Sparse Interpolation With Errors in Chebyshev Basis
Beyond Redundant-Block Decoding*

Erich L. Kaltofen and Zhi-Hong Yang

Department of Mathematics, North Carolina State University,
Raleigh, North Carolina 27695-8205, USA
Department of Computer Science, Duke University,
Durham, North Carolina 27708-0129, USA
kaltofen@ncsu.edu; https://kaltofen.math.ncsu.edu/
kaltofen@cs.duke.edu; https://users.cs.duke.edu/~elk27
zyang28@ncsu.edu; zy99@cs.duke.edu

Abstract
We present sparse interpolation algorithms for recovering a polynomial with \(\leq B \) terms from \(N \) evaluations at distinct values for the variable when \(\leq E \) of the evaluations can be erroneous. Our algorithms perform exact arithmetic in the field of scalars \(K \) and the terms can be standard powers of the variable or Chebyshev polynomials, in which case the characteristic of \(K \) is \(\neq 2 \). Our algorithms return a list of valid sparse interpolants for the \(N \) support points and run in polynomial-time. For standard power basis our algorithms sample at \(N = \left\lfloor \frac{4}{3}E + 2 \right\rfloor B \) points, which are fewer points than \(N = 2(E + 1)B - 1 \) given by Kaltofen and Pernet in 2014. For Chebyshev basis our algorithms sample at \(N = \left\lfloor \frac{2}{3}E + 2 \right\rfloor B \) points, which are also fewer than the number of points required by the algorithm given by Arnold and Kaltofen in 2015, which has \(N = 74\left\lfloor \frac{E}{13} + 1 \right\rfloor \) for \(B = 3 \) and \(E \geq 222 \). Our method shows how to correct 2 errors in a block of \(4B \) points for standard basis and how to correct 1 error in a block of \(3B \) points for Chebyshev Basis.

1. Introduction

Let \(f(x) \) be a polynomial with coefficients from a field \(K \) (of characteristic \(\neq 2 \)),

\[
f(x) = \sum_{j=1}^{t} c_j T_{\delta_j}(x) \in K[x], \quad 0 \leq \delta_1 < \delta_2 < \cdots < \delta_t = \deg(f), \forall j, 1 \leq j \leq t: c_j \neq 0,
\]

*This research was supported by the National Science Foundation under Grant CCF-1717100 (Kaltofen and Yang).
where \(T_d(x) \) is the Chebyshev Polynomial of the First Kind (of degree \(d \) for \(d \geq 0 \), defined by the recurrence

\[
\begin{bmatrix}
T_d(x) \\
T_{d+1}(x)
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
-1 & 2x
\end{bmatrix}^d
\begin{bmatrix}
1 \\
x
\end{bmatrix}
\text{ for } d \in \mathbb{Z}.
\]

(2)

We say that \(f(x) \) is Chebyshev-1 \(t \)-sparse. We wish to compute the term degrees \(\delta_j \) and the coefficients \(c_j \) from values of \(a_i = f(\zeta_i) \) for \(i = 1, 2, \ldots \), where the distinct arguments \(\zeta_i \in \mathbb{K} \) can be chosen by the algorithms; the latter is the setting of Prony-like sparse interpolation methods. Our objective is to interpolate with a number of points that is proportional to the sparsity \(t \) of \(f \). The algorithms have as input an upper bound \(B \geq t \) for the sparsity, otherwise the zero polynomial (of sparsity 0) is indistinguishable from \(f(x) = \prod_i (x - \zeta_i) \) at \(\leq \deg(f) \) evaluation points \(a_i = 0 \). The algorithms by [Lakshman Y. N. and Saunders 1995; Arnold and Kaltofen 2015; Imamoglu, Kaltofen, and Yang 2018], based on Prony-like interpolation [Prony III (1795); Ben-Or and Tiwari 1988; Kaltofen and Lee 2003], can interpolate \(f(x) \) (see (1)) from \(2B \) values at points \(\zeta_i = T_i(\beta) = (\omega^i + 1/\omega^i)/2 \) for \(i = 0, 1, \ldots, 2B - 1 \) where \(\beta = (\omega + 1/\omega)/2 \) with \(\omega \in \mathbb{K} \) such that \(\omega^{\delta_j} \neq \omega^{\delta_k} \) for all \(1 \leq j < k \leq t \).

Like Prony’s original algorithm, our algorithms utilize an algorithm for computing roots in \(\mathbb{K} \) of polynomials with coefficients in \(\mathbb{K} \) and logarithms to base \(\omega \). More precisely, one utilizes an algorithm that on input \(\omega \) and \(\omega^d \) for an integer \(d \in \mathbb{Z} \) computes \(d \), possibly modulo the finite multiplicative order \(\eta \) of \(\omega \) (\(\omega^\eta = 1 \) minimally) [Imamoglu and Kaltofen 2020]. We note that in [Arnold and Kaltofen 2015] we show that one may instead use the odd-indexed argument \(T_{2i+1}(\beta) \) for \(i = 0, 1, \ldots, 2B - 1 \), provided \(\omega^{2\delta_j + 1} \neq \omega^{2\delta_k + 1} \) for all \(1 \leq j < k \leq t \).

Here we consider the case when the evaluations \(a_i \), which we think of being computed by probing a black box that evaluates \(f \), can have sporadic errors. We write \(\hat{a}_i \) for the black box values, which at some unknown indices \(\ell \) can have \(\hat{a}_\ell \neq a_\ell \). In the plot in Fig. 1 below, which is for the range \(-1 \leq x \leq 1 \), the purple function is \(T_{15}(x) - 2T_{11}(x) + T_{2}(x) \) that fits 37 of the 40 values, while the red model is a polynomial least squares fit of degree \(\leq 19 \). The red function captures 3 possible outliers, resulting in a model which has a lower accuracy on the remaining 37 data points.

Figure 1: Sparse Chebyshev-1 polynomial fit after removing 3 errors vs. polynomial least squares fit

We shall assume that we have an upper bound \(E \) for the number of errors on a batch of \(N \) evaluations. Therefore our sequence of black box calls has a non-stochastic error rate \(\leq E/N \). We shall also assume that the black box for \(f \) does not return stochastic errors, meaning that if \(\hat{a} \neq f(\zeta) \) then a second evaluation of the black box at \(\zeta \) produces the same erroneous \(\hat{a} \). Furthermore, we perform list-interpolation which produces a valid list of sparse interpolants for the black box values with errors, analogously to list-decoding error correcting.
codes. We restrict to algorithms that run in polynomial time in B and E (N is computed by the algorithms), which limits the list length to polynomial in B and E.

A simple sparse list-interpolation algorithm with errors evaluates $E + 1$ blocks of $2B$ arguments, which produce $N = (E + 1)2B$ black box values $\hat{a}_{i,\sigma}$ at the arguments

$$
\begin{align*}
T_1(\beta_1), & \quad T_3(\beta_1), \quad \ldots, \quad T_{4B-1}(\beta_1), \\
T_1(\beta_2), & \quad T_3(\beta_2), \quad \ldots, \quad T_{4B-1}(\beta_2), \\
\vdots & \quad \vdots \\
T_1(\beta_{E+1}), & \quad T_3(\beta_{E+1}), \quad \ldots, \quad T_{4B-1}(\beta_{E+1}),
\end{align*}
$$

where $\beta_\sigma = (\omega_\sigma + 1/\omega_\sigma)/2$ and where the arguments in (3) are selected distinct: $T_{2i+1}(\beta_\sigma) \neq T_{2m+1}(\beta_\tau)$ for $i \neq m$ and $\sigma \neq \tau$ ($\iff \omega_{2i+1} \neq \omega_{2m+1}$). If we have for all ω_σ distinct term values $\omega_{\delta_j} \neq \omega_{\delta_k}$ ($j \neq k$) then the algorithm in [Arnold and Kaltofen 2015] can recover f from those lines in (3) at which the black box does not evaluate to an error, because we assume $\leq E$ errors there is such a block of good arguments/values. Other blocks with errors may lead to a different t-sparse Chebyshev-1 interpolant with $t \leq B$. The goal is to recover f (and possible other sparse interpolants with $\leq E$ errors) from $N < (E + 1)2B$ evaluations.

In [Arnold and Kaltofen 2015] we give algorithms for the following bounds B, E:

$$
\begin{align*}
B = 1: \forall E \geq 57: \quad N &= 23\left\lfloor \frac{E}{14} + 1 \right\rfloor < 2(E + 1) = 2B(E + 1); \quad \frac{23}{14} \leq 1.65, \\
B = 2: \forall E \geq 86: \quad N &= 43\left\lfloor \frac{E}{12} + 1 \right\rfloor < 4(E + 1) = 2B(E + 1); \quad \frac{43}{12} \leq 3.59, \\
B = 3: \forall E \geq 222: \quad N &= 74\left\lfloor \frac{E}{13} + 1 \right\rfloor < 6(E + 1) = 2T(E + 1); \quad \frac{74}{13} \leq 5.70.
\end{align*}
$$

The evaluation counts (4) are derived by using the method of [Kaltofen and Pernet 2014]: subsampling at all subsequences $x \leftarrow T_{r+ia}(\beta)$ of arguments whose indices are arithmetic progressions to locate a subsequence without an error. The counts (4) are established by explicitly computed lengths for the Erdős-Turán Problem for arithmetic progressions of length ≤ 9. Here we give an algorithm that recovers f (and possible other sparse interpolants) for all $B \geq 1, E \geq 1$ bounds from

$$
N = \left\lfloor \frac{3}{2}E + 2 \right\rfloor B
$$

evaluations with $\leq E$ errors. Our new algorithm uses fewer evaluations than (4). We show that one can list-interpolate from $3B$ points correcting a single error, which with blocking yields (5). We correct one error from $3B$ points by deriving a non-trivial univariate polynomial for the value as a variable in each possible position.

Our technique applies to Prony’s original problem of interpolating a t-sparse polynomial with $t \leq B$ in power basis $1, x, x^2, \ldots$ in the presence of erroneous points. In [Kaltofen and Pernet 2014, Lemma 2] it was shown that from $(E + 1)2B - 1$ points one can correct $\leq E$ errors. Here we show that

$$
N = \left\lfloor \frac{4}{3}E + 2 \right\rfloor B
$$

points suffice to correct $\leq E$ errors. The counts (6) are achieved by correcting ≤ 2 errors from $4B$ points and blocking. We correct 2 errors at $4B$ points by deriving a bivariate
Pham system for variables in place of the values in all possible error locations, which yields a bounded number of possible value pairs among which are the actual values. We note that for $E = 2$ the count $4B$ is smaller than the values $n_{2B,2}$ in [Kaltofen and Pernet 2014, Table 1], which are the counts for having a clean arithmetic progression of length $2B$ in the presence of 2 errors.

