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ABSTRACT

In [IEEE Trans. Information Theory, vol. 67, nr. 1 (2021)] we

have presented error-correcting algorithms that interpolate

sparse univariate polynomials from values at argumentswhich

the algorithms compute.We have assumed that the input poly-

nomials are sparse in terms that are powers of the variable

(standard basis) or sparse in Chebyshev basis polynomials.We

recover all polynomials of sparsity ≤ � that from our # input

points interpolate at least # − � of the points, that is, correct

≤ � errors in the values at the error capacity �/# . Our IEEE

Transactions algorithms have, roughly, an error capacity of

0.75/� for power basis and 0.66/� for Chebyshev basis.

We present algorithms which randomly select values from

sufficiently large finite sets before evaluation, and then re-

turn the sparse interpolant in a list of valid interpolants with

high probability. The error capacity of our algorithms for both

power and Chebyshev bases is, roughly, 1/�. More precisely,

we recover the interpolant from # = ⌊�/2+ 1⌋ (2� + 1) values

with probability ≥ 1 − n when sampling from sets that have

≥ 16⌊�/2 + 1⌋��2/n elements, where � is an upper bound

on the degree of the polynomial. Our algorithms are based on

Prony’s interpolation algorithm and perform exact arithmetic

in the field of scalars, which for Chebyshev basis is required to

have characteristic ≠ 2. The running time is polynomial in the

bounds �, � and� or log(�), depending on the representation

of the scalar field elements.

In the special case of evaluations at positive real numbers,

as a consequence of Descartes’s Rule of Signs, our algorithms

recover a unique real interpolant for �, � ≥ 2, and for sparsity

in both standard and Chebyshev bases can be de-randomized

to deterministic versions.

CCS CONCEPTS

• Mathematics of computing→ Interpolation.

KEYWORDS

sparse model fitting; outlier error correction; orthogonal pol-

ynomial basis; Prony interpolation algorithm;

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0696-7/24/07.
https://doi.org/10.1145/3666000.3669698

ACM Reference Format:

Erich L. Kaltofen and Zhi-Hong Yang. 2024. Sparse Polynomial Inter-

polation With Error Correction: Higher Error Capacity by Random-

ization . In International Symposium on Symbolic and Algebraic Com-

putation (ISSAC ’24), July 16–19, 2024, Raleigh, NC, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3666000.3669698

1. INTRODUCTION

When interpolating a univariate polynomial or Laurent poly-

nomial

5 (G)=
∑C

9=1
2 9PX 9

(G), X1< · · · <XC= deg(5 ), ∀9 : 2 9≠0. (1)

represented in a polynomial basis (P= (G))=∈Z, the sparsity

C ≪ deg(5 ) has been exploited—since de Prony and BCH

decoding—for reconstructing 5 from fewer than deg(5 )+1 val-

ues. Here we use two bases: the standard power basis P= (G) =

G= for = ∈ Z and Chebyshev polynomials of the First Kind

P= (G) = )= (G) for = ∈ Z≥0. Interpolation algorithms that

correct errors in the values by oversampling constitute alge-

braic error correcting codes, starting with the Reed-Solomon

code. Here we consider both problems: reducing the number

of interpolation points for sparse polynomials while correct-

ing errors in the points.

Table 1 summarizes the progress on the accepted error ca-

pacities of known sparse univariate interpolation algorithms:

if the rate = ', one can interpolate with # points while cor-

recting ≤ '# errors. The larger the rate, the more errors can

be tolerated. Unlike Reed-Solomon decoding, where a max-

imum error rate of 1/2 − n is acceptable for any n > 0, in

sparse interpolation the best maximum error rate is ≈ 1/(4C).

In [15] we give two C-sparse polynomials in power basis that

fit # = (2� + 1)2C − 1 complex points with � errors, which

makes the algorithm in Table 1, Entry 1 optimal. Note that the

maximum rate is far worse than Reed-Solomon’s decoder, but

in sparse interpolation the number of points # is independent

of the degree (see Table 1) and therefore one may interpolate

from far fewer points. The actual running time of the sparse

interpolation algorithms can be reduced to be polynomial in

log(deg 5 ). As the Reed-Solomon error rate was pushed be-

yond 1/2 by list-decoding by Guruswami and Sudan, so was

the error rate increased for sparse list-interpolation: a list of

valid interpolants that fit ≥ # − � points is computed, if ex-

istent, but the list can have multiple entries (Table 1, Entries

2.–5.).

List-interpolation algorithms are required to run in poly-

nomial-time. In exponential time it may be possible to try

all
(#
�

)
error locations and fit the remaining # − � points.
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Standard Power Basis Chebyshev Basis

1. Comer, Kaltofen # = (2� + 1)2�, ' ≈ 0.25/� —

and Pernet [4] (unique interpolant; see text about optimality)

2. Kaltofen and Pernet [15] # = (� + 1)2� − 1, ' ≈ 0.5/� —

# = 74, '≈0.67/� for �=5, �=10

3. Arnold and Kaltofen [1] — # = 74⌊ �
13 + 1⌋, ' ≈ 0.52/� for � = 3, � ≥ 222

4. Kaltofen and Yang, Z.-H. [16] # = ⌊ 43� + 2⌋�, ' ≈ 0.75/� # = ⌊ 32� + 2⌋�, ' ≈ 0.66/�

5. This paper [2024] #=⌊�/2 + 1⌋ (2� + 1), '≈1/� (randomized algorithm; deterministic in certain settings: see text)

Table 1: Interpolation Algo’s: ≤� terms, ≤� errors, # evaluations, max. error rate '= �
#

Our algorithms have polynomial running time under the as-

sumptions of Prony interpolation, which computes polyno-

mial roots which are the values of the terms of the sparse inter-

polant, and then computes from the term values the degrees of

the terms. As a consequence, our randomized algorithms pro-

duce$ (��3) candidate sparse interpolants. The upper bound

� for the number of terms is an input to our algorithms.1 The

model of randomization is Monte Carlo: a sparse interpolant

that fits the points except at ≤ � values is in the list with con-

trollably high probability. However, we no longer can guaran-

tee that for the randomly chosen arguments the number of

interpolants with ≤ � errors is (��)$ (1) . The reason is that if

an interpolant is placed in the list, others may be omitted at

the same arguments with probability 1.

A special case is when the field of coefficients K ⊆ R and

the arguments to the interpolant are real numbers > 0. By [15,

Theorem 4] and [1, Corollary 2.4] if # ≥ 2� + 2� there exists

at most one valid interpolant, which our algorithms can com-

pute deterministically for both power basis and Chebyshev ba-

sis in polynomial time from # = ⌊�/2 + 1⌋ (2� + 1) ≥ 2� + 2�

points for all � ≥ 2 and � ≥ 2. We note that for � = 1 we list-

interpolate sparse candidate polynomials from 2�+1 < 2�+2

values. Uniqueness is no longer guaranteed: for example, for

� = 2 terms the two interpolants 51 (G) = G
3 +56G and 52 (G) =

14G2 +64 with 51 (G) − 52 (G) = (G −2) (G −4) (G −8) both fit the

first three values for the arguments G = 2, 4, 8 and can each

have 1 error in the two values for G = 16, 32.

Our algorithms can correct errors when the scalar field is a

finite field. In certain settings the Prony algorithms can then

be implemented to run in polynomial time in log(�) for a de-

gree upper bound � [12].2 Our algorithms also can use com-

plex roots of unity as arguments, which keeps the values small

in absolute value and is used for purpose of numerical stability

[6].

Our method follows that in [16]: we first show how to cor-

rect 1 error with one extra value, namely, # = 2� + 1. There-

fore, in ⌊�/2 + 1⌋ blocks of 2� + 1 values, in the presence of

≤ � errors not all blocks can have ≥ 2 errors and the list-

interpolation algorithmwill compute the interpolant from the

block with ≤ 1 error with high probability. Additional solu-

tions can be verified for all values. Note that if � is even, the

last block can be shortened to 2� values. As in [16] we place

a variable for the value at all the possible 2� + 1 erroneous

1In the literature the letter ) ≥ C is sometimes used for the bound. Here )=
denote the Chebyshev polynomials.
2Note that there aremore (log� )$ (1) -time algorithms but they use$ (�) eval-
uations. See [7] and the literature cited there.

locations in a block. By Prony’s property, the term locator

polynomial produces a column relation in the corresponding

(2� + 1) × (2� + 1) Hankel matrix. If the determinant is ≠ 0

for the symbolic error, one can solve the polynomial equation

for the correct value. We can prove, in the standard basis case,

that for random arguments all determinants are non-zerowith

high probability by the early termination technique in [14].

Sparse interpolation in Chebyshev basis begins with [17].

