Factoring Supersparse (Lacunary) Polynomials

Erich Kaltofen
North Carolina State University

googles-kaltofen

Joint work with Pascal Koiran
ENS Lyon, France
Supersparse (lacunary) polynomials

The supersparse polynomial

\[f(X_1, \ldots, X_n) = \sum_{i=1}^{t} c_i X_1^{\alpha_{i,1}} \cdots X_n^{\alpha_{i,n}} \]

is input by a list of its coefficients and corresponding term degree vectors.

\[\text{size}(f) = \sum_{i=1}^{t} \left(\text{dense-size}(c_i) + \lceil \log_2(\alpha_{i,1} \cdots \alpha_{i,n} + 2) \rceil \right) \]

Term degrees can be very high, e.g., \(\geq 2^{500} \)
Supersparse (lacunary) polynomials

The supersparse polynomial

\[f(X_1, \ldots, X_n) = \sum_{i=1}^{t} c_i X_1^{\alpha_{i,1}} \cdots X_n^{\alpha_{i,n}} \]

is input by a list of its coefficients and corresponding term degree vectors.

\[\text{size}(f) = \sum_{i=1}^{t} \left(\text{dense-size}(c_i) + \lceil \log_2 (\alpha_{i,1} \cdots \alpha_{i,n} + 2) \rceil \right) \]

Term degrees can be very high, e.g., \(\geq 2^{500} \)

Over \(\mathbb{Z}_p \): evaluate by repeated squaring
Over \(\mathbb{Q} \): cannot evaluate in polynomial-time except for \(X_i = 0, e^{2\pi i/k} \)
Easy problems for supersparse polynomials $f = \sum_i c_i X^{\alpha_i} \in \mathbb{Z}[z]$

Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}$: $f(a) = 0$.

Gap idea: if $f(a) = 0, a \neq \pm 1$ then $g_1(a) = \cdots = g_s(a) = 0$
where $f(X) = \sum_j g_j(X)X^{\alpha_j}$ and $\alpha_{j+1} - \alpha_j - \deg(g_j) \geq \chi$.
Easy problems for supersparse polynomials \(f = \sum_i c_i X^{\alpha_i} \in \mathbb{Z}[z] \)

Cucker, Koiran, Smale 1998: Compute root \(a \in \mathbb{Z}: \ f(a) = 0 \).

Gap idea: if \(f(a) = 0, a \neq \pm 1 \) then \(g_1(a) = \cdots = g_s(a) = 0 \)
where \(f(X) = \sum_j g_j(X)X^{\alpha_j} \) and \(\alpha_{j+1} - \alpha_j - \deg(g_j) \geq \chi \).

Write \(f(X) = g(X) + X^u h(X), \ |f|_1 = |c_1| + \cdots + |c_t| \).
\(\deg(g) \leq k \)

For \(a \neq \pm 1, h(a) \neq 0: \ |g(a)| < \|f\|_1 \cdot |a|^k \)
\(|a^u h(a)| \geq |a|^u \)
Easy problems for supersparse polynomials \(f = \sum c_i X^{\alpha_i} \in \mathbb{Z}[z] \)

Cucker, Koiran, Smale 1998: Compute root \(a \in \mathbb{Z} : f(a) = 0 \).

Gap idea: if \(f(a) = 0, a \neq \pm 1 \) then \(g_1(a) = \cdots = g_s(a) = 0 \)
where \(f(X) = \sum_j g_j(X)X^{\alpha_j} \) and \(\alpha_{j+1} - \alpha_j - \deg(g_j) \geq \chi \).

Write \(f(X) = g(X) + X^u h(X), \quad \|f\|_1 = |c_1| + \cdots + |c_t| \).

\[\deg(g) \leq k \]

For \(a \neq \pm 1, h(a) \neq 0 \):
\[|g(a)| < \|f\|_1 \cdot |a|^k \]
\[|a^u h(a)| \geq |a|^u \]

\[u - k \geq \chi = \log_2 \|f\|_1 \implies |a|^u \geq 2^\chi \cdot |a|^k \geq \|f\|_1 \cdot |a|^k \implies f(a) \neq 0. \]
Polynomial time root-finder uses the fact that for
\[g_j(X) = c_1 + c_2 x^{\beta_2} + \cdots + c_s x^{\beta_s}, \quad \beta_i - \beta_{i-1} < \chi, \quad s \leq t \]
we have
\[\beta_i \leq (i - 1)(\chi - 1), \]
so
\[\deg(g_j) \leq (t - 1)(\chi - 1) \]
Easy problems for supersparse polynomials $f = \sum_i c_i X^{\alpha_i} \in K[X]$