Finally we note that our sparse list-interpolation algorithms are interpolation algorithms over the reals $K = \mathbb{R}$ if $\omega \sigma > 1$ (or $\omega > 0$ when f is in power basis) and $N \geq 2B + 2E$, that is, there will only be a single sparse interpolant computed by our algorithms. Uniqueness is a consequence of Descartes’s Rule of Signs and its generalization to polynomials in orthogonal bases by Obrechkoff’s Theorem of 1918 [Dimitrov and Rafaeli 2009] (see also Corollary 2 in [Kaltofen and Pernet 2014] and Corollary 2.4 in [Arnold and Kaltofen 2015]). Over fields with roots of unity, the sparse list-interpolation problem for the power bases with $< (2E + 1)2B$ points can have more than a single B-sparse solution [Kaltofen and Pernet 2014, Theorem 3], which is also true for the Chebyshev base as shown by Example 3.3.

2. Sparse Interpolation in Standard Power Basis with Error Correction

2.1. Correcting One Error

Let K be a field of scalars. Let $f(x) \in K[x, x^{-1}]$ be a sparse univariate Laurent polynomial represented by a black box and it is equal to:

$$f(x) = \sum_{j=1}^{t} c_j x^{\delta_j}, \quad \delta_1 < \delta_2 < \cdots < \delta_t = \deg(f), \forall j, 1 \leq j \leq t: c_j \neq 0. \quad (7)$$

We assume that the black box for f returns the same value when probed multiple times at the same input. Let B be an upper bound on the sparsity of $f(x)$ and $D \geq |\delta_j|$ for all $1 \leq j \leq t$. Choose a point $\omega \in K \setminus \{0\}$ such that:

1. ω has order $\geq 2D + 1$, meaning that $\forall \eta, 1 \leq \eta \leq 2D: \omega^{\eta} \neq 1$.

2. $\omega^{i_1} \neq \omega^{i_2}$ for all $1 \leq i_1 < i_2 \leq 3B$.

The first condition is an input specification of the Integer Logarithm Algorithm (see Algorithm 2.1) that computes δ_j from ω^{δ_j}. The second condition guarantees that the inputs probed at the black box are distinct so that we don’t get the same error at different locations.

For $i = 1, 2, \ldots, 3B$, let \hat{a}_i be the output of the black box for f probed at input ω^i. Assume there is at most one error in the evaluations, that is, there exists 1 index $i \in \{1, 2, \ldots, 3B\}$ such that $\hat{a}_i \neq f(\omega^i)$. We present an algorithm to compute a list of sparse polynomials which contains f.

4
For $r = 1, \ldots, B$, let H_r denote the following $(B + 1) \times (B + 1)$ Hankel matrix:

$$H_r = \begin{bmatrix}
\hat{a}_r & \hat{a}_{r+1} & \cdots & \hat{a}_{r+B-1} & \hat{a}_{r+B} \\
\hat{a}_{r+1} & \hat{a}_{r+2} & \cdots & \hat{a}_{r+B} & \hat{a}_{r+B+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\hat{a}_{r+B-1} & \hat{a}_{r+B} & \cdots & \hat{a}_{r+2B-2} & \hat{a}_{r+2B-1} \\
\hat{a}_{r+B} & \hat{a}_{r+B+1} & \cdots & \hat{a}_{r+2B-1} & \hat{a}_{r+2B}
\end{bmatrix} \in \mathbb{K}^{(B+1)\times(B+1)}. \quad (8)$$

Let ℓ be the error location, i.e., $\hat{a}_\ell \neq f(\omega^\ell)$. There are three cases to be considered:

Case 1: $1 \leq \ell \leq B$;

Case 2: $B + 1 \leq \ell \leq 2B$;

Case 3: $2B + 1 \leq \ell \leq 3B$.

For Case 1 and Case 3, we can use Prony’s algorithm (see Algorithm 2.2) to recover $f(x)$ from a consecutive sequence of length $2B$: either $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})$ or $(\hat{a}_{B+1}, \hat{a}_{B+2}, \ldots, \hat{a}_{3B})$. To deal with Case 2, we replace the erroneous value \hat{a}_ℓ by a symbol α. Then the determinant the Hankel matrix $H_{\ell-B}$ (see (8)) is univariate polynomial of degree $B + 1$ in α. By Prony/Blahut/Ben-Or/Tiwari Theorem [Prony III (1795); Blahut 1983; Ben-Or and Tiwari 1988], $(f(\omega^k))_{k \geq 0}$ is a linearly generated sequence and its minimal generator has degree $\leq B$. Therefore $f(\omega^\ell)$ is a solution of the equation:

$$\text{det}(H_{\ell-B}) = 0. \quad (9)$$

By solving the equation (9), we obtain a list of candidates $\{\xi_1, \ldots, \xi_b\}$ for the correct value $f(\omega^\ell)$. For each candidate $\xi_k (1 \leq k \leq b)$, we substitute \hat{a}_ℓ by ξ_k in the sequence $(\hat{a}_{B+1}, \hat{a}_{B+2}, \ldots, \hat{a}_{2B})$ and try Prony’s algorithm on the updated sequence $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})$, which gives us a list of sparse polynomials with $f(x)$ being contained. The process of correcting one error from $3B$ evaluations is illustrated by the following example.

Example 2.1. Assume that we are given $B = 3$. With $3B = 9$ evaluations $\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_9$ obtained from the black box for f at inputs $\omega, \omega^2, \ldots, \omega^9$, we have the following 6×4 matrix:

$$H = \begin{bmatrix}
\hat{a}_1 & \hat{a}_2 & \hat{a}_3 & \hat{a}_4 \\
\hat{a}_2 & \hat{a}_3 & \hat{a}_4 & \hat{a}_5 \\
\hat{a}_3 & \hat{a}_4 & \hat{a}_5 & \hat{a}_6 \\
\hat{a}_4 & \hat{a}_5 & \hat{a}_6 & \hat{a}_7 \\
\hat{a}_5 & \hat{a}_6 & \hat{a}_7 & \hat{a}_8 \\
\hat{a}_6 & \hat{a}_7 & \hat{a}_8 & \hat{a}_9
\end{bmatrix} \in \mathbb{K}^{6\times4}$$

For $r = 1, 2, 3$, the matrices H_r (see (8)) are 4×4 submatrices of H:

$$H_1 = \begin{bmatrix}
\hat{a}_1 & \hat{a}_2 & \hat{a}_3 & \hat{a}_4 \\
\hat{a}_2 & \hat{a}_3 & \hat{a}_4 & \hat{a}_5 \\
\hat{a}_3 & \hat{a}_4 & \hat{a}_5 & \hat{a}_6 \\
\hat{a}_4 & \hat{a}_5 & \hat{a}_6 & \hat{a}_7
\end{bmatrix}, \quad H_2 = \begin{bmatrix}
\hat{a}_2 & \hat{a}_3 & \hat{a}_4 & \hat{a}_5 \\
\hat{a}_3 & \hat{a}_4 & \hat{a}_5 & \hat{a}_6 \\
\hat{a}_4 & \hat{a}_5 & \hat{a}_6 & \hat{a}_7 \\
\hat{a}_5 & \hat{a}_6 & \hat{a}_7 & \hat{a}_8
\end{bmatrix}, \quad H_3 = \begin{bmatrix}
\hat{a}_3 & \hat{a}_4 & \hat{a}_5 & \hat{a}_6 \\
\hat{a}_4 & \hat{a}_5 & \hat{a}_6 & \hat{a}_7 \\
\hat{a}_5 & \hat{a}_6 & \hat{a}_7 & \hat{a}_8 \\
\hat{a}_6 & \hat{a}_7 & \hat{a}_8 & \hat{a}_9
\end{bmatrix}.$$

Suppose there is one error $\hat{a}_\ell \neq f(\omega^\ell)$ in these $3B$ evaluations. We recover $f(x)$ by the following steps.
1. Try to recover \(f(x) \) from \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_6)\) and \((\hat{a}_4, \hat{a}_5, \ldots, \hat{a}_9)\) by Prony’s algorithm; \(f(x) \) will be returned if \(\ell \in \{7, 8, 9\} \) or \(\ell \in \{1, 2, 3\} \).

2. For \(\ell \in \{4, 5, 6\} \), substitute \(\hat{a}_\ell \) by \(\alpha \), then \(\det(H_{\ell-3}) \) is a univariate polynomial of degree 4 in \(\alpha \) and \(f(\omega^\ell) \) is a root of \(\det(H_{\ell-3}) \). Compute the roots \(\{\xi_k\}_{k \geq 1} \) of \(\det(H_{\ell-3}) \). For each root \(\xi_k \), replace \(\hat{a}_\ell \) by \(\xi_k \) and check if the matrix \(H \) has rank \(\leq 3 \). If yes, then use Prony’s algorithm (see Algorithm 2.2) on the updated sequence \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_6)\). As \(f(\omega^\ell) \) is equal to some \(\xi_k \), this step will recover \(f(x) \) in case that \(\ell \in \{4, 5, 6\} \).

For computing the term degrees \(\delta_j \) of \(f \), we need an integer logarithm algorithm having the following input and output specifications.

Algorithm 2.1. Integer Logarithm Algorithm

Input:
- An upper bound \(D \in \mathbb{Z}_{\geq 0} \).
- \(\omega \in K \setminus \{0\} \) and has order \(\geq 2D + 1 \), meaning that \(\forall \eta \geq 1, \omega^\eta = 1 \Rightarrow \eta \geq 2D + 1 \).
- \(\rho \in K \setminus \{0\} \).

Output:
- Either \(\delta \in \mathbb{Z} \) with \(|\delta| \leq D \) and \(\omega^\delta = \rho \),
- or FAIL.

We describe the subroutine which we call Try Prony’s algorithm. This subroutine will be frequently used in our main algorithms.

