
COMPUTER ALGEBRA ALGORITHMS*

Erich Kaltofen

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York 12180-3590
Arpa-Net: kaltofen@csv.rpi.edu

January 19, 1987

CONTENTS

INTRODUCTION ..1

ARITHMETIC ...2

Integer and Polynomial Addition, Multiplication, and Division with Remainder............. 2
Integer and Polynomial Greatest Common Divisor... 3
Floating Point Numbers and Power Series.. 5
Matrix Arithmetic... 6
Arithmetic with Concisely Represented Expressions ...7

SEMINAL PROBLEMS ...9

Factorization ..9
Computing with Groups ...11
Integration in Closed Form ..12
Solving Systems of Polynomial Equations... 14
Decision Methods for Elementary Algebra and Geometry.. 16

LINKAGES ..17

Parallel Algorithms.. 17
Logic Programming and Simplification... 18
Language and System Design.. 18
Activities Outside Computer Algebra .. 19

CONCLUSION ..19

LITERATURE CITED... 21

* To appear inAnnual Review in Computer Science, Vol. 2, Annual Reviews Inc., Palo Alto, CA, 1987.

INTRODUCTION

The origins of the discipline of computer algebra can be found in Isaac Newton’s Universal
Arithmetic (1728) [130], where methods for manipulating universal mathematical expressions
(i.e. formulas containing symbolic indeterminates) and algorithms for solving equations built
with these expressions are systematically discussed. One can interpret the mission of computer
algebra as the construction of computer systems that enable scientific or engineering users, for
instance, to carry out mathematical manipulation automatically. Indeed, systems with this goal
already exist, among them MACSYMA, MAPLE, muMATH, REDUCE, SAC/2, SCRATCH-
PAD/II, and SMP. These systems carry out scientific computing tasks, whose results are distin-
guished from numerical computing in two principle aspects. (a) The results are symbolic rather
than numerical, as the typical example of the inversion of a symbolic matrix demonstrates.

FACTOR(







1

1

1

1

x1

x2

x3

x4

x2
1

x2
2

x2
3

x2
4

x3
1

x3
2

x3
3

x3
4







−1

) → 1.

x2x3x4

(x2 − x1)(x3 − x1)(x4 − x1)

−x1x3x4

(x2 − x1)(x3 − x2)(x4 − x2)

x1x2x4

(x3 − x1)(x3 − x2)(x4 − x3)

−x1x2x3

(x4 − x1)(x4 − x2)(x4 − x3)
−x3x4 − x2x4 − x2x3

(x2 − x1)(x3 − x1)(x4 − x1)

x3x4 + x1x4 + x1x3

(x2 − x1)(x3 − x2)(x4 − x2)

−x2x4 − x1x4 − x1x2

(x3 − x1)(x3 − x2)(x4 − x3)

x2x3 + x1x3 + x1x2

(x4 − x1)(x4 − x2)(x4 − x3)
x2 + x3 + x4

(x2 − x1)(x3 − x1)(x4 − x1)

−x1 − x3 − x4

(x2 − x1)(x3 − x2)(x4 − x2)

x1 + x2 + x4

(x3 − x1)(x3 − x2)(x4 − x3)

−x1 − x2 − x3

(x4 − x1)(x4 − x2)(x4 − x3)
−1

(x2 − x1)(x3 − x1)(x4 − x1)

1

(x2 − x1)(x3 − x2)(x4 − x2)

−1

(x3 − x1)(x3 − x2)(x4 − x3)

1

(x4 − x1)(x4 − x2)(x4 − x3)

(b) The results are exact; for instance, the real roots of a polynomial are computed as

REALROOTS(x5 − x3 − 2x2 − 2x − 1, 10−20) → [x =
511990516813884957689

268
], 2.

where the actual real root is guaranteed to lie closer than 10−20 to the given rational answer. An
important ingredient in such systems is therefore that they can handle expressions with symbolic
variables and that there is no digit overflow in the number arithmetic.Hence the basic data
objects are arbitrarily long integers, polynomials in several variables with rational coefficients,
and matrices with polynomial entries.

Many algorithms can be performed by viewing the data objects as abstract algebraic struc-
tures; for example, Gaussian elimination is valid over any field, be it the rational numbers or
Laurent series.Such algebraic algorithms and the corresponding complexity theory constitute
the subject of computational algebra.Of course, this is an important part of computer algebra.
Long integer arithmetic and associated operations such as integer primality testing are perhaps
more number theoretical in nature, but also play a significant role in computer algebra.