H. W. Lenstra, Jr. 1999:

Input: $\phi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $K = \mathbb{Q}[\zeta]/(\phi(\zeta))$

a supersparse $f(X) = \sum_{i=1}^t c_i X^{\alpha_i} \in K[X]$

a factor degree bound d

Output: a list of all irreducible factors of f over K of degree $\leq d$

and their multiplicities (which is $\leq t$ except for X)

Let $D = d \cdot \deg(\phi)$

There are at most $O(t^2 \cdot 2^D \cdot D \cdot \log(Dt))$ factors of degree $\leq d$

Bit complexity is $\left(\text{size}(f) + D + \log \|\phi\| \right)^O(1)$

Special case $\phi = \zeta - 1, d = D = 1$: Algorithm finds all rational roots in polynomial-time.
Our ISSAC ’06 result for supersparse polynomials

\[f = \sum_i c_i X^{\alpha_i} \in K[\bar{X}] \] where \(X^{\alpha_i} = X_1^{\alpha_{i,1}} \cdots X_n^{\alpha_{i,n}} \)

Input: \(\varphi(\zeta) \in \mathbb{Z}[\zeta] \) monic irred.; let \(K = \mathbb{Q}[\zeta]/(\varphi(\zeta)) \)
a supersparse \(f(\bar{X}) = \sum_{i=1}^{t} c_i X^{\alpha_i} \in K[\bar{X}] \)
a factor degree bound \(d \)

Output: a list of all irreducible factors of \(f \) over \(K \) of degree \(\leq d \) and their multiplicities (which is \(\leq t \) except for any \(X_j \))

Bit complexity is:

\[
\left(\text{size}(f) + d + \deg(\varphi) + \log \| \varphi \| \right) O(n) \quad \text{(sparse factors)}
\]

\[
\left(\text{size}(f) + d + \deg(\varphi) + \log \| \varphi \| \right) O(1) \quad \text{(blackbox factors)}
\]
Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparse \(f(X, Y) = \sum_{i=1}^{l'} c_i X^{\alpha_i} Y^{\beta_i} \in \mathbb{Z}[X, Y] \) that is monic in \(X \); an error probability \(\varepsilon = 1/2^l \)

Output: a list of polynomials \(g_j(X, Y) \) with \(\deg_X(g_j) \leq 2 \) and \(\deg_Y(g_j) \leq 2 \); a list of corresponding multiplicities.

The \(g_j \) are with probability \(\geq 1 - \varepsilon \) all irreducible factors of \(f \) over \(\mathbb{Q} \) of degree \(\leq 2 \) together with their true multiplicities.

Bit complexity: \((\text{size}(f) + \log 1/\varepsilon)^O(1) \)
Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparse \(f(X, Y) = \sum_{i=1}^{l'} c_i X^{\alpha_i} Y^{\beta_i} \in \mathbb{Z}[X, Y] \) that is monic in \(X \);
an error probability \(\epsilon = 1/2^l \)

Output: a list of polynomials \(g_j(X, Y) \)
with \(\deg_X(g_j) \leq 2 \) and \(\deg_Y(g_j) \leq 2 \);
a list of corresponding multiplicities.

The \(g_j \) are with probability \(\geq 1 - \epsilon \) all irreducible factors of \(f \) over \(\mathbb{Q} \) of degree \(\leq 2 \) together with their true multiplicities.

Bit complexity: \((\text{size}(f) + \log 1/\epsilon)^{O(1)} \)

With É. Schost + [Tao 2005]: remove monicity restriction factors of degree \(O(1) \).
Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparse \(f(X, Y) = \sum_{i=1}^{l'} c_i X^{\alpha_i} Y^{\beta_i} \in \mathbb{Z}[X, Y] \) that is monic in \(X \);
an error probability \(\varepsilon = 1/2^l \)

Output: a list of polynomials \(g_j(X, Y) \)
with \(\deg_X(g_j) \leq 2 \) and \(\deg_Y(g_j) \leq 2 \);
a list of corresponding multiplicities.

The \(g_j \) are with probability \(\geq 1 - \varepsilon \) all irreducible factors of \(f \) over \(\mathbb{Q} \) of degree \(\leq 2 \) together with their true multiplicities.