Algorithm 2.2. Try Prony’s algorithm

Input:
- A position \(r \) and sequence \((\hat{a}_r, \ldots, \hat{a}_{r+2B-1})\) in \(K \) where \(K \) is a field of scalars.
- An upper bound \(D \in \mathbb{Z}_{\geq 0} \).
- \(\omega \in K \setminus \{0\} \) and has order \(\geq 2D + 1 \).
- An algorithm that computes all roots \(\in K \) of a polynomial \(\in K[x] \).
- Algorithm 2.1: Integer Logarithm Algorithm that takes \(D, \omega, \rho \) as input and outputs:
 - either \(\delta \in \mathbb{Z} \) with \(|\delta| \leq D \) and \(\omega^\delta = \rho \),
 - or FAIL.

Output:
- A sparse Laurent polynomial of sparsity \(t \leq B \) and has term degrees \(\delta_j \) with \(|\delta_j| \leq D \), or FAIL.

Step 1: Use Berlekamp/Massey algorithm to compute the minimal linear generator of the sequence \((\hat{a}_r, \ldots, \hat{a}_{r+2B-1})\) and denote it by \(\Lambda(z) \). If \(\Lambda(0) = 0 \) return FAIL.

Step 2: Compute all distinct roots \(\in K \) of \(\Lambda(z) \), denoted by \(\rho_1, \ldots, \rho_t \). If \(t < \deg(\Lambda) \) then return FAIL.

Step 3: For \(j = 1, \ldots, t \), use the Algorithm 2.1: Integer Logarithm Algorithm to compute \(\delta_j = \log_\omega \rho_j \). If the Integer Logarithm Algorithm returns FAIL, then return FAIL.

Step 4: Compute the coefficients \(c_1, \ldots, c_t \) by solving the following transposed generalized Vandermonde system

\[
\begin{bmatrix}
\rho_1^r & \rho_2^r & \cdots & \rho_t^r \\
\rho_1^{r+1} & \rho_2^{r+1} & \cdots & \rho_t^{r+1} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_1^{r+t-1} & \rho_2^{r+t-1} & \cdots & \rho_t^{r+t-1}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_t
\end{bmatrix}
=
\begin{bmatrix}
\hat{a}_r \\
\hat{a}_{r+1} \\
\vdots \\
\hat{a}_{r+t-1}
\end{bmatrix}
\]
Step 5: Return the polynomial $\sum_{j=1}^{t} c_j x^{\delta_j}$.

Now we give an algorithm for interpolating a black-box polynomial with sparsity bounded by B. This algorithm can correct one error in $3B$ evaluations.

Algorithm 2.3. A list-interpolation algorithm for power-basis sparse polynomials with evaluations containing at most one error.

Input:
- A black box representation of a polynomial $f \in K[x, x^{-1}]$ where K is a field of scalars.

The black box for f returns the same (erroneous) output when probed multiple times at the same input.
- An upper bound B on the sparsity of f.
- An upper bound $D \geq \max_j |\delta_j|$, where δ_j are term degrees of f.
- $\omega \in K \setminus \{0\}$ satisfying:
 - ω has order $\geq 2D + 1$;
 - $\omega^{i_1} \neq \omega^{i_2}$ for all $1 \leq i_1 < i_2 \leq 3B$.
- An algorithm that computes all roots $\in K$ of a polynomial $\in K[x]$.

Output:
- An empty list or a list of sparse polynomials $\{f^{[1]}, \ldots, f^{[M]}\}$ with each $f^{[k]}$ $(1 \leq k \leq M)$ satisfying:
 - $f^{[k]}$ has sparsity $\leq B$ and has term degrees δ_j with $|\delta_j| \leq D$;
 - $f^{[k]}$ is represented by its term degrees and coefficients;
 - there is at most one index $i \in \{1, 2, \ldots, 3B\}$ such that $f^{[k]}(\omega^i) \neq \hat{a}_i$, where \hat{a}_i is the output of the black box probed at input ω^i;
 - f is contained in the list.

Step 1: For $i = 1, 2, \ldots, 3B$, get the output \hat{a}_i of the black box for f at input ω^i. Let L be an empty list.

Step 2: Use Algorithm 2.2 on the sequence $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})$. If the algorithm returns a sparse polynomial \tilde{f} of sparsity $\leq B$ and has term degrees δ_j with $|\delta_j| \leq D$, and there is at most one index $i \in \{1, 2, \ldots, 3B\}$ such that $\tilde{f}(\omega^i) \neq \hat{a}_i$, then add \tilde{f} to the list L.

If the error is in $(\hat{a}_{2B+1}, \hat{a}_{2B+2}, \ldots, \hat{a}_{3B})$, then the sequence $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})$ is free of errors, so Algorithm 2.2 in Step 2 will return f, and f will be added to the list L.

Step 3: Use Algorithm 2.2 on the sequence $(\hat{a}_{B+1}, \hat{a}_{B+2}, \ldots, \hat{a}_{3B})$. If the algorithm returns a sparse polynomial \tilde{f} of sparsity $\leq B$ and has term degrees δ_j with $|\delta_j| \leq D$, and there is at most one index $i \in \{1, 2, \ldots, 3B\}$ such that $\tilde{f}(\omega^i) \neq \hat{a}_i$, then add \tilde{f} to the list L.

If the error is in $(\hat{a}_1, \ldots, \hat{a}_B)$, then the sequence $(\hat{a}_{B+1}, \hat{a}_{B+2}, \ldots, \hat{a}_{3B})$ is free of errors, so Algorithm 2.2 in Step 3 will return f, and f will be added into the list L.

Step 4: For $\ell = B + 1, B + 2, \ldots, 2B$,

$4(a)$: substitute \hat{a}_ℓ by a symbol α in the matrix $H_{\ell-B}$ (see (8)); use the fraction free Berlekamp/Massey algorithm [Giesbrecht, Kaltofen, and Lee 2002; Kaltofen and Yuhasz 2013] to compute the determinant of $H_{\ell-B}$ and denote it by $\Delta_\ell(\alpha)$;
Here $\Delta_\ell(\alpha)$ is a univariate polynomial of the form $(-1)^{B+1}\alpha^{B+1} + \tilde{\Delta}_\ell(\alpha)$ with $\deg(\Delta_\ell(\alpha)) < B + 1$;

4(b): compute all solutions of the equation $\Delta_\ell(\alpha) = 0$ in K; denote the solution set as $\{\xi_1, \ldots, \xi_b\}$;

4(c): for $k = 1, \ldots, b$,

4(c)\(i\): substitute \hat{a}_ℓ by ξ_k;

4(c)\(ii\): use Berlekamp/Massey algorithm to compute the the minimal linear generator of the new sequence $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{3B})$ and denote it by $\Lambda(z)$;

4(c)\(iii\): if $\deg(\Lambda(z)) \leq B$, repeat Step 2.

If $\hat{a}_\ell \neq f(\omega^\ell)$ with $\ell \in \{B + 1, B + 2, \ldots, 2B\}$, then we substitute \hat{a}_ℓ by a symbol α and compute the roots $\{\xi_1, \ldots, \xi_b\}$ of $\Delta_\ell(\alpha)$ in K. The correct value $f(\omega^\ell)$ is in the set $\{\xi_1, \ldots, \xi_b\}$. Thus for every root ξ_k ($k = 1, \ldots, b$), we replace \hat{a}_ℓ with ξ_k and use Berlekamp/Massey algorithm to check if the new sequence $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{3B})$ is generated by some polynomial of degree $\leq B$. If so, then we apply Algorithm 2.2 on the updated sequence $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})$. In the end, Step 4 will add f into the list L in case that $B + 1 \leq \ell \leq 2B$.

Step 5: Return the list L.

Proposition 2.1. The output list of Algorithm 2.3 contains $\leq B^2 + B + 2$ polynomials.

Proof. The Step 2 in Algorithm 2.3 produces ≤ 1 polynomial and so is Step 3. In the Step 4 of Algorithm 2.3, because $\Delta_\ell(\alpha)$ has degree $B + 1$, the equation $\Delta_\ell(\alpha) = 0$ has $\leq B + 1$ solutions in K, therefore this step produces $\leq B(B + 1)$ polynomials. Thus the output list of Algorithm 2.3 contains $\leq 2 + B(B + 1)$ polynomials. □

2.2. Correcting 2 Errors

In this section, we give a list-interpolation algorithm to recover $f(x)$ (see (7)) from $4B$ evaluations that contain 2 errors. Recall that B is an upper bound on the sparsity of $f(x)$ and D is an upper bound on the absolute values of the term degrees of $f(x)$. We will use Algorithm 2.3 as a subroutine.

Let $\omega \in K \setminus \{0\}$ such that: (1) ω has order $\geq 2D + 1$, and (2) $\omega^{i_1} \neq \omega^{i_2}$ for all $1 \leq i_1 < i_2 \leq 4B$. For $i = 1, 2, \ldots, 4B$, let \hat{a}_i be the output of the black box probed at input ω^i. Let \hat{a}_{ℓ_1} and \hat{a}_{ℓ_2} be the 2 errors and $\ell_1 < \ell_2$. The problem can be covered by the following four cases:

Case 1: $1 \leq \ell_1 \leq B$;

Case 2: $3B + 1 \leq \ell_2 \leq 4B$;

Case 3: $B + 1 \leq \ell_1 < \ell_2 \leq 2B$ or $2B + 1 \leq \ell_1 < \ell_2 \leq 3B$

Case 4: $B + 1 \leq \ell_1 \leq 2B$ and $2B + 1 \leq \ell_2 \leq 3B$.