Chebyshev polynomials via the property)= (cos(b)) = cos(=b)

yield periodic sinusoid functions and sparse sums are impor-

tant in signal processing. The functions are essentially Lau-

rent polynomials in the reciprocal terms~X + 1
~X

[1, Section 4]

(see also (24) below). The symmetry can cause restrictions in

the transfer of power basis techniques, for example in the

early termination theorems [14, Theorem 11], [1, Theorem

4.3] and the maximum rates in interpolation with error cor-

rection [Table 1, Entries 3 and 4]. Here we deploy a technique

that gives us matching computational complexities for stan-

dard and Chebyshev bases: we add a symbolic error to the

correct value (Theorem 3.1) and prove the resulting determi-

nant to be≠ 0 by proving that the coefficient of the linear term

is ≠ 0, with high probability. The technique also yields the de-

randomization result when evaluating a polynomial with real

number coefficients at real arguments > 0, which is specific to

error correction and does not apply to early termination. See

also Remark 5.2.

By the techniques in [11], our results transfer to Cheby-

shev polynomials of the second–fourth kind and related re-

cursively defined polynomial bases. In [13, Section 5.3] we

give algorithms for sparse polynomial Hermite interpolation

including error correction, to which our improvements here

can be applied.

Notation. We shall write g × g Hankel matrices as follows:

Hankelg (080+8B : 8=0, ..., 2g−2) =



080 080+B · · · 080+(g−1)B

080+B 080+2B . .
.

080+gB
... . .

.
. .
. ...

080+(g−1)B 080+gB · · · 080+(2g−2)B



. (2)

2. STANDARD POWER BASIS

Let K be a field and 5 (G) ∈ K[G, 1G ] be a sparse univariate

Laurent polynomial:

265



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Erich L. Kaltofen and Zhi-Hong Yang

5 (G) =
∑C

9=1
2 9G

X 9 , X1 < X2 < · · · < XC = deg(5 ),

∀9, 1 ≤ 9 ≤ C : 2 9 ≠ 0. (3)

We assume that 5 can be sampled at arguments ∈ K, e.g., with

a black box for 5 ; the values can be erroneous. This section is

to showhow to Prony-list-interpolate 5 from 2C+1 evaluations

when no more than one of the evaluations is erroneous. Let

0̂8 be the output of the black box at the input argument l8 for

l ∈ K and 1 ≤ 8 ≤ 2C + 1. We assume that there is at most one

index ` ∈ {1, 2, . . . , 2C + 1} such that 0̂` ≠ 5 (l` ).

Let 08 = 5 (l
8 ) for 8 ≥ 1, and �g be the Hankel matrix with

entries (01, . . . , 02g−1):

�g=Hankelg (01+8 : 8=0, ..., 2g−2) ∈ Kg×g , g≥1 (see (2)). (4)

The sequence (01, 02, . . . , 02C , . . .) is linearly generated by the

term locator polynomial

Λ(I) =
∏C

9=1
(I − lX 9 ) . (5)

If lX8 ≠ lX 9 for any 8 ≠ 9 , then Λ(I) is squarefree and �C

is non-singular and �C+1 is singular. We proposed in [16] to

correct one error from 3C evaluations by replacing the error

with a symbol and then solve for the symbol. Here we use the

same idea and give a randomized algorithm for correcting one

error from 2C + 1 evaluations.

The difficulty is to prove that for all ` = 1, . . . , 2C + 1 the

determinants of the new matrices

�̂C+1,` = HankelC+1 (01, . . . , 0`−1, Û, 0`+1, . . . , 02C+1) (6)

are non-zero with high probability. Then the correct value can

be computed from the equation det(�̂C+1,` ) = 0.3 The deter-

minant of �̂C+1,` depends on the choice of the argument l .

Example 2.1. Let K = Z17, the integer residues modulo 17,

C = 3, and 5 = 1 + 6G + G6. Let 08 = 5 (l8 ), 8 = 1, . . . , 2C + 1, be

the sequence of evaluations of 5 at the powers of l .

Case l = 5: Replacing 02 by Û in �4, we get

�4 =

[ 01 02 03 04
02 03 04 05
03 04 05 06
04 05 06 07

]
=

[
16 2 11 10
2 11 10 15
11 10 15 9
10 15 9 2

]
, �̂4,2 =

[
16 Û 11 10
Û 11 10 15
11 10 15 9
10 15 9 2

]

and det(�̂4,2) = 0 ∈ Z17. Therefore, if the value for 5 (l2)

is an error, then we cannot correct this error by solving the

equation det(�̂4,2) = 0.

Case l = 3: Replacing 02 by Û in �4, we get

�4 =

[ 01 02 03 04
02 03 04 05
03 04 05 06
04 05 06 07

]
=

[
0 8 2 10
8 2 10 16
2 10 16 2
10 16 2 7

]
, �̂4,2 =

[
0 Û 2 10
Û 2 10 16
2 10 16 2
10 16 2 7

]

and det(�̂4,2) = 11(Û + 9) (Û + 12) ∈ Z17 [Û]. In the case l = 3,

if the error location is ` = 2, then we can compute two candi-

dates for the correct value 02 ≡ −9 ≡ 8 = 5 (l2) by solving the

equation det(�̂4,2) = 0 in Z17. The Prony algorithm computes

5 for 02 = 8. �

Weprove that there exists a polynomial Γ5 (G) ∈ K[G], which

depends on the coefficients and term degrees of 5 in (3), such

that the following implication holds:

Γ5 (l) ≠ 0 and lX1 , . . . , lXC are pairwise distinct

=⇒ ∀`, 1 ≤ ` ≤ 2C + 1 : det(�̂C+1,` ) ≠ 0, (7)

3We have used the letter U in the early termination theorems for evaluations
when l was a variable [1, 14]. In [16] U was used as the variable for the erro-
neous value. Here we use Û for the variable in the place of the error.

and we provide a degree bound for Γ5 . The condition in (7)

is sufficient for recovering a C-sparse black box polynomial 5

from 2C+1 evaluations containing atmost one error. Therefore,

our algorithm would succeed if the argument l is not a root

of Γ5 and l has order > XC (or > 2max{|X1 |, XC } if X1 < 0).

The idea is to show that for evaluations at symbolic powers

l8
= G8 , the determinant of the matrix containing Û is non-

zero. LetU8 = 5 (G
8 ) be the symbolic evaluations of 5 at powers

G8 andHC+1 be the (C + 1) × (C + 1) Hankel matrix:

HC+1 = HankelC+1 (U1+8 : 8=0, ..., 2C)

∈ K[G, 1/G] (C+1)×(C+1) (see (2)). (8)

Let ĤC+1,` be the matrix obtained by substituting U` with U`+

Û inHC+1, as depicted in (9) for Ĥ4,2:
4

Ĥ4,2 =

[
U1 U2+Û U3 U4

U2+Û U3 U4 U5
U3 U4 U5 U6
U4 U5 U6 U7

]

. (9)

Let � be an upper bound on the sparsity of the black box pol-

ynomial 5 (see (3)), and � ≥ |X 9 | for all 1 ≤ 9 ≤ C . First, if K

is any scalar field, we can use the Kaltofen-Lee early termina-

tion theorem [14, Theorem 4] to show that the leading coef-

ficient of det(ĤC+1,` ) in Û is non-zero. By taking the product

of all leading coefficients of det(ĤC+1,` ), ` = 2, . . . , 2C in Û and

clearing all possible denominators, we obtain a polynomial Γ5
of degree bounded by 2�3� such that the implication (7) holds.

Consequently, we can correct one error from 2C+1 evaluations

by solving the equations det(�̂C+1,` ) = 0 for all ` = 2, . . . , 2C .

Note that if the error is 0̂1 or 0̂2C+1, we can simply remove the

error and recover 5 from the remaining 2C evaluations using

Prony’s algorithm.

Lemma 2.2. Assume that all term degrees of 5 (G) in (3) are

non-negative, namely, 0 ≤ X1. Let W
∗
` be the leading coefficient

of det(ĤC+1,` ) in the variable Û , and let Γ∗
5
(G) =

∏2C
`=2 W

∗
` (G).

For sparsity and degree upper bounds: � ≥ C ≥ 1 and � ≥ X 9
with 1 ≤ 9 ≤ C , we have

deg(Γ∗
5
) < C3� ≤ �3�. (10)

Proof see Appendix C.

Theorem 2.3. Let K be any scalar field, l ∈ K, and �̂C+1,`

be as in (6) for 1 ≤ ` ≤ 2C + 1. Then there exists a polyno-

mial Γ5 (G) ∈ K[G], which depends on the coefficients and term

degrees of 5 in (3), such that the implication (7) holds and

degG (Γ5 ) < 2C3� ≤ 2�3�. (11)

Proof see Appendix C.

Second, if the characteristic of the field K is ≠ 2, we prove

that the linear term of det(ĤC+1,` ) in Û is non-zero. Taking the

product of all coefficients of the linear term of det(ĤC+1,` ), ` =

2, . . . , 2C in Û and clearing all possible denominators, we obtain

a polynomial Γ5 of degree bounded by 4�2� such that the im-

plication (7) holds. Note that 4�2� ≤ 2�3� for all � ≥ 2,

4By hatting the matrices �̂C+1,` , ĤC+1,` we indicate that the entries contain the

variable Û . By using the calligraphic H we indicate the argumentsl8 are terms

G8 . The matrix �̂C+1,` has Û on the anti-diagonal where 0` sits, and HC+1,` has

U` + Û on the anti-diagonal where U` sits. Similar notation will be used in

Section 3.
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which means that if characteristic (K) ≠ 2, we can choose the

argument l from smaller subsets of K while maintaining the

same probability of success, similarly to early termination [8].