Bit complexity: \(\left(\text{size}(f) + \log 1/\varepsilon \right)^{O(1)} \)

With É. Schost—[Tao 2005]: remove monicicity restriction
simple argument: factors of degree \(O(1) \).
Algorithm
Step 0: compute all factors of f that are in $\mathbb{Q}[Y]$ by Lenstra’s method on the coefficients of X^{α_i}

Step 1: compute linear and quadratic factors in $\mathbb{Q}[X]$ of $f(X,0)$, $f(X,1)$ and $f(X,-1)$ by Lenstra’s method

Step 2: interpolate all factor combinations;
Test if $g(X,Y)$ divides $f(X,Y)$ by

$$0 \equiv f(X,a) \mod (g(X,a),p)$$

where $a \in \mathbb{Z}$, p prime are random
Leading coefficient problem

If the leading (trailing) coefficient in X does not vanish for $Y = 0, e^{2\pi i/k}$, then one can impose a factor of the leading (trailing) coefficient on g.

We can generalize gap theorem and compute all small degree factors of supersparse polynomials deterministically.
Concepts from algebraic number theory

Weil height for algebraic number \(\eta \):

\[
\text{Height}(\eta) = \prod_{\nu \in M_{\mathbb{Q}(\eta)}} \max(1, |\eta|_\nu)^{d_\nu}[\mathbb{Q}(\eta):\mathbb{Q}]
\]

where \(M_{\mathbb{Q}(\eta)} \) are all absolute values in \(\mathbb{Q}(\eta) \), \(d_\nu \) their local degrees.
Concepts from algebraic number theory

Weil height for algebraic number η:

$$\text{Height}(\eta) = \prod_{\nu \in M_{\mathbb{Q}(\eta)}} \max(1, |\eta|_{\nu})^{d_{\nu}[\mathbb{Q}(\eta):\mathbb{Q}]}$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta)$, d_{ν} their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of \mathbb{Q}.
For any algebraic $\eta \neq 0$ that is not a root of unity

$$\text{Height}(\eta) \geq \exp \left(\frac{C_1}{D} \left(\frac{\log(2D)}{\log\log(5D)} \right)^{-13} \right) = 1 + o(1),$$

where $C_1 > 0$ and $D = [L(\eta) : L]$.
Concepts from algebraic number theory

Weil height for algebraic number \(\eta \):

\[
\text{Height}(\eta) = \prod_{\nu \in M_{\mathbb{Q}(\eta)}} \max(1, |\eta|_{\nu})^{\frac{d_{\nu}}{[\mathbb{Q}(\eta) : \mathbb{Q}]}}
\]

where \(M_{\mathbb{Q}(\eta)} \) are all absolute values in \(\mathbb{Q}(\eta) \), \(d_{\nu} \) their local degrees.

Theorem [cf. Amoroso and Zannier 2000]

Let \(L \) be a cyclotomic, hence Abelian extension of \(\mathbb{Q} \).
For any algebraic \(\eta \neq 0 \) that is not a root of unity

\[
\text{Height}(\eta) \geq \exp \left(\frac{C_1}{D} \left(\frac{\log(2D)}{\log\log(5D)} \right)^{-13} \right) = 1 + o(1),
\]

where \(C_1 > 0 \) and \(D = [L(\eta) : L] \).

We do not know a \(C_1 \) explicitly, hence \(\exists \) an algorithm.
Concepts from diophantine geometry

Let $P(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n]$ be irreducible

$V(P) = \text{rootset (variety, hypersurface) of } P$

$S \subseteq V(P)$ is Zariski dense iff $S \subseteq V(Q) \implies Q = P$

Example: $\{(\xi, \xi, 0) \mid \xi \in \mathbb{C}\}$ is not dense for $X_1 - X_2 + X_3$.
Concepts from diophantine geometry

Let \(P(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n] \) be irreducible.

\(V(P) = \text{rootset (variety, hypersurface)} \) of \(P \)

\(S \subseteq V(P) \) is Zariski dense iff \(S \subseteq V(Q) \implies Q = P \)

Example: \(\{(\xi, \xi, 0) \mid \xi \in \mathbb{C}\} \) is not dense for \(X_1 - X_2 + X_3 \).

