S) \) that intersects \(v \) (see Figure 3). Building on these observations, [KS] developed an \(O(n \log n) \) time algorithm for constructing \(\text{CH}(S) \) if \(V \) is the number of its vertices.

7. Arrangements of hyperplanes.

If \(H \) denotes a set of \(n \) hyperplanes in \(\mathbb{R}^d \), then we call the cell complex \(A(H) \) induced by \(H \) the arrangement of \(H \). Classical results in combinatorial geometry (see [G]) give exact upper bounds on the number of \(k \)-dimensional faces of \(A(H) \), for \(0 \leq k \leq d \), which are in \(\Theta(n^d) \). Thus, \(\Omega(n^d) \) is a lower bound for the explicit construction of \(A(H) \), that is, of the incidence lattice that provides each \(k \)-face with pointers to the incident \((k-1)\)-faces and \((k+1)\)-faces. This lower
bound matches the upper bound $O(n^d)$ which is achieved in [EOS] following an incremental strategy to build $A(H)$, $H=\{h_1, h_2, \ldots, h_n\}$:

For $i=1$ to n do
construct $A(\{h_1, \ldots, h_i\})$ by inserting h_i into $A(\{h_1, \ldots, h_{i-1}\})$.

To insert a hyperplane h into an arrangement A of i hyperplanes needs only to check and update those faces of A that are incident with a face intersecting h. Figure 4 depicts an arrangement in E^2 with the solid edges to be checked at the insertion of a new line h shown as broken line.

![Figure 4: Two-dimensional arrangement.](image)

As the number of such faces is in $O(i^{d-1})$ ([EOS]), h can be inserted in $O(i^{d-1})$ time implying the $O(n^d)$ time bound for the sketched construction of $A(H)$.

Arrangements in E^3 can be used to construct order-1 and higher-order Voronoi diagrams, convex hulls in E^3 (which is, however, quite a detour), and other structures. It also proves useful as a thinking paradigm for problems on finite sets of points.

8. Halfplanar range search.

Given a set S of n points in E^2, a halfplanar range query specifies a halfplane h and asks for the number $N(h)$ of points of S in h. The halfplanar range search problem requires storing S in a data structure that supports halfplanar range queries. The most efficient $O(n)$ space solution (given in [EW]) builds on the following geometric fact:

Let b
$2\sigma^2/\epsilon$
(below)
bisect

Recursively divide a query halfplane by two crossed lines.

$O(n)=O(n/2)+O(n/2)=O(n)$

The connection provided by the running.

Several rather problems present these paradigms that ideas that to computational method, and sections.

9. Locus app

The locus app of constant ϵ the answer is the geometric principle is and k-nearest
Let \(b \) be a bisecting line of \(S \), that is, \(2|S^+| \leq |S| \) and \(2|S^-| \leq |S| \), for \(S^+ \) (\(S^- \)) the set of points strictly above (below) \(b \). Then there exists a conjugate line \(c \), that is, \(c \) bisects \(S^+ \) and \(S^- \).

Recursively dividing two sets separated by a line using a conjugate line defines a tree that stores \(S \) in \(O(n) \) space. Since the boundary of a query halfplane intersects at most three of four sectors defined by two crossing lines, the query time in this tree is governed by \(Q(n) = Q(n/2) + Q(n/4) + O(1) = O(n^{0.695}) \) (see [EW]).

The connection of this data structure to the material in Section 7 is provided by the requirement to find conjugate lines. By duality, conjugate lines that contain at least two points correspond to particular vertices in the two-dimensional arrangement dual to \(S \). At the time, the most efficient strategy to find conjugate lines is given in [CSY] running in \(O(n \log^2 n) \) time.

II. KEY-METHODS

Several rather general ideas and methods are used to solve the problems presented in Part I. It is the goal of this part to explicate these paradigms in a reasonably general way. The first two paradigms (locus approach and geometric transformation) are rather general ideas that turn out to be useful in approaching a large number of computational problems. Different in nature and closer to actually writing programs are the divide-and-conquer paradigm, the elimination method, and the incremental approach treated in the final three sections.

9. Locus approach.

The locus approach is the idea of subdividing some space into domains of constant answer ([02]). A necessary assumption is therefore that the answer depends on a point in the same space; in other cases a geometric transform might be used to obtain this situation. This principle is responsible for the close relationship between nearest and \(k \)-nearest neighbour search and Voronoi diagrams (see Sections 1,}

The natural text representation is as follows:

Let \(b \) be a bisecting line of \(S \), that is, \(2|S^+| \leq |S| \) and \(2|S^-| \leq |S| \), for \(S^+ \) (\(S^- \)) the set of points strictly above (below) \(b \). Then there exists a conjugate line \(c \), that is, \(c \) bisects \(S^+ \) and \(S^- \).

Recursively dividing two sets separated by a line using a conjugate line defines a tree that stores \(S \) in \(O(n) \) space. Since the boundary of a query halfplane intersects at most three of four sectors defined by two crossing lines, the query time in this tree is governed by \(Q(n) = Q(n/2) + Q(n/4) + O(1) = O(n^{0.695}) \) (see [EW]).