First, we try the Algorithm 2.3 on the sequences \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{3B})\) and \((\hat{a}_{B+1}, \hat{a}_{B+2}, \ldots, \hat{a}_{4B})\), which can list interpolate \(f(x)\) if either Case 2 or Case 1 happens. Next, we use the Algorithm 2.2 on the sequences \((\hat{a}_1, \ldots, \hat{a}_{2B})\) and \((\hat{a}_{2B+1}, \ldots, \hat{a}_{4B})\), which will return \(f(x)\) if Case 3 happens. For Case 4, we substitute the two erroneous values \(\hat{a}_{\ell_1}\) and \(\hat{a}_{\ell_2}\) by two symbols \(\alpha_1\) and \(\alpha_2\) respectively. Then the pair of correct values \((f(\omega^{\ell_1}), f(\omega^{\ell_2}))\) is a solution of the following Pham system (see Lemma 2.2 and Lemma 2.3):

\[
\det(H_{\ell_1-B}) = 0, \quad \det(H_{\ell_2-B}) = 0,
\]

where \(H_{\ell_1-B}\) and \(H_{\ell_2-B}\) are Hankel matrices defined as (8). As the Pham systems (10) is zero-dimensional (see Lemma 2.3), we compute the solution set \(\{(\xi_{1,1}, \xi_{2,1}), \ldots, (\xi_{1,n}, \xi_{2,n})\}\) of (10). Then, for \(k = 1, \ldots, b\), we substitute \((\hat{a}_{\ell_1}, \hat{a}_{\ell_2})\) by \((\xi_{1,k}, \xi_{2,k})\) and apply Algorithm 2.2 on the updated sequence \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})\); this results in a list of candidates for \(f\) if Case 4 happens.

The following Lemma shows that the determinants arising in (10) have the Pham property, using diagonals in place of anti-diagonals.

Lemma 2.2. Let \(A\) be an \(n \times n\) matrix with the following properties:

1) for \(i = 1, \ldots, n\), \(A[i, i] = \alpha_1\);

2) for some fixed \(k \in \{1, \ldots, n-1\}\) and for \(i = 1, \ldots, n-k\), \(A[i, i+k] = \alpha_2\);

3) all other entries of \(A\) elements are in the field of scalars \(K\).

Then \(\det(A) = \alpha_1^n + Q(\alpha_1, \alpha_2)\) where \(Q(\alpha_1, \alpha_2)\) is a polynomial of total degree \(\leq n - 1\).

Proof. The matrix \(A\) is of the form:

\[
A = \begin{bmatrix}
\alpha_1 & \alpha_2 & \ast \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \alpha_2 \\
\ast & \cdot & \cdot \\
\alpha_1
\end{bmatrix}.
\]

We prove by induction on \(n\). It is trivial if \(n = 1\). Assume that the conclusion holds for \(n - 1\). By minor expansion on the first column of \(A\), we have

\[
\det(A) = \alpha_1(\alpha_1^{n-1} + Q_1(\alpha_1, \alpha_2)) + Q_2(\alpha_1, \alpha_2)
\]

where \(Q_2(\alpha_1, \alpha_2)\) has total degree \(\leq n - 1\). By induction hypothesis, \(Q_1(\alpha_1, \alpha_2)\) has total degree \(\leq n - 2\). Let \(Q = \alpha_1 \cdot Q_1 + Q_2\). The proof is complete. \(\square\)

Lemma 2.3. The Pham system

\[
\begin{align*}
\alpha_1^{n_1} + Q_1(\alpha_1, \alpha_2) &= 0, \quad \text{deg}(Q_1) \leq n_1 - 1 \\
\alpha_2^{n_2} + Q_2(\alpha_1, \alpha_2) &= 0, \quad \text{deg}(Q_2) \leq n_2 - 1
\end{align*}
\]

has at most \(n_1n_2\) solutions, where \(Q_1\) and \(Q_2\) are two polynomials in \(K[\alpha_1, \alpha_2]\).
Proof. See e.g. [Cox, Little, and O’Shea 2015, Chapter 5, Section 3, Theorem 6]. □

Example 2.2. Let $B = 3$. With $4B = 12$ evaluations $\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{12}$ obtained from the black box for f at inputs $\omega, \omega^2, \ldots, \omega^{12}$, we have the following 9×4 matrix:

$$H = \begin{bmatrix} \hat{a}_1 & \hat{a}_2 & \hat{a}_3 & \hat{a}_4 \\ \hat{a}_2 & \hat{a}_3 & \hat{a}_4 & \hat{a}_5 \\ \hat{a}_3 & \hat{a}_4 & \hat{a}_5 & \hat{a}_6 \\ \hat{a}_4 & \hat{a}_5 & \hat{a}_6 & \hat{a}_7 \\ \hat{a}_5 & \hat{a}_6 & \hat{a}_7 & \hat{a}_8 \\ \hat{a}_6 & \hat{a}_7 & \hat{a}_8 & \hat{a}_9 \\ \hat{a}_7 & \hat{a}_8 & \hat{a}_9 & \hat{a}_{10} \\ \hat{a}_8 & \hat{a}_9 & \hat{a}_{10} & \hat{a}_{11} \\ \hat{a}_9 & \hat{a}_{10} & \hat{a}_{11} & \hat{a}_{12} \end{bmatrix} \in K^{9 \times 4}$$

Suppose there are two errors $\hat{e}_{\ell_1}, \hat{e}_{\ell_2} (\ell_1 < \ell_2)$ in the evaluations. If $\ell_1 \in \{1, 2, 3\}$, then the Algorithm 2.3 can recover $f(x)$ from the last $3B$ evaluations $(\hat{a}_4, \hat{a}_5, \ldots, \hat{a}_{12})$. Similarly, $f(x)$ can also be recovered from $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_9)$ by the Algorithm 2.3 if $\ell_2 \in \{10, 11, 12\}$. Next, if $\ell_1, \ell_2 \in \{4, 5, 6\}$ or $\ell_1, \ell_2 \in \{7, 8, 9\}$, then the Algorithm 2.2 can recover $f(x)$ from $(\hat{a}_7, \ldots, \hat{a}_{12})$ or $(\hat{a}_1, \ldots, \hat{a}_6)$.

It is remained to consider the case that $\ell_1 \in \{4, 5, 6\}$ and $\ell_2 \in \{7, 8, 9\}$. We substitute $\hat{e}_{\ell_1}, \hat{e}_{\ell_2}$ by α_1, α_2 respectively. Then the determinants of the matrices H_{ℓ_1-3} and H_{ℓ_2-3} can be written as:

$$\text{det}(H_{\ell_1-3}) = -\alpha_1^4 + Q_1(\alpha_1, \alpha_2), \text{ deg } Q_1 \leq 3$$
$$\text{det}(H_{\ell_2-3}) = -\alpha_2^4 + Q_2(\alpha_1, \alpha_2), \text{ deg } Q_2 \leq 3$$

(12)

where $H_{\ell_1-3}, H_{\ell_2-3}$ are Hankel matrices defined as (8) and where Q_1 and Q_2 are bivariate polynomials in α_1 and α_2. We compute the roots $(\xi_{1,k}, \xi_{2,k})_{k \geq 1}$ of the system (12) in K and the pair correct values $(f(\omega^{\xi_{1,k}}), f(\omega^{\xi_{2,k}}))$ is one of the roots. For each root $(\xi_{1,k}, \xi_{2,k})$, we substitute $\hat{e}_{\ell_1}, \hat{e}_{\ell_2}$ by $\xi_{1,k}, \xi_{2,k}$ respectively, and check if the matrix H has rank $B = 3$. If so, then run Algorithm 2.2 on the updated sequence $(\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_6)$. In the end, we obtain a list of sparse polynomials that contains $f(x)$.

Algorithm 2.4. A list-interpolation algorithm for power-basis sparse polynomial with evaluations containing at most 2 errors.

Input: • A black box representation of a polynomial $f \in K[x, x^{-1}]$ where K is a field of scalars. The black box for f returns the same (erroneous) output when probed multiple times at the same input.
• An upper bound B on the sparsity of f.
• An upper bound $D \geq \max_j |\delta_j|$, where δ_j are term degrees of f.
• $\omega \in K \setminus \{0\}$ satisfying:
 • ω has order $\geq 2D + 1$;
 • $\omega^{i_1} \neq \omega^{i_2}$ for all $1 \leq i_1 < i_2 \leq 4B$.
• An algorithm to compute all roots $\in K$ of polynomials in $K[x]$.
Output: ▶ An empty list or a list of sparse polynomials \{f^{[1]}, \ldots, f^{[M]}\} with each \(f^{[k]}\) (1 \(\leq k \leq M\) satisfying:
 ▶ \(f^{[k]}\) has sparsity \(\leq B\) and has term degrees \(\delta_j\) with \(|\delta_j| \leq D\),
 ▶ \(f^{[k]}\) is represented by its term degrees and coefficients;
 ▶ there are \(\leq 2\) indices \(i_1, i_2 \in \{1, 2, \ldots, 4B\}\) such that \(f^{[k]}(\omega^{i_1}) \neq \hat{a}_{i_1}\) and \(f^{[k]}(\omega^{i_2}) \neq \hat{a}_{i_2}\) where \(\hat{a}_{i_1}\) and \(\hat{a}_{i_2}\) are the outputs of the black box probed at inputs \(\omega^{i_1}\) and \(\omega^{i_2}\) respectively;
 ▶ \(f\) is contained in the list.

Step 1: For \(i = 1, 2, \ldots, 4B\), get the output \(\hat{a}_i\) of the black box for \(f\) at input \(\omega^i\).

Step 2: Take \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{3B})\) and \((\hat{a}_{B+1}, \hat{a}_{B+2}, \ldots, \hat{a}_{4B})\) as the evaluations at the first step of Algorithm 2.3 and get two lists \(L_1, L_2\). Let \(L\) be the union of \(L_1\) and \(L_2\).

If either \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{3B})\) or \((\hat{a}_{B+1}, \hat{a}_{B+2}, \ldots, \hat{a}_{4B})\) contains \(\leq 1\) error, the Algorithm 2.3 can compute a list of sparse polynomials containing \(f(x)\).

Step 3: Use Algorithm 2.2 on the sequences \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})\) and \((\hat{a}_{2B+1}, \hat{a}_{2B+2}, \hat{a}_{4B})\). If Algorithm 2.2 returns a sparse polynomial \(\bar{f}\) of sparsity \(\leq B\) and has term degrees \(\delta_j\) with \(|\delta_j| \leq D\), then add \(\bar{f}\) into the list \(L\).

If either \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})\) or \((\hat{a}_{2B+1}, \hat{a}_{2B+2}, \hat{a}_{4B})\) is error-free, the Algorithm 2.2 will return \(f(x)\).

Step 4: For every polynomial \(\bar{f}\) in the list \(L\), if there are \(\geq 3\) indices \(i \in \{1, 2, \ldots, 4B\}\) such that \(\bar{f}(\omega^i) \neq \hat{a}_i\) then delete \(\bar{f}\) from \(L\).