In the remainder of the paper, we assume that the character-

istic of the base field K is ≠ 2.

Theorem 2.4. Let ` = 1, 2, . . . , 2C + 1 and ĤC+1,` be the

matrix obtained by substituting U` with U` + Û in HC+1 (see

(8) for HC+1). Let WC+1,` be the coefficient of the linear term of

det(ĤC+1,` ) with respect to the variable Û . Let & ′
=
∑C

9=1 (2 9 +

1)X 9 . Then WC+1,` has the leading monomial f (
∏C

9=1 2 9 )G
& :

If ` is an even integer: f = −2, & = & ′ −& ′′,

& ′′
=

(∑(`/2)−1

9=1
X 9

)
+
(∑`/2

9=1
X 9

)
.

If ` is an odd integer: f=1, &=& ′−& ′′, & ′′
=2

(∑(`−1)/2

9=1
X 9

)
.

Proof. Let (HC+1)↓D,E be the submatrix ofHC+1 by remov-

ing the D-th row and E-th column from HC+1. By the minor

expansion formula, we have

(−1)`+1WC+1,` =

∑

1≤D,E≤C+1
D+E=`+1

det((HC+1)↓D,E), (12)

Let

V1 = G
X1 , V2 = G

X2 , . . . , VC = G
XC (13)

be the terms in 5 (G) (3). Consider the matrices

BC+1 =

[
V8−19

]

1≤8≤C+1,1≤ 9≤C
∈ K[G,

1

G
] (C+1)×C ,

� = diag(21, . . . , 2C ) ∈ KC×C ,

B̄C+1 =

[
V89

])
1≤8≤C+1,1≤ 9≤C

∈ K[G,
1

G
]C×(C+1) (14)

Let (BC+1)↓D,∗ be the submatrix of BC+1 with the D-th row

removed and (B̄C+1)↓∗,E be the submatrix of B̄C+1 with the E-

th column removed. Then

(HC+1)↓D,E = (BC+1)↓D,∗� (B̄C+1)↓∗,E . (15)

By Lemma A.1, the largest degree term in det((BC+1)↓D,∗) is

the product of the diagonal terms:

V−10 V01V
1
2 · · · V

D−2
D−1V

D
D · · · VCC for 1 ≤ D ≤ C with V0 = 1. (16)

and the largest degree term in det((B̄C+1)↓∗,E) is

V00V
1
1V

2
2 · · · V

E−1
E−1V

E+1
E · · · VC+1C VC+2C+1 for 1 ≤ E ≤ C + 1

with V0 = VC+1 = 1. (17)

Therefore the leading term of det((HC+1)↓D,E) is

dD,E = leading term of det((HC+1)↓D,E)

=
(∏D−1

9=1
V−19

) (∏E−1

9=1
V−19

) (∏C

9=1
V
29+1
9

)
. (18)

Then dD,E = VDV
−1
E−1 dD+1,E−1 (moving up the anti-diagonal)

and deg(dD,E) − deg(dD+1,E−1) = XD −XE−1 . Since XD −XE−1 <

0 ⇐⇒ D < E−1 = `−D−2, we have deg(dD,E) < deg(dD+1,E−1)

for D + 1 < `/2. Let

Dmax = ⌊(` − 1)/2⌋, Emax = ` − 1 − Dmax, (19)

then deg(dD,E) < deg(dDmax,Emax ) for all D ≠ Dmax. Therefore,

the leading term of (12) is

d `
2 −1,

`
2
=
( `/2−1∏

9=1

V−19
) ( `/2∏

9=1

V−19
) ( C∏

9=1

V
29+1
9

)
(` even),

d `−1
2 ,

`−1
2

=
(

`−1
2∏

9=1

V−19
) (

`−1
2∏

9=1

V−19
) ( C∏

9=1

V
29+1
9

)
(` odd).




(20)

The theorem follows from the equations (12), (15), and (20). �

Lemma 2.5. Let WC+1,` be the coefficient of the linear term of

det(ĤC+1,` ) (see Theorem 2.4), and let

ΨC (G) =
∏

1≤ 91< 92≤C

(V 91 − V 92 ) (See (13) for V 9 ). (21)

If all the term degrees of 5 (G) in (3) are non-negative, namely,

X 9 ≥ 0 for all 1 ≤ 9 ≤ C , then W̄C+1,` = WC+1,`/(ΨC (G)
2∏C

9=1 V 9 )

is a polynomial in K[G] of degree (
∑C

9=1 2X 9 ) − &
′′ where & ′′

is as in Theorem 2.4.

Proof. By the factorization of (HC+1)↓D,E (see (15)) and

Lemma A.2, the determinant of each (HC+1)↓D,E has factor

ΨC (G)
2∏C

9=1 V 9 . The degree of W̄C+1,` is deg(WC+1,` )−
∑C

9=1 (2( 9−

1) + 1)X 9 = & −
∑C

9=1 (2 9 − 1)X 9 =
( ∑C

9=1 2X 9

)
−& ′′, where &

and & ′′ are as in Theorem 2.4. �

Lemma 2.6. Let WC+1,` be the coefficient of the linear term of

det(ĤC+1,` ) (see Theorem 2.4), and letΨC (G) as (21) in Lemma 2.5.

If 5 (G) in (3) has negative degree terms, namely, X1 < 0, then

W̄C+1,` = G (2C−`+1) |X1 |WC+1,`/(ΨC (G)
2∏C

9=1 V 9 ) is a polynomial

in K[G] of degree (
∑C

9=1 2X 9 ) −&
′′ + (2C − ` + 1) |X1 | where&

′′

is as in Theorem 2.4. Proof see Appendix C.

Theorem 2.7. Assume that the field K has characteristic ≠ 2.

Let l ∈ K and let �̂C+1,` be as in (6) for 1 ≤ ` ≤ 2C + 1.

Then there exists a polynomial Γ5 (G) ∈ K[G], which depends

on the coefficients and term degrees of 5 in (3), such that the

implication (7) holds. Moreover, for all � ≥ C and � ≥ |X 9 | with

1 ≤ 9 ≤ C , we have

degG (Γ5 ) ≤ 2(C2 − C) (XC + |X1 |) < 4�2�. (22)

Proof see Appendix C.

3. CHEBYSHEV BASIS

Let 5 (G) be a C-sparse polynomial in Chebyshev-1 basis)= (G),

5 (G)=
∑C

9=1
2 9)X 9

(G)∈K[G], 0≤X1<X2< · · · <XC= degG (5 ),

2 9 ≠ 0 for all 1 ≤ 9 ≤ C , (23)

where K is a field of characteristic ≠ 2. We first show how to

Prony-list-interpolate 5 from values 0̂8 for 1 ≤ 8 ≤ 2C+1, when

no more than one value 0̂ℓ is incorrect, that is 0̂8 = 5 (l28−1)

for all 1 ≤ 8 ≤ 2C + 1 and 8 ≠ ℓ . If l is selected randomly

and uniformly from a finite set ( ⊆ K of cardinality |( | ≥
(C deg(5 ) )$ (1)

n (see Theorem 4.1 for the precise analysis), then

the polynomial 5 is in the list of computed interpolants with

probability ≥ 1 − n .

Let
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6(~) = 5
(~ + 1

~

2

)
=

∑C

9=1

2 9

2

(
~X 9 +

1

~X 9

)
∈ K[~,

1

~
],

C6 =

{
2C − 1 if X1 = 0,

2C if X1 > 0.

}
(24)

The polynomial 6 is a C6-sparse Laurent polynomial in the

power basis (~=)=∈Z with coefficients in K. The Prony/BCH-

decoding algorithm can recover 6 by evaluating at 028−1 =

0−(28−1) = 6(l28−1) for 8 = 1, . . . , C6 . Note that the subscript

is the exponent or negated exponent; odd powers are used to

avoid the use of 6(1), which could be erroneous in each block

[16, Section III]. The 2C6-element sequence

0−(2C6−1) , 0−(2C6−3) , . . . , 0−3, 0−1, 01, 03, 05, . . . , 02C6−1 (25)

is linearly generated by

Λ(I)=




∏C6

9=1
(I − l2X 9 ) (I − l−2X 9 ) if X1 ≠ 0

(I−1)
∏C6

9=2
(I−l2X 9 ) (I−l−2X 9 ) if X1 = 0



, (26)

deg(Λ) = C6 . Note that the sequence of values for each mono-

mial 2 (lX )28−1 for 8 = −80,−80 + 1, . . . , 0, 1, . . . is linearly gen-

erated by I − l2X . One selects l so that all roots of Λ(I) are

distinct, computes Λ and its roots, computes 2 9 , and recovers

the X 9 from the roots.