The connection of this data structure to the material in Section 7 is provided by the requirement to find conjugate lines. By duality, conjugate lines that contain at least two points correspond to particular vertices in the two-dimensional arrangement dual to \(S \). At the time, the most efficient strategy to find conjugate lines is given in [CSY] running in \(O(n \log^2 n) \) time.

II. KEY-METHODS

Several rather general ideas and methods are used to solve the problems presented in Part I. It is the goal of this part to explicate these paradigms in a reasonably general way. The first two paradigms (locus approach and geometric transformation) are rather general ideas that turn out to be useful in approaching a large number of computational problems. Different in nature and closer to actually writing programs are the divide-and-conquer paradigm, the elimination method, and the incremental approach treated in the final three sections.

9. Locus approach.

The locus approach is the idea of subdividing some space into domains of constant answer ([02]). A necessary assumption is therefore that the answer depends on a point in the same space; in other cases a geometric transform might be used to obtain this situation. This principle is responsible for the close relationship between nearest and \(k \)-nearest neighbour search and Voronoi diagrams (see Sections 1,
2, and 4). The importance of the locus approach can also be recognized by its independent development in other areas: e.g. [LP] calls the same principle the configuration approach to motion and location planning. The significance of the locus approach implies the importance of the point location search problem (see Section 3), since locating a point is the obvious operation one needs to perform in a subdivided space.

10. Geometric transformation.

Geometric construction gains surprisingly often from transforming the problem into some space and problem different from the originally given ones. The advantages that a suitable geometric transformation can provide are:

1. additional insight into the problem which might be well-observed in the original setting, and

2. the possibility to use one program to solve several problems.

The transformations that turn out to be useful a good number of times are the dual transform and the inversion used to embed a d-dimensional problem in E^{d+1}. For both types of transformation, various different formulas exist that realize the desired properties. The motivation for using the particular dual mapping described in Sections 5 and 6 is based on its independence from the origin (as opposed to the classical formula [G]) and the fact that it is an involution (unlike the mapping most often used in computational geometry [Br]). Similar reasons lead is to use the particular embedding of two-dimensional problems in E^3 outlined in Sections 2, 4 and 7.

The divide-and-conquer paradigm is applicable to problems that are, in some little understood sense, decomposable. If the principle applies then it implies a fairly large part of the algorithm's structure. We provide a loose outline of this invariant structure. S denotes a set of data and c a positive constant which can often be chosen equal to one.

If $|S| < c$ then solve the problem using a trivial algorithm

else DIVIDE: Split S into two roughly equally large sets S_1 and S_2.

Section 5 provides the target for key-step in efficiency in this to be extremely overall efficiency.

12. Elimination

Equally concrete method to redundant. An d is even, [S: gd ([BOS]), Le structure to the following stra.
RECURSION: Solve the problem recursively for S_1 and S_2.
MERGE: Combine the solutions for S_1 and S_2 to compute the solution for S.

Section 5 provides an example of this classical paradigm ([AHU]).

12. Elimination.

Equally concrete as the divide-and-conquer paradigm is the elimination method that implies the following kind of algorithm:

\[
\text{If } |S| \leq c \text{ then solve the problem using a trivial algorithm} \\
\text{else ELIMINATE: Find a constant proportion of } S \text{ that is irrelevant and eliminate it.} \\
\text{RECURSION: Solve the problem recursively for the reduced set } S.
\]

This method is applicable to problems whose solution is determined by at most c of the data-items, the other items being irrelevant or redundant. An example is provided in Section 6 where redundant or for the target function not significant constraints are eliminated. The key-step in the algorithm is the elimination part. To achieve efficiency in this step, computing some kind of a median [AHU] turns out to be extremely useful. The geometric regression of $|S|$ implies overall efficiency.

13. Incremental approach.

Geometric properties of certain problems favour a rather straightforward method called the incremental approach. Recently, it was shown to lead to optimal algorithms for constructing convex hulls in E^d (if d is even, $[S]$) and for constructing arrangements of hyperplanes in E^d ([EOS]). Let $S=\{d_1, \ldots, d_n\}$ be a set of data and let $C(S)$ denote the structure to be constructed. The incremental approach suggests the following strategy:

\[
\text{For } i=1 \text{ to } n \text{ do} \\
\text{construct } C(\{d_1, \ldots, d_i\}) \text{ by inserting } d_i \text{ into} \\
C(\{d_1, \ldots, d_{i-1}\}).
\]
So the insertion of an item into an already existing structure is the crucial step which determines the efficiency of the algorithm. An example for this approach is given in Section 7.

DISCUSSION

Eight interrelated central problems from computational geometry are discussed, and the general ideas that lead to efficient solutions for these problems are explicated. By no means we claim any exhaustive treatment of computational geometry. In fact, large classes of problems like rectangle problems [E] or hidden line problems [Sch], and several design techniques like the plane-sweep technique [NP] or dynamization methods for static data structures [O1], are not mentioned. Our primary goal thus remains to offer an introduction to an appealing part of where geometry and algorithms meet.

REFERENCES

[Gr] Graham, R.L. An efficient algorithm for determining the
structure is the algorithm. An

geometry are solutions for

exhaustive

probs-

[Sch] and

ique [NP] or are not men-

duction to an