Step 5: For \(\ell_1 = B + 1, \ldots, 2B\) and \(\ell_2 = 2B + 1, \ldots, 3B\),

5(a): substitute \(\hat{a}_{\ell_1}\) by \(\alpha_1\) and \(\hat{a}_{\ell_2}\) by \(\alpha_2\) in the Hankel matrices \(H_{\ell_1-B}\) and \(H_{\ell_2-B}\) (see (8)); let \(\Delta_{\ell_1}(\alpha_1, \alpha_2) = \det(H_{\ell_1-B})\) and \(\Delta_{\ell_2}(\alpha_1, \alpha_2) = \det(H_{\ell_2-B})\).

Here, we also use the fraction free Berlekamp/Massey algorithm [Giesbrecht, Kaltofen, and Lee 2002; Kaltofen and Yuhasz 2013] to compute the determinants of \(H_{\ell_1-B}\) and \(H_{\ell_2-B}\).

5(b): compute all solutions of the Pham system \(\{\Delta_{\ell_1}(\alpha_1, \alpha_2) = 0, \Delta_{\ell_2}(\alpha_1, \alpha_2) = 0\}\) in \(K^2\); denote the solution set as \(\{(\xi_{1,1}, \xi_{2,1}), \ldots, (\xi_{1,b}, \xi_{2,b})\}\).

One may use a Sylvester resultant algorithm and the root finder in \(K[x]\) to accomplish this task in polynomial time.

5(c): for \(k = 1, \ldots, b\),

5(c)i: substitute \(\hat{a}_{\ell_1}\) by \(\xi_{1,k}\) and \(\hat{a}_{\ell_2}\) by \(\xi_{2,k}\);
5(c)ii: use Berlekamp/Massey algorithm to compute the minimal linear generator of the new sequence \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{4B})\) and denote it by \(\Lambda(z)\);
5(c)iii: if \(\deg(\Lambda(z)) \leq B\), use Algorithm 2.2 on the updated sequence \((\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_{2B})\); if Algorithm 2.2 returns a sparse polynomial \(\bar{f}\) of sparsity \(\leq B\) and has term degrees \(\delta_j\) with \(|\delta_j| \leq D\), and there are \(\leq 2\) indices \(i_1, i_2 \in \{1, 2, \ldots, 4B\}\) such that \(\bar{f}(\omega^{i_1}) \neq \hat{a}_{i_1}\) and \(\bar{f}(\omega^{i_2}) \neq \hat{a}_{i_2}\), then add \(\bar{f}\) into the list \(L\);
If the two errors are \(\hat{a}_{\ell_1} \) and \(\hat{a}_{\ell_2} \) with \(\ell_1 \in \{B+1, \ldots, 2B\} \) and \(\ell_2 \in \{2B+1, \ldots, 3B\} \), we substitute \(\hat{a}_{\ell_1} \) and \(\hat{a}_{\ell_2} \) by two symbols \(\alpha_1 \) and \(\alpha_2 \) respectively. As the pair of correct values \((f(\omega^{\ell_1}), f(\omega^{\ell_2})) \) is a solution of the system \(\{\Delta_{\ell_1}(\alpha_1, \alpha_2) = 0, \Delta_{\ell_2}(\alpha_1, \alpha_2) = 0\} \), Step 5 will add \(f \) into the list \(L \).

Step 6: Return the list \(L \).

Proposition 2.4. The output list of Algorithm 2.4 contains \(\leq B^4 + 2B^3 + 3B^2 + 2B + 6 \) polynomials.

Proof. In Algorithm 2.4, only Step 2, Step 3, and Step 5 produce new polynomials. By Proposition 2.1, both the lists \(L_1 \) and \(L_2 \) obtained at Step 2 contain \(\leq B^2 + B + 2 \) polynomials. Step 3 produces \(\leq 2 \) polynomials. For Step 5 of Algorithm 2.4, the Pham system \(\{\Delta_{\ell_1}(\alpha, \beta) = 0, \Delta_{\ell_2}(\alpha, \beta) = 0\} \) has \(\leq (B+1)^2 \) solutions, so this step produces \(\leq B^2(3B+1)^2 \) polynomials. Therefore the output list contains \(\leq B^2(3B+1)^2 + 2(B^2 + B + 2) + 2 \) polynomials. \(\square \)

2.3. Correcting \(E \) Errors

Recall that \(f(x) \) is a sparse univariate polynomial of the form \(\sum_{j=1}^{t} c_j x^{\delta_j} \) (see (7)) with \(t \leq B \) and \(\forall j, |\delta_j| \leq D \). We show how to list interpolate \(f(x) \) from \(N \) evaluations containing \(\leq E \) errors, where

\[
N = \left\lfloor \frac{4}{3}E + 2 \right\rfloor B.
\]

Let \(\theta = \lfloor E/3 \rfloor \). Choose \(\omega_1, \ldots, \omega_{\theta+1}, \omega_{\theta+1} \in K \setminus \{0\} \) such that:

1. \(\omega_\sigma \) has order \(\geq 2D + 1 \) for all \(1 \leq \sigma \leq \theta + 1 \), and
2. \(\omega_{\sigma_1}^{\delta_1} \neq \omega_{\sigma_2}^{\delta_2} \) for any \(1 \leq \sigma_1 < \sigma_2 \leq \theta + 1 \) and \(1 \leq i_1 < i_2 \leq 4B \).

Let \(\hat{a}_{\sigma, i} \) denote the output of the black box at input \(\omega_{\sigma}^i \) for \(\sigma = 1, \ldots, \theta + 1 \) and \(i = 1, \ldots, 4B \).

If \(E \mod 3 = 0 \) then \(N = (E/3)4B + 2B \). The problem is reduced to one the following situations: (1) the last block \((\hat{a}_{\theta+1,1}, \hat{a}_{\theta+1,2}, \ldots, \hat{a}_{\theta+1,2B}) \) of length \(2B \) is free of error, or (2) there is some block \((\hat{a}_{\sigma,1}, \hat{a}_{\sigma,2}, \ldots, \hat{a}_{\sigma,4B}) \) with \(1 \leq \sigma \leq \theta \) which contains \(\leq 2 \) errors. These two situations can be respectively dealt with the Algorithm 2.2 and Algorithm 2.4.

If \(E \mod 3 = 1 \) then \(N = 4B\theta + 3B \). The problem is reduced to one the following situations: (1) the last block \((\hat{a}_{\theta+1,1}, \hat{a}_{\theta+1,2}, \ldots, \hat{a}_{\theta+1,3B}) \) of length \(3B \) has \(\leq 1 \) error, or (2) there is some block \((\hat{a}_{\sigma,1}, \hat{a}_{\sigma,2}, \ldots, \hat{a}_{\sigma,4B}) \) with \(1 \leq \sigma \leq \theta \) which contains \(\leq 2 \) errors. Therefore by applying the Algorithm 2.3 on \((\hat{a}_{\theta+1,1}, \hat{a}_{\theta+1,2}, \ldots, \hat{a}_{\theta+1,3B}) \) and the Algorithm 2.4 on \((\hat{a}_{\sigma,1}, \hat{a}_{\sigma,2}, \ldots, \hat{a}_{\sigma,4B}) \), we can list interpolate \(f(x) \).

If \(E \mod 3 = 2 \) then \(E = 3\theta + 2 \) and \(N = (\theta + 1)4B \). So there is some \(\sigma \in \{1, \ldots, \theta + 1\} \) such that the block \((\hat{a}_{\sigma,1}, \hat{a}_{\sigma,2}, \ldots, \hat{a}_{\sigma,4B}) \) of length \(4B \) contains \(\leq 2 \) errors, and we can use the Algorithm 2.4 on this block to list interpolate \(f(x) \).

Remark 2.1. We apply the Algorithm 2.4 on every block \((\hat{a}_{\sigma,1}, \hat{a}_{\sigma,2}, \ldots, \hat{a}_{\sigma,4B}) \) for all \(\sigma \in \{1, \ldots, \lfloor E/3 \rfloor\} \), which will result in \(\leq \lfloor E/3 \rfloor (B^4 + 2B^3 + 3B^2 + 2B + 6) \) polynomials according to Proposition 2.4. The length of the last block depends on the value of \(E \), and we have the following different upper bounds on the number of resulting polynomials:
(1) \((E/3)(B^4 + 2B^3 + 3B^2 + 2B + 6) + 1\), if \(E \mod 3 = 0\);

(2) \([E/3] (B^4 + 2B^3 + 3B^2 + 2B + 6) + B^2 + B + 2\), if \(E \mod 3 = 1\) (see Proposition 2.1);

(3) \((\lfloor E/3 \rfloor + 1) (B^4 + 2B^3 + 3B^2 + 2B + 6)\), if \(E \mod 3 = 2\).

By Descartes’ rule of signs (see e.g. [Bochnak, Coste, and Roy 1998, Proposition 1.2.14]), the approach for correcting \(E\) errors will produce a single polynomial if \(K = \mathbb{R}, N \geq 2B + 2E\) and \(\omega_\sigma > 0, \forall \sigma\). However, if \(N < 2B + 2E\) then there can be \(\geq 2\) valid sparse interpolants. We give an example to illustrate this.

Example 2.3. Choose \(\omega > 0\). Let \(B\) be an upper bound on the sparsity of \(f\) and \(E\) be an upper bound on the number of errors in the evaluations. Let

\[
h = \prod_{i=0}^{2B-2} (x - \omega^i),
\]

and \(f^{[1]}\) be the sum of odd degree terms of \(h\) and \(f^{[2]}\) be the negative of the sum of even degree terms of \(h\). Clearly, we have \(h = f^{[1]} - f^{[2]}\) and \(f^{[1]}(\omega^i) = f^{[2]}(\omega^i)\) for \(i = 0, 1, \ldots, 2B - 2\). Moreover, both \(f^{[1]}\) and \(f^{[2]}\) have sparsity \(\leq B\) as \(\deg(h) = 2B - 1\). Consider a sequence \(a\) consisting of the following \(2B + 2E - 1\) values:

\[
a^{(1)} = (f^{[1]}(\omega^0), f^{[1]}(\omega^1), \ldots, f^{[1]}(\omega^{2B-2})),
\]

\[
a^{(2)} = (f^{[1]}(\omega^{2B-1}), f^{[1]}(\omega^{2B}), \ldots, f^{[1]}(\omega^{2B+E-2})),
\]

\[
a^{(3)} = (f^{[2]}(\omega^{2B+E-1}), f^{[2]}(\omega^{2B+E}), \ldots, f^{[2]}(\omega^{2B+2E-2})),
\]

that is, \(\hat{a} = (a^{(1)}, a^{(2)}, a^{(3)})\). If all the errors are in \(a^{(3)}\) then \(f^{[1]}\) is a valid interpolant. Alternatively, if all the errors are in \(a^{(2)}\) then \(f^{[2]}\) is a valid interpolant. Therefore, from these \(2B + 2E - 1\) values, we have at least \(2\) valid interpolants.