Operations on approximate data such as truncated power series, and on perhaps more combina-
torical objects, such as finite permutation groups, constitute yet another category of computer
algebra activity. I think all algorithms discussed in this article have an impact on computerizing
mathematical formula manipulation and equation solving, and many of them are available on
existing computer algebra systems.

First I discuss the development of efficient arithmetic algorithms.I then list five problem
areas that have led to major results and implementations: factorization, computational group the-
ory, integration in finite terms, polynomial system solving, and theorem proving in real closed
fields. ThenI briefly note linkages of computer algebra to logic programming, high-level lan-
guage design, artificial intelligence, and application areas outside computer science.

Computer algebra is a field of wide scope with many connections to other areas in com-
puter science. The reader can get a more extensive introduction from several books (Lipson
1981 [111]; Buchberger et al 1982) [22] and survey articles (Yun & Stoutemyer 1981 [184];
Caviness 1986) [31]. References to computational algebra include the book by Borodin &
Munro (1975) [15] and the two survey articles (Strassen 1984 [168]; Schönhage 1986b) [154].
Recent research topics are reported in Caviness (1985) [51], in Char (1986) [52], and in theJour-
nal of Symbolic Computation.An article in theScientific American(Pav elle et al 1981) [135]
gives a less academic look at the subject.

Notation: By Z I denote the set of integers, byQ the set of rational numbers, and byC the set of
complex numbers. ByFq I denote a finite field withq elements. ByD[x] I denote the polyno-
mials in the variablex with coefficients from the domainD, and by D(x) I denote their rational
functions - that is, fractions of polynomials fromD[x].

ARITHMETIC

A prerequisite to carrying out computer algebra efficiently is the ability to perform arithmetic in
the basic domains fast. Fortunately, today algorithms are available whose efficiency significantly
surpasses the classical methods.Here I report on these algorithms not only for the integer and
polynomial domains, but also for power series, floating point numbers, and matrix algebras.A
main reference to this subject is Chapter 4 in Knuth’s book (1981) [94].

Integer and Polynomial Addition, Multiplication, and Division with Remainder

Integers and polynomials are usually represented as lists or arrays of digits and coefficients,
respectively:

(±1, a0,..., an) denotes N = ±
n

i=0
Σ ai r

i , 0 ≤ ai < r ,

and

(x, a0,..., an) denotes f (x) =
n

i=0
Σ ai x

i , ai ∈ coefficient domain.

The radixr is usually chosen a suitable power of 2, such that each digit fits into a word of com-
puter memory. The school methods for addition and subtraction with running timeO(n) bit or
coefficient domain operations suffice on a sequential computer, but for multiplication theO(n2)
school algorithm can be significantly improved. Thefastest methods today from both a theoreti-
cal and a practical point of view are all based on the discrete Fast Fourier Transformation (Coo-
ley & Tukey 1965) [46]. In fact, if the coefficient domain contains primitive roots of unity, as is
true for the complex numbers, polynomials can be multiplied inO(n log(n)) arithmetic opera-
tions. Otherwise,such roots can be synthetically adjoined to the coefficient ring and the best
known running time is the asymptotically slightly slower O(n log(n) log(log n)) (Scḧonhage
1977 [149]; Nussbaumer 1980 [132]; Cantor & Kaltofen 1987) [27].Even earlier these ideas led
to theO(n log(n) log(log n)) algorithm for integer multiplication, counting bit operations on a
circuit or multitape Turing machine (Schönhage & Strassen 1971) [156]. It is a major unresolved
theoretical problem to improve these running times toO(n log(n)).1 The FFT-based multiplica-
tion algorithms for both polynomial and integer multiplication are also of practical significance.
In the integer case we refer especially to Pollard’s “three primes” algorithm (Lipson 1981 [111],
§IX.2.2) or to Scḧonhage’s (1982a) [150] improvements.

Multivariate polynomial multiplication can be accommodated by the ubiquitous algorith-
mic paradigm of computing by homomorphic imaging. Figure 1 exhibits the particular instance
used in that case, the Kronecker homomorphism. Other imaging schemes appear in the FFT-
based multiplication algorithms, in general Chinese remaindering and interpolation (Lipson 1981
[111], §VIII.2), in the powerful Hensel lifting technique (Yun 1980 [183], and the references to
earlier work there; Lauer 1982 [103]; Kaltofen 1985b [77], 1987b) [83], and in algorithms based
on continued fraction (Krishnamurthy et al 1975 [96]; Wang 1981) [178] and Pad ́e approxima-
tion (Czapor & Geddes 1984) [48].