If Λ(I) is squarefree, Λ(I) is the minimal linear generator

for (25). Then the Hankel matrices

�g=Hankelg (0−(2g−3)+28 : 8=0, ..., 2g−2)∈K
g×g , g≥1, (27)

have the property that �C6 is non-singular because Λ is mini-

mal and�C6+1 is singular because of the column relation given

by the linear generator Λ.

If a value 0̂2ℓ−1 is incorrect, we again place a variable Û for

02ℓ−1 and 0−(2ℓ−1) in �C6+1. We shall prove that if l is ran-

domly and uniformly selected from a sufficiently large finite

set ( ⊆ K, then all matrices

<=C6 + 1, �̂<, `=




replace in �< the anti-diagonals

containing 02`−1 and 0−(2`−1) ,

which are equal, by the single

variable Û




(28)

are non-singular matrices in K[Û]<×< , with high probability.

Therefore, the correct value 02ℓ−1 is among the roots of the

determinants of all �̂<, ` , and 5 is in the list of all valid inter-

polants computed from those roots, with high probability.

We prove that �̂<,` is non-singular for symbolic evalua-

tion, that is values U28−1 = 6(~
28−1). The corresponding Han-

kel matrix ∈ K[~, 1/~]<×< is denoted as

H< = Hankel< (U−(2<−3)+28 : 8=0, ..., 2<−2) . (29)

Wewish to prove thatwhen the anti-diagonal containingU2`−1
is substituted by Û + U2`−1 and the anti-diagonal containing

U−(2`−1) is substituted by Û + U−(2`−1) , for ` = 2, 3, . . . , C6 =

<−1, the resultingmatrix Ĥ<,` ∈ K[~, 1~ , Û]
<×< will become

non-singular ((30) displays Ĥ5,2).

Ĥ5,2 =



U−7 U−5 U−3+Û U−1 U1

U−5 U−3+Û U−1 U1 U3+Û

U−3+Û U−1 U1 U3+Û U5

U−1 U1 U3+Û U5 U7

U1 U3+Û U5 U7 U9



. (30)

Note that for ` = 1 one has the term Û< in det(Ĥ<,` ), and

for ` = C6 + 1 the top (< − 1) × (< − 1) matrix is non-singular

by Prony’s argument: the first C6 =<−1 equations determine

the generator, provided Λ(I) (26) is squarefree.

Theorem 3.1. Let ` = 1, 2, . . . , C6 + 1 and let Ĥ<,` be the

matrixH< (29) that has the variable Û added to all elements in

row D and column E with D + E = C6 + 2− ` and D + E = C6 + 1+ `

(see Appendix 3). Let

[1 = −XC , [2 = −XC−1, . . . , [C6 = XC (31)

be the degrees of the terms in6(~) in (24) and let % = 22C /4 2
2
C−1/4 . . .

be the product of all coefficients in (24); note that
∑C6

9=1 [ 9 = 0

and if X1 = 0, then % has the factor 21, else the factor 2
2
1/4. Let

& ′
= 4

∑C6
9=2 ( 9 − 1)[ 9 . Then the coefficient of the linear term Û

in det(Ĥ<,` ) has the leading monomial f%~& :

If C6 + ` is an even integer: f = −2, & = & ′ −& ′′,

& ′′
= 2

(∑(C6+` )/2

9=1
[ 9

)
+ 2

(∑(C6−` )/2+1

9=1
[ 9

)
.

If C6 + ` is an odd integer: f = 1, & = & ′ −& ′′,

& ′′
= 2

(∑(C6+`−1)/2

9=1
[ 9

)
+ 2

(∑(C6−`+1)/2

9=1
[ 9

)
.

Proof. Let (H<)↓D,E define the < ×< submatrix of H<

which has row D and column E removed fromH< . By the mi-

nor expansion formula, for each (D, E) location in Ĥ<,` which

contains the entry Û + U2`−1 or Û + U−(2`−1) , (−1)
D+E det(

(H<)↓D,E) adds to the coefficient of Û in the determinant det(

Ĥ<,` ). Let W<,` be the coefficient of the linear term of det(

Ĥ<,` ) with respect to the variable Û , then W<,` = Wbot<,` + W
top
<,`

where

Wbot<,` = (−1)C6+1+`
∑

D+E=C6+1+`
det((H<)↓D,E)

is the coefficient of Û collected from the bottom anti-diagonal

of Ĥ<,` and

W
top
<,` = (−1)C6+2−`

∑
D+E=C6+2−`

det((H<)↓D,E)

is the coefficient of Û collected from the top anti-diagonal of

Ĥ<,` .

We determine the largest degree term in~ in det((H<)↓D,E).

We have the following factorization for the matrix (H<)↓D,E :

Let

V1 = ~
−XC , V2 = ~

−XC−1 , . . . , VC6−1 = ~
XC−1 , VC6 = ~XC , (32)

deg(V 9 ) = − deg(VC6−( 9−1) ), be the terms in 6(~) (24) in de-

gree order. Note that a term V 9 with 9 ≤ C6/2 has a negative

degree. Consider the matrices

B< =

[
V
1+2(8−1)
9

]

1≤8≤C6+1,1≤ 9≤C6
∈ K[~,

1

~
] (C6+1)×C6 ,

�< = diag(2C/2, 2C−1/2, . . . , 2C−1/2, 2C/2) ∈ KC6×C6 ,

(�<) (C6+1)/2,(C6+1)/2 = 21 if X1 = 0,

B̄< =

[
V
2C6+2−28

C6+1− 9

])
1≤8≤C6+1,1≤ 9≤C6

∈ K[~,
1

~
]C6×(C6+1) (33)

Note that �< has the monomial coefficients of 6(~) (24) on

its diagonal. Let (B<)↓D,∗ be the submatrix of B< with row

D removed, and let Let (B̄<)↓∗,E be the submatrix of B̄< with

the column E removed. We have

(H<)↓D,E = (B<)↓D,∗�< (B̄<)↓∗,E . (34)
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Similarly to the proof of (18) in Theorem 2.4, we have

leading term of (H<)↓D,E =
(∏D−1

9=1
V−29

) (∏C6−(E−1)

9=1
V−29

) (∏C6

9=1
V
49+1
9

)
. (35)

Let (Dbotmax, E
bot
max) be one of the indices where det((H<)↓D,E)

reaches the largest degree among all summand determinants

in Wbot<,` and (D
top
max, E

top
max) be that of W

top
<,` (see Appendix C for

details).

We now compare the factor
(∏D−1

9=1
V−29

) (∏C6−(E−1)

9=1
V−29

)
(36)

in the minor degree (35) for the maxima on both diagonals.

Again, similar to the analysis for (19), there are 2 cases:

Case C6+1+` odd: ThenD
bot
max = C6/2+`/2+1, E

bot
max = C6/2+`/2,

and D
top
max = E

top
max = C6/2 + 1 − `/2. We have:

Dmax − 1 C6 − (Emax − 1)

bot C6/2 + `/2 C6/2 − `/2 + 1

top C6/2 − `/2 C6/2 + `/2

(37)

Therefore, the factor (36) has for the maximum on the bot-

tom anti-diagonal the extra factor V−2
C6/2−`/2+1

whose degree

is positive by (32) because C6/2 − `/2 + 1 ≤ C6/2 for ` ≥ 2.

Case C6 + 1 + ` even: Then Dbotmax = Ebotmax = C6/2 + `/2 + 1/2,

D
top
max = C6/2− `/2+ 1/2 and E

top
max = C6/2− `/2+ 3/2. We have:

Dmax − 1 C6 − (Emax − 1)

bot C6/2 + `/2 − 1/2 C6/2 − `/2 + 1/2

top C6/2 − `/2 − 1/2 C6/2 + `/2 − 1/2

(38)

Therefore, the factor (36) has for the maximum on the bottom

anti-diagonal the extra factor V−2
C6/2−`/2+1/2

whose degree is

positive by (32) because C6/2 − `/2 + 1/2 < C6/2 for ` ≥ 2.

In summary, the maximum degree of the minors is larger

on the bottom anti-diagonal. �

For later probability analysis, we refine Theorem 3.1.

Lemma 3.2. Let W<,` (~) be the coefficient of Û of det(Ĥ<,` )

(see Theorem 3.1), and let

ΨC6 (~) =
∏

1≤ 91< 92≤C6
(V291 − V

2
92
) (39)

(see (32) for a definition of V 9 ). Then W̄<,` (~) = ~
&−& ′

W<,` (~)/

ΨC6 (~)
2 is a polynomial in K[~] with W̄<,` (~) ≠ 0 of degree

2(& −& ′). Proof see Appendix C.

Theorem 3.3. Let l ∈ K and let �̂<,` for 1 ≤ ` ≤ C6 + 1

be as in (28) and let Δ<,` (Û) = det(�̂<,` ) ∈ K[Û]. Note that

Δ<,` (l
2`−1) = 0 for all `. Then there exists a polynomial

Γ5 (~) ∈ K[~], which depends on the coefficients and term de-

grees of 5 in (23), such that:

l ≠ 0 and Γ5 (l) ≠ 0 and ΨC6 (l) ≠ 0 =⇒ Λ(I) in (26)

is squarefree and ∀`, 1 ≤ ` ≤ C6 + 1 : Δ<,` (Û) ≠ 0. (40)

See (39) for a definition of ΨC6 . Moreover, we have for all � ≥ C

and � ≥ XC the degree upper bounds

deg~ (Γ5 ) ≤ 8C2 (2XC − C + 1) ≤ 16�2�. (41)

Proof see Appendix C.