We remark that one of the valid interpolants, \(f^{[1]}\) and \(f^{[2]}\), must have \(B\) terms since otherwise uniqueness is guaranteed by Descartes’s rule of signs. In this example, both \(f^{[1]}\) and \(f^{[2]}\) have \(B\) terms because the polynomial \(h\) has \(2B\) terms. Indeed, \(\deg(h) = 2B - 1\) implies that \(h\) has \(\leq 2B\) terms, and by Descartes’ rule of signs, \(h\) has \(\geq 2B\) terms because it has \(2B - 1\) positive real roots. Therefore \(h\) is a dense polynomial. However, with the following substitutions

\[x = y^k, \omega = \bar{\omega}^k\text{ for some }k \gg 1,\]

we have again a counter example where \(h, f^{[1]}, \text{ and } f^{[2]}\) are sparse with respect to the new variable \(y\).
3. Sparse Interpolation in Chebyshev Basis with Error Correction

3.1. Correcting One Error

Let \(K \) be a field of scalars with characteristic \(\neq 2 \). Let \(f(x) \in K[x] \) be a polynomial represented by a black box. Assume that \(f(x) \) is a sparse polynomial in Chebyshev-1 basis of the form:

\[
f(x) = \sum_{j=1}^{t} c_j T_{\delta_j}(x) \in K[x], \quad 0 \leq \delta_1 < \delta_2 < \cdots < \delta_t = \deg(f), \forall j, 1 \leq j \leq t: c_j \neq 0,
\]

where \(T_{\delta_j}(x) \) are Chebyshev polynomials of the First kind of degree \(\delta_j \). We want to recover the term degrees and coefficients of the polynomial \(g \). Assume that \(c_j \) are correct, then \(f \) can be represented as a sparse Laurent polynomial:

\[
g(y) = f\left(\frac{y + y^{-1}}{2}\right) = \sum_{j=1}^{t} \frac{c_j}{2} (y^{\delta_j} + y^{-\delta_j})
\]

Therefore the problem is reduced to recover the term degrees and coefficients of the polynomial \(g(y) \). Let \(\omega \in \mathbb{K} \) such that \(\omega \) has order \(\geq 4D + 1 \).

For \(i = 1, 2, \ldots, 3B \), let \(\hat{a}_{2i-1} \) be the output of the black box probed at input \(\gamma_{2i-1} = (\omega^{2i-1} + \omega^{-(2i-1)})/2 \). Note that \(g(\omega^i) = g(\omega^{-i}) \) for any integer \(i \). For odd integers \(r \in \{2k-1 \mid k = 1, \ldots, B\} \), let \(G_r \in K^{(B+1) \times (B+1)} \) be the following Hankel-Toeplitz matrix:

\[
G_r = \begin{bmatrix}
\hat{a}_{|r+2(i+j)|}^{B}_{i,j=0} & \hat{a}_{|r+2(i-j)|}^{B}_{i,j=0}
\end{bmatrix}_{i,j=0}^{B}.
\]

If all the values involved in the matrix \(G_r \) are correct, then \(\det(G_r) = 0 \) [Arnold and Kaltofen 2015, Lemma 3.1].

If the \(2B \) evaluations \(\{\hat{a}_{2i-1}\}_{i=1}^{2B} \) are free of errors, then one can use Prony’s algorithm to recover \(g(y) \) (and \(f(x) \)) from the following sequence [Kaltofen and Pernet 2014, Lemma 1]:

\[
\hat{a}_{-2(2B-1)-1}, \hat{a}_{-2(2B-2)-1}, \ldots, \hat{a}_{-1}, \hat{a}_1, \ldots, \hat{a}_{2(2B-1)-1}, \hat{a}_{2(2B)-1}.
\]

Now we show how to list interpolate \(f(x) \) from \(3B \) evaluations \(\{\hat{a}_{2i-1}\}_{i=1}^{3B} \) containing \(\leq 1 \) error.

Assume that \(\hat{a}_{2\ell-1} \) is the error, that is, \(\hat{a}_{2\ell-1} \neq f(\gamma_{2\ell-1}) = g(\omega^{2\ell-1}) \). The problem can be reduced to three cases:

Case 1: \(1 \leq \ell \leq B \);

Case 2: \(B + 1 \leq \ell \leq 2B \);

Case 3: \(2B + 1 \leq \ell \leq 3B \).
For Case 3, we can recover $f(x)$ from the sequence $(\hat{a}_{2i-1})_{i=-(2B-1)}^{2B}$. For the Case 1 and Case 2, we substitute $\hat{a}_{2\ell-1}$ by a symbol α. Let

$$
\Delta_{2\ell-1}(\alpha) = \begin{cases}
\det(G_{2\ell-1}), & \text{if } 1 \leq \ell \leq B, \\
\det(G_{2(\ell-B)-1}), & \text{if } B + 1 \leq \ell \leq 2B,
\end{cases}
$$

where $G_{2\ell-1}$ and $G_{2(\ell-B)-1}$ are defined as in (16) and $\Delta_{2\ell-1}(\alpha)$ is a univariate polynomial of degree $B + 1$ in α (see Lemma 3.1). By [Arnold and Kaltofen 2015, Lemma 3.1], the correct value $f(\gamma_{2\ell-1})$ is a solution of the equation $\Delta_{2\ell-1}(\alpha) = 0$. So we compute all solutions $\{\xi_1, \ldots, \xi_b\}$ of $\Delta_{2\ell-1}(\alpha) = 0$ in K. For each solution $\xi_k(1 \leq k \leq b)$ we replace $\hat{a}_{2\ell-1}$ by ξ_k and try Prony’s algorithm on the updated sequence $(\hat{a}_{2i-1})_{i=-(2B-1)}^{2B}$. In the end, we will get a list of polynomials with $f(x)$ being contained.

Lemma 3.1. Let $r \in \{2k - 1 \mid k = 1, \ldots, B\}$ and $G_r = [\hat{a}_{|r+2(i+j)|} + \hat{a}_{|r+2(i-j)|}]_{i,j=0}^B$. If \hat{a}_r or \hat{a}_{r+2B} is substituted by a symbol α in G_r, then the determinant of G_r is a univariate polynomial of degree $B + 1$ in α.

Proof. First, we show that if \hat{a}_{r+2B} is substituted by α, then the matrix G_r has the form:

$$
\begin{bmatrix}
* & \alpha+ \ast \\
\ast & \ast \\
\alpha+ & \ast \\
\ast & \ast
\end{bmatrix}
$$

Since $r \in \{2k - 1 \mid k = 0, \ldots, B\}$ and $i, j \in \{0, 1, \ldots, B\}$, we have

$$
|r + 2(i + j)| = r + 2B \Rightarrow i + j = B,
|r + 2(i - j)| = r + 2B \Rightarrow i = B, j = 0 \text{ or } i = 0, j = B.
$$

Therefore, either $|r + 2(i + j)| = r + 2B$ or $|r + 2(i - j)| = r + 2B$ implies $i + j = B$, so \hat{a}_{r+2B} only appears on the anti-diagonal of the matrix G_r. Conversely, every element on the anti-diagonal of G_r is equal to $\hat{a}_{r+2B} + \hat{a}_{r+2(i-j)}$, for some $i, j \in \{0, 1, \ldots, B\}$. Thus G_r has the form (18) and its determinant is a univariate polynomial of degree $B + 1$ in α.

Now we consider the case that \hat{a}_r is substituted by α. Similarly, because $r \in \{2k - 1 \mid k = 1, \ldots, B\}$ and $i, j \in \{0, 1, \ldots, B\}$, we have

$$
|r + 2(i + j)| = r \Rightarrow i = j = 0,
|r + 2(i - j)| = r \Rightarrow i = j \text{ or } i = j - r \text{ if } j \geq r.
$$

Therefore, if $r > B$ then $i = j$ in (19), so \hat{a}_r only appears on the main diagonal of G_r. On the other hand, every element on the main diagonal of G_r is equal to $\hat{a}_{r+2(i+i)} + \hat{a}_r$ for some $i \in \{0, 1, \ldots, t\}$. Hence, if $r > B$ then the determinant of G_r is a polynomial of degree $B + 1$ in α. Assume that $r \leq B$. From (19), we see that after substituting \hat{a}_r by α, the matrix G_r
has the form:

$$\begin{bmatrix}
\alpha + \ast & \cdots & \alpha + \ast & \ast \\
\vdots & \ddots & \vdots & \vdots \\
\ast & \cdots & \alpha + \ast & \ast \\
\ast & \cdots & \ast & \alpha + \ast \\
\end{bmatrix}.$$ (20)

According to Lemma 2.2, the determinant of the matrix (20) is a univariate polynomial of degree $B + 1$ in α. □

Example 3.1. For $B = 3$, we have $3B = 9$ evaluations $\{\hat{a}_{2\ell-1}\}_{i=1}^{3B}$ obtained from the black box for f at inputs $\gamma_i = (\omega^{2i-1} + \omega^{-(2i-1)})/2$. We construct the following 6×4 matrix:

$$G = \begin{bmatrix}
2\hat{a}_1 & \hat{a}_3 + \hat{a}_1 & \hat{a}_5 + \hat{a}_3 & \hat{a}_7 + \hat{a}_5 \\
2\hat{a}_3 & \hat{a}_5 + \hat{a}_1 & \hat{a}_7 + \hat{a}_1 & \hat{a}_9 + \hat{a}_3 \\
2\hat{a}_5 & \hat{a}_7 + \hat{a}_3 & \hat{a}_9 + \hat{a}_1 & \hat{a}_{11} + \hat{a}_1 \\
2\hat{a}_7 & \hat{a}_9 + \hat{a}_5 & \hat{a}_{11} + \hat{a}_3 & \hat{a}_{13} + \hat{a}_1 \\
2\hat{a}_9 & \hat{a}_{11} + \hat{a}_7 & \hat{a}_{13} + \hat{a}_5 & \hat{a}_{15} + \hat{a}_3 \\
2\hat{a}_{11} & \hat{a}_{13} + \hat{a}_9 & \hat{a}_{15} + \hat{a}_7 & \hat{a}_{17} + \hat{a}_5 \\
\end{bmatrix} \in \mathbb{K}^{6 \times 4}.
$$

For $r = 1, 3, 5$, the matrices G_r are 4×4 submatrices of the matrix G. The matrix G_1 consists of the first 4 rows of G. If we substitute \hat{a}_1 or \hat{a}_7 by a symbol α, then the determinant of G_1 is univariate polynomial of degree 4 in α. The matrix G_3 consists of the second to the fifth row of G and the determinant of G_3 becomes a univariate polynomial of degree 4 in α if \hat{a}_3 or \hat{a}_9 is substituted by α. Similarly, the matrix G_5 consists of the last 4 rows of G. Substituting \hat{a}_5 or \hat{a}_{11} by α, $\det(G_5)$ is a univariate polynomial of degree 4 in α.