Theorem [cf. Laurent 1984]

Let \(P(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n] \) be irreducible and let \(S \subseteq V(P) \) where each coordinate of each point is a root of unity (torsion points).

Then

\[
S \text{ is dense for } P \iff P = \prod_{i=1}^{n} X_i^{\beta_i} - \theta,
\]

where \(\theta \) is a root of unity and \(\beta_i \in \mathbb{Z} \).

Example: \(\{(e^{2\pi i/(2j)}, e^{2\pi i/(3j)}) \} \) is dense for \(X_1^2 - X_2^3 \).
Gap theorem for factors where cyclotomic points are not dense

Let P be the irreducible factor of f.

Step 1: construct dense set $\{(\theta_1, \ldots, \theta_{n-1}, \eta)\}$ for P such that all θ_i are roots of unity, η are not.
Gap theorem for factors where cyclotomic points are not dense

Let P be the irreducible factor of f.

Step 1: construct dense set $\{(\theta_1, \ldots, \theta_{n-1}, \eta)\}$ for P such that all θ_i are roots of unity, η are not.

Step 2: If $f(X_1, \ldots, X_n) = g + X_n^u h$, $\deg_{X_n}(g) < k$, apply Lenstra’s gap argument to

$$g(\theta_1, \ldots, \theta_{n-1}, \eta) = -\eta^u h(\theta_1, \ldots, \theta_{n-1}, \eta)$$

and get

$$u - k \geq \chi \implies g(\theta_1, \ldots, \theta_{n-1}, \eta) = 0$$

where

$$\chi = \frac{D}{C_2} \left(\frac{\log(2D)}{\log\log(5D)} \right)^{13} \log(t(t + 1) \text{Height}(f)).$$
Lenstra’s argument

Assume \(g(\theta_1, \ldots, \theta_{n-1}, \eta) = -\eta^u h(\theta_1, \ldots, \theta_{n-1}, \eta) \neq 0 \).

Use absolute values \(\nu \) and Weil height

\[
\max(1, |\eta|_v)^{u-k} \cdot |g(\theta_1, \ldots, \eta)|_v \leq \max(1, |t|_v) \cdot |f|_v \cdot |\eta|^u.
\]

Taking a fractional power \(d_v/[K : \mathbb{Q}] \) and product over all \(\nu \), using the product formula \(\prod_v |\eta|_v^{d_v} = 1 \) \((\eta \neq 0)\),

\[
\text{Height}(\eta)^{u-k} \leq t \cdot \text{Height}(f).
\]

The Bogomolov property for algebraic number fields implies that

\[
\text{Height}(\eta) > 1 + \varepsilon(\deg f).
\]
Factors for which cyclotomic points are dense

Consider irreducible factor

\[P_{\beta, \gamma, \theta} = P(X_1, \ldots, X_n) = \prod_{i=1}^{n} X_i^{\beta_i} - \theta \prod_{i=1}^{n} X_i^{\gamma_i} \]

with \(\forall i: \beta_i = 0 \lor \gamma_i = 0 \) and \(\text{GCD}_{1 \leq i \leq n}(\beta_i - \gamma_i) = 1 \).

Suppose \((\beta_n, \gamma_n) \neq (0, 0)\). Plugging into \(f = \sum_j c_j \bar{X}^{\alpha_j} \)

\[X_n = \lambda \left(\prod_{i=1}^{n-1} X_i^{\gamma_i - \beta_i} \right) \frac{1}{\beta_n - \gamma_n} \]

we find \(j \) and \(k = \pm \text{GCD}_{1 \leq i \leq n}(\alpha_{0,i} - \alpha_{j,i}) \):

\[\alpha_{0,n} \neq \alpha_{j,n} \text{ and } \forall i: \gamma_i - \beta_i = (\alpha_{0,i} - \alpha_{j,i}) / k, \]
Factors for which cyclotomic points are dense (cont.)

Step 1: compute candidates for \((\beta, \gamma)\).

Step 2: compute \(\lambda\) as cyclotomic roots of bounded order of sets of supersparse univariate polynomials in \(\lambda\).