4. RANDOMIZED ALGORITHMS

Wepresent randomized algorithms for error-correcting sparse

interpolation in power basis or Chebyshev polynomial basis

where the arguments for the values of 5 incorporate random-

ness.

Definition 4.1. Let � ∈ Z>0, �, � ∈ Z≥0, \ = ⌊�/2⌋ + 1

and let la ∈ K for 1 ≤ a ≤ \ , where K is a field. Furthermore,

let 0̂a,8 ∈ K and 0̂a,28−1 ∈ K for 1 ≤ 8 ≤ 2� + 1. We call 5 (G) ∈

K[G, 1G ] (3) or 5 (G) ∈ K[G] (23) a (�, �, �)-sparse interpolant

if the following are satisfied:

A. C ≤ �, where C is the sparsity of 5 ;

B. deg(5 ) = XC ≤ � and |X1 | ≤ � in (3);

C. : = |� | ≤ � where � = {(a, 8) | 5 (l8
a ) ≠ 0̂a,8 , 1 ≤ a ≤ \, 1 ≤

8 ≤ 2�+1} for power basis, � = {(a, 8) | 5 (
l28−1

a
2 + 1

2l28−1
a

) ≠

0̂a,28−1, 1 ≤ a ≤ \, 1 ≤ 8 ≤ 2� + 1} for Chebyshev basis;

D. for all 1 ≤ 8 ≤ 2� + 1 and 1 ≤ a ≤ \ and (a, 8) ∉ � :

5 (l8
a ) = 0̂a,8 for power basis, 5 (

l28−1
a
2 + 1

2l28−1
a

) = 0̂a,28−1

for Chebyshev basis.

Definition 4.2. We call a family of sample sets (a ⊆ K for

1 ≤ a ≤ \ usable for failure probability n > 0 if the following

is satisfied, where |(a | denotes the number of elements in (a .

A. ∀a : |(a | ≥ (2�3�)/n for power basis and char(K) = 2,

|(a | ≥ (4�2�)/n for power basis and char(K) ≠ 2, |(a | ≥

(16�2�)/n for Chebyshev basis (requires char(K) ≠ 2).

B. ∀a,∀l ∈ (a ,∀�1, �2 with − � ≤ �1 < �2 ≤ � : l �1 ≠ l �2

for power basis, and l2�1 ≠ l2�2 for Chebyshev basis (=⇒

0, 1,−1 ∉ (a ).

C. ∀a1, a2 with a1 ≠ a2,∀la1 ∈ (a1 ,∀la2 ∈ (a2 ,∀81, 82 with 1 ≤

81, 82 ≤ 2�+1 : l
81
a1 ≠ l

82
a2 for power basis,l

281−1
a1 ≠ l

282−1
a2

and l
281−1
a1 ≠ l

−(282−1)
a2 for Chebyshev basis.

The condition in Definition 4.2.B guarantees that the term

locator polynomial Λ(I) (see (5) for power basis and (26) for

Chebyshev basis) is squarefree. Squarefreeness can also be

achieved by randomization, inwhich case the cardinality bound

in Definition 4.2.A needs to be increased. See Remark 4.2 be-

low. The condition in Definition 4.2.C guarantees that for all

random samples, the argumentsl8
a of power basis interpolant

values 5 (l8
a ) are distinct, and the arguments

l28−1
a
2 + 1

2l28−1
a

of

the Chebyshev basis interpolant values 5 (
l28−1

a
2 + 1

2l28−1
a

) are

distinct, the latter by Lemma A.3.5 For K ⊇ Q one can de-

terministically construct a usable family of sample sets, for

example, by using distinct prime numbers.

We note that the error locations and erroneous values of

Definition 4.1.C above depend on how the polynomials are

evaluated. For instance, the interpolant 5 may be given by a

black box that at a randomly selected la returns an error at

some l8
a . The ≤ � errors depend on the arguments and are

not at random locations. See also Theorem 4.1 and the remark

following its proof below.

4.1. Randomized Error-correcting Sparse

Interpolation

Input: ◮Bounds �, � ∈ Z≥0, � ∈ Z>0 for the absolute values

5The condition in Definition 4.2.C is also required in [16, Section III].
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of the term degrees, number of errors, and number of terms;
◮An algorithmic error probability bound n ∈ R with 0<n<1;
◮An arguments list la ∈ (a for 1 ≤ a ≤ \ = ⌊�/2⌋ + 1, where

each la is sampled uniformly, independently, and randomly

from a usable finite set (a (see Definition 4.2);
◮ For 1 ≤ a ≤ \ and 1 ≤ 8 ≤ 2� + 1 an array of values: 0̂a,8 ∈ K

for power basis and 0̂a,28−1 ∈ K for Chebyshev basis.

Output: ◮A list of (�, �, �)-sparse interpolants for the argu-

ments/values inputs (see Definition 4.1).

1: For a = 1, . . . , \ Do Step 2;

After completion, return the list of interpolants;

2: For C = 1, . . . , � [ C6 = 1, . . . , 2� for Chebyshev basis ] Do

Step 3;

We try to interpolate, while correcting a single possible er-

ror, a polynomial which is sparse with C terms from the val-

ues 0̂a,8 for 1 ≤ 8 ≤ 2C + 1 [ for Chebyshev basis: C6 terms

in 6(~) (24) from the values 0̂a,28−1 for 1 ≤ 8 ≤ C6 + 1 ].

3: For ` = 1, . . . , 2C + 1 [ ` = 1, . . . , C6 + 1 for Chebyshev basis ]

Do Step 4;

4: We guess that the error is in 0̂a,` [ the error is in 0̂a,2`−1
for Chebyshev basis ].

4(a): Compute Δ<,` (Û) for< = C + 1 and 0̂8 = 0̂a,8 for 1 ≤

8 ≤ < [ for Chebyshev basis:< = C6 + 1 and 0̂±(28−1) =

0̂a,28−1 for 1 ≤ 8 ≤ < ];

See Theorems 2.7, 3.3 for the definition of Δ<,` .

4(b): If Δ<,` (Û) ∈ K (a constant polynomial) continue with

next `;

4(c): Compute all roots b1, . . . , b1 ∈ K for Δ<,` (Û) = 0;

4(d): For all b ∈ {b1, . . . , b1 } try Prony’s Algorithm on the

sequence 08 = 0̂8 for 8 ≠ `, 0` = b [ for Chebyshev basis:

0±(28−1) = 0̂28−1 for 8 ≠ `, 0±(2`−1) = b ]; see [16,

Algorithm 1 Try Prony’s algorithm] for a complete

description of the algorithm.

If a valid interpolant 5 (G) is returned, perform Step 5.

5: For all other rows ^ with 1 ≤ ^ ≤ \, ^ ≠ a and all 1 ≤ 8 ≤

2� + 1 count for the computed interpolant 5 (G) at row a how

many more values 0̂^,8 are ≠ 5 (l8
^ ) [ for Chebyshev basis:

count the number of 0̂^,28−1 ≠ 5 (
l28−1
^
2 + 1

2l28−1
^

) ];

If the total count of errors in all rows is ≤ �, add 5 (G) to the

list of interpolants.

Theorem 4.1. Let 5 (G) =
∑C

9=1 2 9G
X 9 with C ≤ � and −� ≤

X1 < X2 < · · · < XC ≤ � (or let 5 (G) be a polynomial of

degree XC ≤ � with C ≤ � Chebyshev terms (23)). Suppose the

arguments to 5 are l8
a for randomly sampled la from the sets

(a , and the array 0̂a,8 contains 5 (l
8
a ) except in : ≤ � places (or

if 5 has Chebyshev terms, the arguments to 5 are
l28−1

a
2 + 1

2l28−1
a

for randomly sampledla from the sets (a , and the array 0̂a,28−1

contains 5 (
l28−1

a
2 + 1

2l28−1
a

) except in : ≤ � places). Then 5 is in

the list of returned interpolants of Algorithm 4.1 with probability

≥ (1 − n)\ ≥ 1 − \n with \ = ⌊�/2⌋ + 1.

Proof. Weprove the theorem for the power basis casewith

char(K) ≠ 2, while the other cases can be proven similarly.

By the assumption in Definition 4.2.A we have la ≠ 0 and

by the assumption in Definition 4.2.B we have ΨC (la ) ≠ 0

(21). None of the randomly sampledla are roots of Γ5 (G) with

probability ≥
∏

a (1−deg(Γ5 )/|(a |), which by (22) is ≥
∏

a (1−

4�2�/|(a |) ≥ (1 − n)\ .