Suppose there is one error $\hat{a}_{2\ell-1} \neq f(\gamma_{2\ell-1})$ in the $3B$ evaluations. Here is how we correct this single error for all possible ℓ’s:

1. if $\ell \in \{1, 2, 3\}$, then substitute $\hat{a}_{2\ell-1}$ by α and compute the roots of $\det(G_{2\ell-1})$, and the roots are candidates for $f(\gamma_{2\ell-1})$;
2. if $\ell \in \{4, 5, 6\}$, then substitute $\hat{a}_{2\ell-1}$ by α and compute the roots of $\det(G_{2(\ell-3)-1})$, and the roots are candidates for $f(\gamma_{2\ell-1})$;
3. if $\ell \in \{7, 8, 9\}$, then $f(x)$ can be recovered by applying Prony’s algorithm on the sequence $(\hat{a}_{2\ell-1})_{i=5}^{6}$.

Algorithm 3.1. A list-interpolation algorithm for Chebyshev-1 sparse polynomials with evaluations containing at most one error.

Input:
- A black box representation of a polynomial $f \in \mathbb{K}[x]$ where \mathbb{K} is a field of scalars with characteristic $\neq 2$ and f is a linear combination of Chebyshev-1 polynomials. The black box for f returns the same (erroneous) output when probed multiple times at the same input.
- An upper bound B of the sparsity of f.
• An upper bound D of the degree of f.
• $\omega \in K \setminus \{0\}$ has order $\geq 4D + 1$.
• An algorithm that computes all roots $\in K$ of a polynomial $\in K[x]$.

Output: • An empty list or a list of sparse polynomials $\{f^{[1]}, \ldots, f^{[M]}\}$ with each $f^{[k]}$ $(1 \leq k \leq M)$ satisfying:
 • $f^{[k]}$ has sparsity $\leq B$ and degree $\leq D$;
 • $f^{[k]}$ is represented by its Chebyshev-1 term degrees and coefficients;
 • there is ≤ 1 index $i \in \{1, 2, \ldots, 3B\}$ such that $f^{[k]}(\gamma_{2i-1}) \neq \hat{a}_{2i-1}$ where
 $\gamma_i = (\omega^{2i-1} + \omega^{-(2i-1)})/2$ and
 \hat{a}_{2i-1} is the output of the black box probed at input γ_{2i-1};
 • f is contained in the list.

Step 1: For $i = 1, 2, \ldots, 3B$, get the output \hat{a}_i of the black box for f at input $\gamma_i = (\omega^{2i-1} + \omega^{-(2i-1)})/2$. Let L be an empty list.

Step 2: Use Algorithm 2.2 on the sequence $(\hat{a}_{2i-1})_{i=1}^{3B}$. If Algorithm 2.2 returns a polynomial of the following form: $\sum_{j=1}^{t} c_j/2 (\omega^{-\delta_j x^{2i\Delta}} + \omega^{\delta_j x^{-2i\Delta}})$ with $c_j \in K$, $t \leq B$, $\delta_j \leq D$, then let $\hat{f} = \sum_{j=1}^{t} c_j T_{\delta_j}(x)$. If there is ≤ 1 index $i \in \{1, \ldots, 3B\}$ such that $\hat{f}(\gamma_{2i-1}) \neq \hat{a}_{2i-1}$, then add \hat{f} to the list L.

Step 2 will add f to the list L if the error is in $\{\hat{a}_{2i-1}\}_{i=2B+1}^{3B}$.

Step 3: For $\ell = 1, \ldots, B$,

3(a): substitute $\hat{a}_{2\ell-1}$ by a symbol α in the matrix $G_{2\ell-1}$; compute the determinant of $G_{2\ell-1}$ and denote it by $\Delta_{2\ell-1}(\alpha)$.

According to Lemma 3.1, $\Delta_{2\ell-1}(\alpha)$ is a univariate polynomial of degree $B + 1$ in α.

3(b): compute all solutions of the equation $\Delta_{2\ell-1}(\alpha) = 0$ in K; denote the solution set as $\{\xi_1, \ldots, \xi_b\}$.

3(c): for $k = 1, \ldots, b$,

3(c)i: substitute $\hat{a}_{2\ell-1}$ by ξ_k;
3(c)ii: use Berlekamp/Massey algorithm to compute the the minimal linear generator of the new sequence $(\hat{a}_{2i-1})_{i=-3B+1}^{3B}$ and denote it by $\Lambda(z)$;
3(c)iii: if $\deg(\Lambda(z)) \leq 2B$, repeat Step 2.

If the error is $\hat{a}_{2\ell-1}$ with $1 \leq \ell \leq B$, that is $\hat{a}_{2\ell-1} \neq f(\gamma_{2\ell-1})$, then we substitute $\hat{a}_{2\ell-1}$ by a symbol α. As the correct value $f(\gamma_{2\ell-1})$ is a solution of $\Delta_{2\ell-1}(\alpha) = 0$, that is $f(\gamma_{2\ell-1}) = \xi_k$ for some $k \in \{1, \ldots, b\}$, Step 3 will add f into the list L.

Step 4: For $\ell = B + 1, \ldots, 2B$,

4(a): substitute $\hat{a}_{2\ell-1}$ by a symbol α in the matrix $G_{2(\ell-1)-1}$; compute the determinant of $G_{2(\ell-1)-1}$ and denote it by $\Delta_{2\ell-1}(\alpha)$.

According to Lemma 3.1, $\Delta_{2\ell-1}(\alpha)$ is a univariate polynomial of degree $B + 1$ in α.
4(b): compute all solutions of the equation $\Delta_{2\ell-1}(\alpha) = 0$ in K; denote the solution set as $\{\xi_1, \ldots, \xi_{b'}\}$;
4(c): for $k = 1, \ldots, b'$,
 4(c)i: substitute $\hat{a}_{2\ell-1}$ by ξ_k;
 4(c)ii: use Berlekamp/Massey algorithm to compute the minimal linear generator of the new sequence $(\hat{a}_{2i-1})_{i=-3B+1}^{3B}$ and denote it by $\Lambda(z)$;
 4(c)iii: if $\deg(\Lambda(z)) \leq 2B$, repeat Step 2.

If the error is $\hat{a}_{2\ell-1} (B + 1 \leq \ell \leq 2B)$, that is $\hat{a}_{2\ell-1} \neq f(\gamma_{2\ell-1})$, we also substitute $\hat{a}_{2\ell-1}$ by a symbol α. As the solution set $\{\xi_1, \ldots, \xi_{b'}\}$ of $\Delta_{2\ell-1}(\alpha) = 0$ contains $f(\gamma_{2\ell-1})$, Step 4 will add f into the list L.

Step 5: Return the list L.

Proposition 3.2. The output list of Algorithm 3.1 contains $\leq 2B^2 + 2B + 1$ polynomials.

Proof. The Step 2 in Algorithm 3.1 produces ≤ 1 polynomial, and both Step 3 and Step 4 produce $\leq B(B+1)$ polynomials. Hence the final output list has $\leq 1+2B(B+1)$ polynomials. \square

3.2. Correcting E Errors

The settings for $f(x)$ are the same as in Section 3.1. We show how to list interpolate $f(x)$ from N evaluations containing $\leq E$ errors, where

$$N = \left\lceil \frac{3}{2} E + 2 \right\rceil B. \tag{21}$$

Let $\theta = \lfloor E/2 \rfloor$. Choose $\omega_1, \ldots, \omega_{\theta}, \omega_{\theta+1} \in K \setminus \{0\}$ such that ω_σ has order $\geq 4D + 1$ for $1 \leq \sigma \leq \theta + 1$.

If E is even then $N = (E/2)3B + 2B$. The problem is reduced to one the following situations: (1) the last block $(\hat{a}_{\theta+1,2i-1})_{i=1}^{3B}$ of length $2B$ is free of errors, or (2) there is some block $(\hat{a}_{\sigma,2i-1})_{i=1}^{3B}$ with $1 \leq \sigma \leq E/2$ of length $3B$ contains ≤ 1 errors. These two situations can be respectively dealt with the Algorithm 2.2 and Algorithm 3.1.

If E is odd then $E = 2\theta + 1$ and $N = (\theta+1)3B$. Thus, there is some block $(\hat{a}_{\sigma,1}, \ldots, \hat{a}_{\sigma,3B})$ with $1 \leq \sigma \leq \theta + 1$ of length $3B$ contains ≤ 1 error; we can use the Algorithm 3.1 on this block to list interpolate $f(x)$.

Remark 3.1. For every $\sigma \in \{1, \ldots, \lfloor E/2 \rfloor\}$, we apply Algorithm 3.1 on the block $(\hat{a}_{\sigma,2i-1})_{i=1}^{3B}$ which will result in $\leq \lfloor E/2 \rfloor (2B^2 + 2B + 1)$ polynomials by Proposition 3.2. The length of the last block depends on the value of E, and we have following different upper bounds on the number of resulting polynomials:

1. $(E/2)(2B^2 + 2B + 1) + 1$, if E is even;
2. $(\lfloor E/2 \rfloor + 1)(2B^2 + 2B + 1)$, if E is odd.
Due to Obrechkoff’s theorem, a generalization of Descartes’ rule of signs to orthogonal polynomials [Dimitrov and Rafaeli 2009, Theorem 1.1], our approach for correcting E errors gives a unique valid sparse interpolant when \(K = \mathbb{R}, N \geq 2B + 2E \) and \(\omega_\sigma > 1 \) [Arnold and Kaltofen 2015, Corollary 2.4]. Similar to the case of power basis, if \(N < 2B + 2E \) then there can be \(\geq 2 \) valid sparse interpolants in Chebyshev-1 basis as shown by the following example.