Step 3: compute the norm of \(P(X_1, \ldots, X_n)\), which must be irreducible over the ground field.
Hard problems for supersparse polynomials $\sum_i c_i z^{e_i} \in \mathbb{Z}[z]$

Plaisted 1977: Let $N = \prod_{i=1}^n p_i$, where p_i distinct primes.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Polynomial</th>
<th>Rootset</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_j</td>
<td>$\frac{N}{z^{pj}} - 1$</td>
<td>$\left{(e^{\frac{2\pi i}{N}})^a \mid a \equiv 0 \pmod{p_j}\right}$</td>
</tr>
<tr>
<td>$\neg x_k$</td>
<td>$\frac{N}{z^{pk}} - 1 = \sum_{i=0}^{p_k-1} z^{\frac{iN}{p_k}}$</td>
<td>$\left{(e^{\frac{2\pi i}{N}})^b \mid b \not\equiv 0 \pmod{p_k}\right}$</td>
</tr>
</tbody>
</table>

$L_1 \lor L_2 \quad \text{LCM(Poly}(L_1),\text{Poly}(L_2)) \quad \text{Roots} (L_1) \cup \text{Roots} (L_2)$

$x_j \lor \neg x_k \quad \frac{N}{z^{pjpk}} - 1 \left(\frac{N}{z^{pk}} - 1\right)$ (is supersparse polynomial)
Hard problems for supersparse polynomials $\sum_i c_i z^{e_i} \in \mathbb{Z}[z]$

Plaisted 1977: Let $N = \prod_{i=1}^{n} p_i$, where p_i distinct primes.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Polynomial</th>
<th>Rootset</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_j</td>
<td>$z^{N/p_j} - 1$</td>
<td>${(e^{2\pi i/N})^a \mid a \equiv 0 \pmod{p_j}}$</td>
</tr>
<tr>
<td>$\neg x_k$</td>
<td>$\frac{z^{N} - 1}{z^{N/p_k} - 1} = \sum_{i=0}^{p_k-1} z^{iN/p_k}$</td>
<td>${(e^{2\pi i/N})^b \mid b \not\equiv 0 \pmod{p_k}}$</td>
</tr>
</tbody>
</table>

$L_1 \lor L_2$ LCM$($Poly$(L_1), \text{Poly}(L_2))$ Roots$(L_1) \cup \text{Roots}(L_2)$

$x_j \lor \neg x_k$ $\frac{(z^{N/p_j p_k} - 1)(z^{N} - 1)}{z^{N/p_k} - 1}$ (is supersparse polynomial)

$C_1 \land C_2$ GCD$($Poly$(C_1), \text{Poly}(C_2))$ Roots$(C_1) \cap \text{Roots}(C_2)$

Theorem $C_1 \land \cdots \land C_l$ is satisfiable

\iff GCD$($Poly$(C_1), \ldots, \text{Poly}(C_l)) \neq 1$.

Other hard problems [Plaisted 1977/78]

1. Given sequences $a_1, \ldots, a_m \in \mathbb{Z}$ and $b_1, \ldots b_n \in \mathbb{Z}$ determine whether

$$\prod_{i=1}^{m} (z^{a_i} - 1) \quad \text{is not a factor of} \quad \prod_{i=1}^{n} (z^{b_i} - 1).$$

2. Given a set $\{a_1, \ldots, a_m\} \subset \mathbb{Z}$ determine whether

$$\int_{0}^{2\pi} \cos(a_1\theta) \cdots \cos(a_m\theta) d\theta \neq 0.$$
Hard problems for supersparse polynomials in $K[X,Y]$

Theorem
The set of all monic (in X) irreducible supersparse polynomials in $K[X,Y]$ is co-NP-hard for $K = \mathbb{Q}$ and $K = \mathbb{F}_q$ for all p and all sufficiently large $q = p^k$, via randomized reduction.

Corollary
Suppose we have a Monte Carlo polynomial-time irreducibility test for monic supersparse polynomials in $\mathbb{F}_{2^k}[X,Y]$ (for sufficiently large k).
Then large integers can be factored in Las Vegas polynomial-time.
Another hard problem for supersparse polynomials in $\mathbb{F}_{2^k}[X]$
(Reference thanks to Jintai Ding)

Theorem [Kipnis and Shamir CRYPTO ’99]
The set of all supersparse polynomials in $\mathbb{F}_{2^k}[X]$ that have a root in \mathbb{F}_{2^k} is NP-hard for all sufficiently large k.

Corollary (cf. Open Problem in our ISSAC’05 paper)
It is NP-hard to determine if a polynomial in X over \mathbb{F}_{2^k} given by a division-free straight-line program has a root in \mathbb{F}_{2^k}.
Danke schön!
(Thank you!)