There is at least one row [0̂a,8 ]1≤8≤2�+1 that has ≤ 1 error,

because otherwise there would be at least 2(⌊�/2⌋ + 1) > �

errors in total. Suppose row a1 has ≤ 1 error, and if there is

an error it is in 0̂a1,ℓ . Note that by the assumption in Defini-

tion 4.2.C the possible error cannot be duplicated in another

row because all arguments in the other rows are different. If

Γ5 (la1 ) ≠ 0 then ΔC+1,ℓ (Û) ≠ 0 and the correct value 0a1,ℓ will

be among its roots. Therefore Step 4d will add 5 to the list of

interpolants. �

The number of interpolants that Algorithm 4.1 adds to its

returned list is ≤ 4(⌊�/2⌋ + 1)�(2� + 1)2. However, unlike

previous deterministic algorithms, Theorem 4.1 does not state

that there are at most a polynomial number of (�, �, �)-inter-

polants for the input data: a selection of the la ’s that is lucky

for one (�, �, �)-interpolant may exclude another, and vice-

versa.

Remark 4.2. We can execute Algorithm 4.1 without the as-

sumptions in Definition 4.2.B–C. We detail the Chebyshev ba-

sis case. One can choose all la randomly from a single large

set ( ⊆ K such that

ΞC6 (l1, . . . , l\ )
∏\

a=1
Γ5 (la )ΨC6 (la ) ≠ 0 (42)

with probability ≥ 1 − n , where

ΞC6 (~1, . . . , ~\ ) =
∏

1≤a1<a2≤\

2�+1∏

81=1

2�+1∏

82=1

(~
281−1
a1 − ~

282−1
a2 )×

(~
281−1
a1 ~

282−1
a2 − 1) (43)

and Γ5 ,ΨC6 as in (40). Note that deg(ΨC6 ) ≤ 2�2� and deg(ΞC6 ) =

$ (�2�3), so that the binary lengths of the elements in ( are

$ (log(���n−1)).

However, it is possible to enforce the input requirements in

Definition 4.2.B–C a-priori without randomization. ForK ⊇ Q,

we can choose distinct prime numbers in all sets, similarly to

[2]. Moreover, if K ⊆ R and all la > 0 and if # − 2� ≥ 2�

for # = \ (2� + 1), there cannot be two (�, �, �)-interpolants

51 (G), 52 (G): the proof considers the corresponding Laurent

polynomials 61 (~), 62 (~) (24). The power basis case follows

directly from Descartes’s Rule of Signs. We describe the proof

for the Chebyshev basis case. Then 61 (~) −62 (~) is a Laurent

polynomial with ≤ 4� terms which is = 0 at ≥ 4� distinct pos-

itive real values l28−1
a and l

−(28−1)
a for (a, 8) ∉ �51 , �52 , where

�51 is the set of error locations for 51 and �52 is the set of error

locations for 52. By Descartes’s Rule of Signs 61 − 62 = 0. See

also [3], [15], [1]. We have \ (2� + 1) − 2� ≥ 2� for � ≥ 2 and

� ≥ 2. Note that for � = 1 one cannot guarantee recovery of

a single interpolant from 2� + 1 values at a positive real l (a

counter-example is given in Section 1).

For K = C one may choose roots ≠ 1 of G=a − 1 such that

each =a is a distinct sufficiently large prime number, that is,

=a ≠ =^ for all ^ ≠ a . The condition in Definition 4.2.B can be

enforced similarly. Roots of unity as arguments give numeri-

cal stability [6].

For very large degree bounds � (supersparse polynomials)

andK ⊇ Q onemay be able to evaluate 5 modulo a prime num-

ber ? , for instance if 5 is given by a straight-line program. One
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can then select the modulus ? such that ? − 1 = =1 · · ·=\=
∗,

where =a are small distinct prime numbers > 2� + 1 and the

prime factors of =∗ are larger than all =a . Then the sets (a can

be chosen as the primitive roots of G (?−1)/=a − 1 (mod ?).

The term degrees may be recovered from the derivative of 5 ,

for example; see [10]. �

5. DETERMINISTIC ALGORITHMS

Let the field of scalars be the real numbers, K = R. We wish

to prove that if l ∈ R, l > 0 and l ≠ 1 (=⇒ ΨC (l) ≠ 0)

for power basis and if l ∈ R, l ≠ 0, l ≠ −1 and l ≠ 1

(=⇒ ΨC6 (l) ≠ 0) for Chebyshev basis, then we always have

Γ5 (l) ≠ 0. For power basis we have by Oscar Mitchell’s The-

orem on the co-factor of generalized Vandermonde matrices

(see Lemma A.2) and the proof of Lemma 2.5 that all coeffi-

cients of all co-factors of all det((H<)↓D,E) have the same sign:

all are real numbers ≥ 0 or all are real numbers ≤ 0. Therefore

at values l > 0 all evaluated determinants are ≠ 0. We now

shall prove that for Chebyshev basis and K = R, l ∈ R, we

have for the coefficient of Û ×(−1)C6+1+` in Ĥ<,` :

∀`, 1 ≤ ` ≤ C6 + 1,∀l ∈ R, l ≠ 0, 1,−1 :
(∑

D+E=C6+1+`
det((H<)↓D,E) (l)

)

−
(∑

D+E=C6+2−`
det((H<)↓D,E) (l)

)
≠ 0. (44)

Lemma 5.1. Let 0 ≤ X1 < X2 < · · · < XC be the term degree,

l ∈ R, l ≠ 0 and let

Λ(I) =
∏C6

9=1
(I − l2[ 9 ) =

∑C6

9=0
(−1)C6− 9_ 9I

9 ∈ R[I], (45)

where [1 = −XC , [C6 = XC , [2 = −XC−1, [C6−1 = XC−1, . . . (31).

Note that C6 = 2C − 1 ⇐⇒ X1 = 0 = [C , otherwise −[C =

[C+1 = X1. Then for all 9 with 0 ≤ 9 ≤ g = ⌊C6/2⌋ we have

_ 9 = (−1)C6_C6− 9 , _ 9 > 0 and for all 0 ≤ 9 ≤ g − 1 : _ 9 < _ 9+1.

Note that for C6 = 2C − 1 we have _C = _C−1.

Proof. The proof is by induction on C6 . Suppose C6 is even,

that is, X1 > 0. We have for

C6∑

9=0

(−1) 9_ 9I
9
=

( C6−2∑

9=0

(−1) 9 j 9I
9
) (
I2 −

(
l2XC +

1

l2XC
︸         ︷︷         ︸

l̄>1

)
I + 1

)

(46)

the new coefficient difference _ 9+1 − _ 9 = j 9+1 − j 9−2 + (l̄ −

1) (j 9 − j 9−1) with j− 9 ′ = 0 and jC6−2+9 ′ = 0 for all 9 ′ ≥ 1.

Then by hypothesis for the coefficients j 9 we have _ 9+1−_ 9 >

0 for 9 ≤ g − 1. Note that for 9 + 1 = g we have by hypothesis

jg − jg−3 = jg−2 − jg−3 > 0. If C6 = 2C − 1, in (46) we can

additionally multiply with I − 1 instead of I2 − l̄I + 1. �

Remark 5.2. In Lemma 5.1 above, l < 0 is valid because

the term degrees are squared in the term locator polynomial

due to the choice of arguments, l28−1. By that, we prevent

the common argument value 1 = l0 in all blocks. As a con-

sequence, the condition l > 0 is avoidable in our determinis-

tic Chebyshev algorithms. However, uniqueness of the inter-

polant requires la > 0 for all a (see Remark 4.2). �

Lemma 5.3. Let B̄< be thematrix as in (33), and let (B̄<)↓∗,E

be the submatrix of B̄< by removing the E-th column. The de-

terminant of the matrix (B̄<)↓∗,E is

det((B̄<)↓∗,E) = qE−1 det((B̄<)↓∗,<), (47)

where qC6 = 1 and q0, q1, . . . , qC6−1 satisfy
∑C6

9=0
(−1)C6− 9q 9I

9
=

∏C6

9=1
(I − V29 ) (see (32)) . (48)

Proof. The coefficients q0, q1, . . . , qC−1 in (48) yield a lin-

ear generator and therefore satisfy the following Hankel sys-

tem: HC6 = HankelC6 (U−(2C6−3)+28 : 8=0, ..., 2C6 − 2) :

HC6



(−1)C6−0q0

(−1)C6−1q1

...
(−1)1qC6−1



= (−1)×



U3
U5

...
U2C6+1


. (49)

Let H̄
(E)
C6

be the matrix obtained by substituting the E-th col-

umn of HC6 by the right side vector in (49). By Cramer’s rule,

we have

(−1)C6−(E−1)qE−1

= det(H̄
(E)
C6

)/det(HC6 ) = (−1)C6+1−E det((H<)↓<,E)/det(HC6 )

= (−1)C6+1−E
det((B<)↓<,∗) det(�<) det((B̄<)↓∗,E)

det((B<)↓<,∗) det(�<) det((B̄<)↓∗,<)
,

where the last equality is due to (34). This concludes (47). �

Lemma 5.4. The determinant of (H<)↓D,E is

det((H<)↓D,E) = qD−1qE−1% Ψ
2
C6

(50)

where ΨC6 (~) =
∏

1≤ 91< 92≤C6 (V
2

91
− V292

) (see (32) for V 9 ) and

% = det(�<) (see (33) for the matrix �<).