Example 3.2. Choose \(\omega > 1 \). The polynomials \(h, f^{[1]} \) and \(f^{[2]} \), given in Example 2.3, can be represented in Chebyshev-1 basis using the following formula [Fraser 1965, P. 303], [Cody 1970, P. 412], [Mathar 2006, Eq. (2)]:

\[
 x^d = \frac{1}{2^{d-1}} \sum_{j=0}^{d} \left(\frac{d}{(d-j)/2} \right) \prod_{j \text{ is even}} \begin{cases} T_j(x) & \text{if } j \geq 1, \\
 \frac{1}{2} & \text{if } j = 0. \end{cases}
 \] (22)

Moreover, the formula (22) implies that \(f^{[1]} \) is a linear combination of the odd degree Chebyshev-1 polynomials \(T_{2j-1}(x) \) \((j = 1, 2, \ldots, B)\), and \(f^{[2]} \) is a linear combination of the even degree Chebyshev-1 polynomials \(T_{2j-2}(x) \) \((j = 1, 2, \ldots, B)\), which means both \(f^{[1]} \) and \(f^{[2]} \) have sparsity \(\leq B \) in Chebyshev-1 basis as well. Therefore, \(f^{[1]} \) and \(f^{[2]} \) are also valid interpolants in Chebyshev-1 basis for the \(2B + 2E - 1 \) evaluations given in (14) (if we assume \(B \) is an upper bound on the sparsity of the black-box polynomial \(f \) and \(E \) is an upper bound on the number of errors in the evaluations).

Again, we remark that one of the valid interpolants, \(f^{[1]} \) and \(f^{[2]} \), must have sparsity \(B \) since otherwise uniqueness is a consequence of the Obrechkoff’s theorem [Dimitrov and Rafaeli 2009, Theorem 1.1]. In this example, \(h \) also has \(2B \) terms in Chebyshev-1 basis because \(\deg(h) = 2B - 1 \) and \(h \) has \(2B - 1 \) real roots \(\omega^i > 1, i = 1, \ldots, 2B - 1 \). Thus both \(f^{[1]} \) and \(f^{[2]} \) have sparsity \(B \) in Chebyshev-1 basis. One can also make \(h, f^{[1]} \) and \(f^{[2]} \) sparse with respect to Chebyshev-1 basis by the following substitutions:

\[
 x = T_k(y), \ \omega = T_k(\bar{\omega}) \text{ for some } k \gg 1.
\]

For \(K = \mathbb{C} \), we usually choose \(\omega \) as a root of unity. But then we may need \(2B(2E + 1) \) evaluations to get a unique interpolant. Here is an example from [Kaltofen and Pernet 2014, Theorem 3], simply by changing the power basis to Chebyshev-1 basis.

Example 3.3. Consider the following two polynomials:

\[
 f_1(x) = \frac{1}{t} \sum_{j=0}^{t-1} T_{2j \frac{m}{t}}(x)
\]

\[
 f_2(x) = -\frac{1}{t} \sum_{j=0}^{t-1} T_{(2j+1) \frac{m}{t}}(x),
\]

where \(m \geq 2t(2E + 1) - 1 \) and \(2t \) divides \(m \). Let \(\omega \) be a primitive \(m \)-th root of unity. Let \(b = (0, \ldots, 0, 1, 0, \ldots, 0) \in K^{2t-1} \).
The evaluations of f_1 at $\frac{\omega^i + \omega^{-i}}{2}$ for $i = 1, 2, \ldots, 2t(2E + 1) - 1$ are

$$\left(b, 1, \ldots, b, 1, b \right) \in K^{2t(2E+1)-1}.$$

The evaluations of f_2 at $\frac{\omega^i + \omega^{-i}}{2}$ for $i = 1, 2, \ldots, 2t(2E + 1) - 1$ are

$$\left(b, -1, \ldots, b, -1, b \right) \in K^{2t(2E+1)-1}.$$

Suppose we probe the black box for f at $\frac{\omega^i + \omega^{-i}}{2}$ with $i = 1, 2, \ldots, 2t(2E + 1) - 1$ sequentially, and obtain the following sequence of evaluations:

$$\hat{a} = \left(b, 1, \ldots, b, 1, b, -1, \ldots, b, -1, b \right) \in K^{2t(2E+1)-1}.$$

Assume $B = t$ and there are E errors in the sequence \hat{a}. Then both f_1 and f_2 are valid interpolants for \hat{a}. More specifically, f_1 is a valid interpolant for \hat{a} if the E errors are $\hat{a}_{2t}, \hat{a}_{2t+2}, \ldots, \hat{a}_{2t+E}$; f_2 is a valid interpolant for \hat{a} if the E errors are $\hat{a}_{2t(E+1)}, \hat{a}_{2t(E+2)}, \ldots, \hat{a}_{2t(2E)}$.

Remark 3.2. Polynomials in Chebyshev-2, Chebyshev-3 and Chebyshev-4 bases can be transformed into Laurent polynomials using the formulas given in [Imamoglu, Kaltofen, and Yang 2018, Sec. 1, (7)-(9)]. Therefore, our approach to list-interpolate black-box polynomials in Chebyshev-1 bases also works for black-box polynomials in Chebyshev-2, Chebyshev-3 and Chebyshev-4 bases.

References

A. Appendix

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{a}_i</td>
<td>the output of the black box for f at input ω^i</td>
</tr>
<tr>
<td>α</td>
<td>a symbol that substitute the single error in a block of $3B$ outputs of the black box for f</td>
</tr>
<tr>
<td>α_1, α_2</td>
<td>symbols that substitute the two errors in a block of $4B$ outputs of the black box for f</td>
</tr>
<tr>
<td>$B \geq t$, $B \geq t$</td>
<td>an upper bound on the sparsity of f</td>
</tr>
<tr>
<td>b</td>
<td>number of solutions to polynomial equation(s) for hypothetical errors</td>
</tr>
<tr>
<td>β</td>
<td>$=(\omega + 1/\omega)/2$, evaluation point of Chebyshev-1 polynomials</td>
</tr>
<tr>
<td>c_j</td>
<td>the coefficient of the j-th term of f</td>
</tr>
<tr>
<td>$D \geq</td>
<td>\delta_j</td>
</tr>
<tr>
<td>δ_j</td>
<td>the j-th term degree of f</td>
</tr>
<tr>
<td>Δ</td>
<td>a matrix determinant</td>
</tr>
<tr>
<td>E</td>
<td>an upper bound on the number of errors that is input to the algorithm</td>
</tr>
<tr>
<td>f</td>
<td>the black-box polynomial</td>
</tr>
<tr>
<td>γ_i</td>
<td>$=(\omega^i + 1/\omega^i)/2$, inputs of the black box for f if f is in Chebyshev bases</td>
</tr>
<tr>
<td>$G_r \in K^{(B+1)\times(B+1)}$, $G_r \in K^{(B+1)\times(B+1)}$, $G_r \in K^{(B+1)\times(B+1)}$</td>
<td>the Hankel+Toeplitz matrix with \hat{a}_{r+i+j} on its $(i+1)$-th row and $(j+1)$-th column</td>
</tr>
<tr>
<td>$H_r \in K^{(B+1)\times(B+1)}$, $H_r \in K^{(B+1)\times(B+1)}$, $H_r \in K^{(B+1)\times(B+1)}$</td>
<td>the Hankel matrix with $\hat{a}{r+i-1}, \hat{a}{r+i}, \ldots, \hat{a}_{r+i-1+B}$ on its i-th row</td>
</tr>
<tr>
<td>K</td>
<td>a field of scalars with characteristic $\neq 2$</td>
</tr>
<tr>
<td>ξ_i</td>
<td>candidates for the correct value $f(\omega^i)$ if \hat{a}_i is assumed to be an error</td>
</tr>
<tr>
<td>$\xi_{1,i}, \xi_{2,i}$</td>
<td>candidates for the pair of correct values $f(\omega^{\ell_1}), f(\omega^{\ell_2})$ if $\hat{a}{\ell_1}$ and $\hat{a}{\ell_2}$ are assumed to be errors</td>
</tr>
<tr>
<td>ℓ</td>
<td>the error location in the outputs of the black box for f if $E = 1$</td>
</tr>
<tr>
<td>ℓ_1, ℓ_2</td>
<td>the error locations in the outputs of the black box for f if $E = 2$</td>
</tr>
<tr>
<td>L</td>
<td>the output list of our list decoding algorithms</td>
</tr>
<tr>
<td>Λ</td>
<td>the term locator polynomial</td>
</tr>
<tr>
<td>M</td>
<td>the number of the output polynomials of our error-correcting algorithms</td>
</tr>
<tr>
<td>N</td>
<td>the number of the evaluations by the black box for f</td>
</tr>
<tr>
<td>ω</td>
<td>a non-zero number in K, evaluation base point for the black-box polynomial f when only one block of evaluations are needed</td>
</tr>
<tr>
<td>$\omega_\sigma = \sigma = 1, 2, \ldots, \theta + 1$, $\omega_\sigma = \sigma = 1, 2, \ldots, \theta + 1$, $\omega_\sigma = \sigma = 1, 2, \ldots, \theta + 1$</td>
<td>non-zero numbers in K, evaluation base points for the black box polynomial f when multiple blocks of evaluations are needed</td>
</tr>
<tr>
<td>p_j</td>
<td>$1 \leq j \leq t$, the roots of the term locator polynomial Λ</td>
</tr>
<tr>
<td>t</td>
<td>the actual number of terms of f</td>
</tr>
<tr>
<td>$\theta = \lfloor E/3 \rfloor$ if the black-box polynomial f is in power basis, or $= \lfloor E/2 \rfloor$ if the black-box polynomial f is in Chebyshev bases</td>
<td></td>
</tr>
<tr>
<td>ζ_i</td>
<td>distinct, algorithm-dependent arguments in K</td>
</tr>
</tbody>
</table>