Proof. The formula (50) follows from the factorization (34)

of (H<)↓D,E and applying Lemma 5.3 to thematrices (B<)↓D,∗
and (B̄<)↓∗,E . �

Lemma 5.5. Let C6 ≥ 1 and let 0 < _0 < _1 < · · · < _g for

g = ⌊C6/2⌋ and let _C6− 9 = _ 9 for 0 ≤ 9 ≤ g . Furthermore, let `

be an index with 1 ≤ ` ≤ C6 + 1. Then

,` =

( ∑

1≤D,E≤C6+1,
D+E=C6+1+`

_D−1_E−1

)
−
( ∑

1≤D,E≤C6+1,
D+E=C6+2−`

_D−1_E−1

)
> 0.

(51)

Proof. We define _C6+9 ′ = 0 and _− 9 ′ = 0 for all 9 ′ ≥ 1.

Then we have for all ` in (51):

,` =

∑g+1

9=1
(_ 9+`−2 − _ 9−`−1) (_ 9−1 − _ 9−2) . (52)

For the second factor in the summands in (52) we have by

assumption _ 9−1 − _ 9−2 > 0. The first factor _ 9+`−2 − _ 9−`−1
is > 0when the larger index is 9 +`−2 ≤ g . Suppose now that

9 + ` − 2 > g and _ 9+`−2 = _C6−( 9+`−2) < _ 9−`−1 where we

always have 9 − ` − 1 < g . Then C6 − ( 9 + ` − 2) < 9 − ` − 1 =⇒

C6 +3 < 2 9 which implies 9 > C6/2+3/2 ≥ ⌊C6/2⌋ +3/2 > g +1,

which is outside the range of 9 in (52). �

Combining the Lemmas 5.1, 5.4 and 5.5, we have (44), and

therefore, all evaluated determinants are non-zero. A full de-

scription of the deterministic algorithms is in Section B.1.
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A. APPENDIX: AUXILIARY STANDARD

LEMMAS

The following Lemma is used in the proof of Theorem 2.4 and

Theorem 3.1.

Lemma A.1. Let 48 , 38 ∈ Z for 1 ≤ 8 ≤ = with 31 < 32 <

· · · < 3= and 41 < 42 < · · · < 4= and let + = [~384 9 ]1≤8, 9≤= ∈

Z[~, 1~ ]
=×= be a generalized Vandermonde matrix. Then the

monomial with largest degree of its determinant det(+ ) is ~&

with & = 3141 + 3242 + · · · + 3=4= .

Proof. The terms in the minor expansion are ±~&f where

f is a permutation on {1, . . . , =} and &f =
∑
8 384f (8 ) . If we

use the entry (=, :) with : < =, then by induction hypothesis

for dimension = − 1 for the minor det(+↓=,: ), the maximum

monomial degree using the ~3=4: entry is

&: = 3=4: +
(∑:−1

8=1
3848

)
+
(∑=−1

8=:
3848+1

)
. (53)

We set 38 = 3: + 3′8 with 0 < 3′
:+1

< · · · < 3′= and 48 = 4: + 4′8
with 0 < 4′

:+1
< · · · < 4′= , and have

& −&: = 3′
:+1

4′
:+1

+
∑=

8=:+2
(3′8 − 3

′
8−1)4

′
8 > 0. � (54)

LemmaA.2. Let38 ∈ Zwith31 < 32 < · · · < 3= and letV =

[.
38
9 ]1≤8, 9≤= ∈ K[.1,

1

.1
, . . ., .=,

1

.=
]=×= be a generalized Van-

dermondematrix. Then det(V) = � (.1, . . . , .=)
∏

1≤8< 9≤= (.8−

.9 ), where � (.1, . . . , .=) ∈ K[.1,
1

.1
. . . , .=,

1

.=
] with � ≠ 0.

Moreover, if the scalar field K has characteristic 0, the coeffi-

cients of � are positive integers.

Proof. See [5]; the positivity of the coefficients of � is Os-

car H. Mitchell’s 1882 theorem. �

Lemma A.3. Let l1, l2 ∈ K, l1 ≠ 0, l2 ≠ 0, 31, 32 ∈ Z.

Then

l
31
1
+1/l

31
1

≠ l
32
2
+1/l

32
2

⇐⇒
(
l
31
1
≠l

32
2

and l
31
1
≠l

−32
2

)
.

Proof. l
31
1
l
32
2
(l

31
1

+ l
−31
1

− l
32
2

− l
−32
2

) = (l
31
1
l
32
2

−

1) (l
31
1

− l
32
2
). (cf. [11, Lemma 2.1]). �

B. APPENDIX

B.1. Deterministic Error-correcting Sparse

Interpolation

Input: ◮Bounds � ≥ 2, � ≥ 2 for the numbers of terms and

errors; note that the degree bound � = ∞.
◮An arguments list la ∈ R, la > 0, la ≠ 1 for 1 ≤ a ≤

\ ⌊�/2⌋ +1; (we shall require that the interpolation arguments

are distinct: ∀a1, a2 with a1 ≠ a2,∀81, 82 with 1 ≤ 81, 82 ≤ 2� +

1: l
81
a1 ≠ l

82
a2 for power basis, l

281−1
a1 ≠ l

282−1
a2 and l

281−1
a1 ≠

l
−(282−1)
a2 for Chebyshev basis.)

◮ For 1 ≤ a ≤ \ = ⌊�/2⌋ +1 and 1 ≤ 8 ≤ 2� +1 an array of real

values 0̂a,8 ∈ R for power basis and 0̂a,28−1 ∈ R for Chebyshev
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basis.

Output: ◮The unique (�,∞, �)-sparse interpolant for the argu-

ments/values (see Definition 4.1); or a flag that none exists.

1: For a = 1, . . . , \ Do Step 2;

After completion, return that no interpolant exists.

2: For C = 1, . . . , � [ C6 = 1, . . . , 2� for Chebyshev basis ] Do

Step 3;

We try to interpolate, while correcting a single possible er-

ror, a polynomial which is sparse with C terms from the val-

ues 0̂a,8 for 1 ≤ 8 ≤ 2C + 1 [ for Chebyshev basis: C6 terms

in 6(~) (24) from the values 0̂a,28−1 for 1 ≤ 8 ≤ C6 + 1 ].

3: For ` = 1, . . . , 2C + 1 [ C6 + 1 for Chebyshev basis ] Do Step 4;

4: We guess that the error is in 0̂a,` [ 0̂a,2`−1 for Chebyshev

basis ].

4(a): Compute Δ<,` (Û) for< = C + 1 and 0̂8 = 0̂a,8 for 1 ≤

8 ≤ < [ for Chebyshev basis:< = C6 + 1 and 0̂±(28−1) =

0̂a,28−1 for 1 ≤ 8 ≤ < ];

See Theorems 2.7, 3.3 for the definition of Δ<,` .

4(b): If Δ<,` (Û) ∈ K (a constant polynomial) continue with

next `;

4(c): Compute all roots b1, . . . , b1 ∈ K for Δ<,` (Û) = 0;

4(d): For all b ∈ {b1, . . . , b1 } try Prony’s Algorithm on the

sequence 08 = 0̂8 for 8 ≠ `, 0` = b [ for Chebyshev basis:

0±(28−1) = 0̂28−1 for 8 ≠ `, 0±(2`−1) = b ]; see [16,

Algorithm 1 Try Prony’s algorithm] for a complete

description of the algorithm.

If a valid interpolant 5 (G) is returned, perform Step 5.

5: For all other rows ^ with 1 ≤ ^ ≤ \, ^ ≠ a and all 1 ≤ 8 ≤

2� + 1 count for the computed interpolant 5 (G) at row a how

many more values 0̂^,8 are ≠ 5 (l8
^ ) [ for Chebyshev basis:

0̂^,28−1 are ≠ 5 (
l28−1
^
2

+ 1

2l28−1
^

) ];

If the total count of errors in all rows is ≤ �, return 5 (G) as

the unique interpolant.

C. APPENDIX: DEGREE BOUND PROOFS

Proof of Lemma 2.2. Let

Aa,8 = Hankel8 (Ua+8 : 8=0, ..., 28−2) ∈ K[G]8×8 ,

1 ≤ a ≤ 2C + 1, 1 ≤ 8 ≤ C (see (2)). (55)

Then by [14, Theorem 4]

W∗` (G) =

{
det(A2`+1,C−`+1) ≠ 0 if 1 ≤ ` ≤ C ,

det(A1,`−C−1) ≠ 0 if C + 2 ≤ ` ≤ 2C + 1.

By [14, Eq. (9)] we have deg(det(A`,8 )) ≤ (`−1+82)� . There-

fore, deg(Γ∗
5
) =

∑
2C
`=2 deg(W

∗
` ) < C3� ≤ �3� for � ≥ C ≥ 1.

�

Proof of Theorem 2.3. If X1 ≥ 0, let Γ5 = Γ
∗
5
of Lemma 2.2,

then Γ5 (l) ≠ 0 implies that det(�̂C+1,` ) has positive degree

in Û for all 2 ≤ ` ≤ 2C . Furthermore, both det(�̂C+1,1) and

det(�̂C+1,2C+1) have degree one in Û if lX1 , . . . , lXC are pair-

wise distinct. The implication (7) is proved. If X1 < 0, then let

5 ∗ (G) = G−X1 5 (G): applying Lemma 2.2 to 5 ∗ (G), and

deg(5 ∗ (G)) ≤ 2� yields (11). �

Proof of Lemma 2.6. Let 5 ∗ (G) = G−X1 5 (G), then 5 ∗ (G) has

term degrees X ′9 = X 9 + |X1 | ≥ 0 for all 1 ≤ 9 ≤ C . The lemma

follows from applying Theorem 2.4 and Lemma 2.5 to 5 ∗ (G)

and substituting X 9 by X
′
9 . �

Proof of Theorem 2.7. Let W̄C+1,` be as in Lemma 2.5 if X1 ≥ 0

or as in Lemma 2.6 if X1 < 0, and let

Γ5 (G) =
∏

2C

`=2,`≠C+1
W̄C+1,` (G) .

Then the implication (7) follows by similar arguments as in

the proof of Theorem 2.3.

Since (
∑C

9=1 2X 9 ) −&
′′ ≤ (2C − ` + 1)XC , the degree of Γ5 is

no more than
∑

2C

`=2,`≠C+1
(2C − ` + 1) (XC + |X1 |)

= 2(C2 − C) (XC + |X1 |) < 4�2�. �

Detail in Proof of Theorem 3.1. If there is a position (D, E) =

(D,D−1) on the bottom anti-diagonal which contains Û+U2`−1
(see 30)) havingD+E = C6+1+`, which is odd, then deg(VD−1) =

− deg(VC6−(D−2) ) =− deg(VC6−(E−1) ), and deg(V
2

D−1V
2

C6−(E−1)
)

= 0. There are 2 minors of maximum degree (35), of which

one has Dbotmax = (C6 + 2 + `)/2 and Ebotmax = Dbotmax − 1. If there

is a position (D, E) = (D,D) on the anti-diagonal having D +

E = C6 + 1 + `, which is even, then deg(V2D−1V
2
C6−(E−1)

) =

deg(V2D−1V
2
C6−(D−1)

) < 0 and for (D, E) = (D + 1, D − 1) we

have deg(V2D−1V
2
C6−(E−1)

) = V2DV
2
C6−(D−2)

) > 0. The updates

switch from positive to negative degree, and therefore a single

minor for Dbotmax = Ebotmax = (C6 + 1 + `)/2 has maximum degree

(35).

The top anti-diagonal (D, E) with D + E = C6 + 2 − `, whose

entries in Ĥ<,` are U−(2`−1) + Û (see 30)) also contributes

minors to the coefficient of the linear term Û . One starts at

D = C6 + 1− ` and E = 1 and ends at D = 1 and E = C6 + 1− `. At

start V2D−1V
2
C6−(E−1)

= V2C6−`V
2
C6
. Again, the maximum degree

of the minors det((H<)↓D,E) is atD
top
max = E

top
max = (C6 +2−`)/2

if C6 + 2 − ` is even, and at D = E − 1 and D
top
max = E

top
max − 1 =

(C6 + 1 − `)/2 if C6 + 2 − ` is odd.

Proof of Lemma 3.2. By Lemma A.2 above each minor det(

(H<)↓D,E ) (34) has the factorΨ
2
C6
. BecauseW<,` (~) = W<,` (1/~),

the Laurent polynomial ~&W<,` (~) is a polynomial in  [~]

of degree 2& . Also, ΨC6 (1/~) = ±ΨC6 (~), and the largest de-

gree term in Ψ is by (39)±~&
′/2. We conclude that~&W<,` (~)/

(~&
′/2

ΨC6 (~))
2 has degree 2(& −& ′). �

Proof of Theorem 3.3. Let W̄<,` (~) be as in Lemma 3.2 and

let l ∈ K with l ≠ 0 and ΨC6 (l) ≠ 0 and W̄<,` (l) ≠ 0.

Let D<,` (Û, ~) = det(Ĥ<,` ) ∈ K[Û, ~, 1~ ]. The Laurent poly-

nomial D<,` (Û, l) ≠ 0, because 1/l&W̄<,` (l)ΨC6 (l)
2
≠ 0,

which is the coefficient of Û . Therefore Δ<,` (Û) = D<,` (Û −

02`−1, l) ≠ 0. We set Γ5 (~) =
∏C6

`=1 W̄<,` (~).

For ` = C6 + 1 we have by the Vandermonde factorization

(34, 33) W<,C6+1 (~) = det(�<)
(∏C6

9=1 V
3
9

)
ΨC6 (~)

2 . Therefore,

W<,C6+1 (l) ≠ 0.

The degree −& ′′ in Theorem 3.1 is

≤ 4
∑C

9=1
X 9 ≤ 4

∑C

9=1
(XC − 9 + 1) = 2C (2XC − C + 1) .

Multiplying by 2 and 2C ≥ C6 (24) yields (41). �
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D. APPENDIX: NOTATION

This appendix is not included in the ISSAC 2024 Proceedings.

Symbols for main quantities (in alphabetic order):

Aa,8 the early termination Hankel matrix [14, Theo-

rem 4] (55)

08 , 028−1 the values of the interpolants 5 (G) (3), 6(~) (24)

at input l8 , l28−1

0̂8 , 0̂28−1 the values including possible errors

0̂a,8 , 0̂a,28−1 the values including possible errors in block a (Al-

gorithms 4.1,B.1)

U8 , U28−1 the values of the interpolants 5 (G) (3), 6(~) (24)

at variable-powers G8 , ~28−1

Û the symbolic error added to a value

� ≥ C , an upper bound on the sparsity of 5

BC+1, B̄C+1 Vandermonde matrix factors of HC+1 (14)

B<, B̄< Vandermonde matrix factors of H< (33)

V 9 the terms in the sparse interpolants (13, 32)

�,�< diagonal matrices with term coefficients on the di-

agonal (14, 33)

2 9 the coefficient of the 9-th term of 5 (3,23)

� ≥ |X 9 |, an upper bound on the absolute values of

the degree of 5 (Section 4.1)

Δ<,` (Û) the determinant of �̂<,` (Theorems 2.7, 3.3)

X 9 ∈ Z the term degrees (3,23)

� an upper bound on the number of errors that is

input to the algorithm

[ 9 the term degrees of 6(~) (31)

5 (G) the interpolant polynomial (3,23)

6(~) the sparse polynomial in power basis derived

from the sparse Chebyshev interpolant (24)

WC+1,` , W<,` the coefficients of Û of ΔC+1,` (Û),Δ<,` (Û) (Theo-

rem 2.4, Lemma 3.2)

W̄C+1,` , W̄<,` WC+1,` , W<,` divided by ΨC ,ΨC6 (Lemmas 2.5, 3.2)

Γ5 the product of W̄C+1,` , W̄<,` for all ` (Theorems 2.7,

3.3)

�C+1, �< the Prony Hankel matrices (4,27)

Notation continued (in alphabetic order):

�̂C+1,` , �̂<,` the Prony Hankel matrices with one symbolic

value Û standing in for an error (6,28)

HC+1,H< the Prony Hankel matrices with symbolicl (8,29)

ĤC+1,` , Ĥ<,` the Prony Hankel matrices with symbolic l and

symbolic error Û (see 9,30)

Hankelg notation for g × g Hankel matrices (2)

\ = ⌊�/2 + 1⌋ number of blocks (Algorithms 4.1

and B.1)

� the locations of errors (Algorithms 4.1 and B.1)

K a field of scalars in which the coefficients lie

ℓ the index of a single error in a block of 2� + 1

values

Λ(I) the term locator polynomial (5,26)

_ 9 ∈ K the coefficients of Λ(I) (45)

< = C6 + 1 the dimension of the Hankel matrices

(28,29)

` the index of a value in the Hankel matrix on one

or two anti-diagonals (6,28)

# the number of the argument/value pairs used for

interpolation

' the maximum error rate (Table 1)

(a finite sets from which random elements are sam-

pled (Algorithms 4.1 and B.1)

)= (G) the Chebyshev polynomial of the first kind of de-

gree =

C, C6 the actual number of terms of 5 , 6

D, E the row/column index for the minor

G,~ the variables in the sparse interpolants (3,23,24)

and symbolic values for l

q 9 the coefficients of the term locator polynomial for

symbolic l = ~ (48)

ΨC (G),ΨC6 (~) the product of all term difference (21,39)

I the variable in the term locator polynomial (5,26)

l ∈ K≠0,≠±1,R≠0,≠±1, evaluation argument base

value for the polynomials 5 , 6

la a = 1, 2, . . . , \ evaluation argument base values

for multiple blocks (Algorithms 4.1 and B.1)
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