An important improvement over the school method of integer division with remainder are
the fast quotient digit prediction techniques (Knuth 1981, §4.3.1) [94].For polynomial division
with remainder over the integers the novel application of Hensel lifting (Lauer 1982) [103]
should prove useful.

Integer and Polynomial Greatest Common Divisor (GCD)

A fundamentally important operation in computer algebra is integer and polynomial GCD.The
roots of perhaps all algorithms lie in Euclid’s remainder sequence scheme. Substantial computa-
tional improvements in the case of integer GCDs are due to Lehmer (Knuth 1981, §4.5.2) [94],
Knuth (1970) [93], and Schönhage (1971) [148]. These improvements carry over to polynomial
GCD (Moenck 1973) [119] in terms of coefficient field operation count.However a critical
problem of exponential coefficient size growth arises in case the coefficients are rational numbers
or polynomials themselves, the latter in the multivariate case.The beautiful theory of subresul-
tants (Collins 1967 [41]; Brown & Traub 1971) [18] explains that the size growth is not inherent

1 For integer multiplication, the optimal circuit size appears to ben log(n) o(log(log n)) as the hypothetical results
reported by M. F̈urer at the 1986 Oberwolfach complexity conference strongly suggest.

Figure 1: Multivariate polynomial multiplication by Homomorphic Imaging, the Kronecker
scheme.

Problem Domain:
Polynomial ringD[x, y] Problem Operation

f (x) =
0≤i1, i2<n

Σ ai1,i2
xi1 yi2 Bivariate f (x, y) g(x, y) =

g(x) =
0≤ j1, j2<n

Σ b j1, j2
x j1 y j2 Multiplication

0≤k1,k2<2n−1
Σ






i1+ j1=k1

i2+ j2=k2

Σ ai1,i2
b j1, j2






xk1 yk2

Forward y = x2n Inverse For k=k1+2nk2, k1 < 2n,
Mapping Mapping replacexk by xk1 yk2

Image Domain:
Polynomial ringD[x] Image Operation

f̂ (x) =
0≤i1, i2<n

Σ ai1, i2
xi1+2ni2 Univariate

ĝ(x) =
0≤ j1, j2<n

Σ b j1, j2
x j1+2nj2 Multiplication f̂ (x) ĝ(x) =

4n2−2n−2

k=0
Σ ck xk

but a result of oversimplified rational coefficient arithmetic.Efficient algorithms are then
obtained in various ways: One can keep coefficients small by exactly dividing out known com-
mon factors (Knuth 1981, §4.6.1 [94]; Hearn 1979 [68]; Stoutemyer 1985b) [164] or employ
Chinese remaindering (Brown 1971) [17] or Hensel lifting (Moses & Yun 1973) [127].

It comes as a surprise that GCDs of integral polynomials can be found efficiently via inte-
ger GCDs. Clearly, if f1(x), f2(x) ∈ Z[x] and g(x) = GCD(f1(x), f2(x)) then for any integerN

g(N) divides M = GCD(f1(N), f2(N)).

Char et al (1984) [33] first established how to inv ert this mapping - that is, deduceg from M .
Although the inventors viewed their method as an efficient heuristic, a rigorous probabilistic
analysis has been recently accomplished (Schönhage 1986a) [155].

The extended Euclidean problem also entails the determination of multiplierss andt such
that GCD(f , g) = s f + t g, and most of the mentioned algorithms solve this problem as well.
Tw o immediate applications are the computation of reciprocals moduloN and modulog(x) from
the schemes

1 = GCD(M , N) = SM + TN, S = (M−1 mod N)

and

1 = GCD(f (x), g(x)) = s(x) f (x) + t(x)g(x), s(x) = (f (x)−1 mod g(x)).

These constitute the division operations in the basic domains of integers moduloN and of alge-
braic number fields in Kronecker representationQ[x] modulog(x) (Loos 1982) [113].

For polynomials with coefficients in an integral domain, such asF [y], F a field, the
Euclidean scheme can only be solved by multiplying the GCD by a domain element - that is

h(y) GCD(f (x, y), g(x, y)) = s(x, y) f (x, y) + t(x, y)g(x, y),

wheres(x, y), t(x, y) ∈ (F [y])[x], 0 ≠ h(y) ∈ F [y]. A particularly important multiplierh(y)
occurs when GCD(f , g) = 1, namely the resultant off andg with respect tox (van der Waerden
1953, §IV) [176]. The importance of the resultant follows from the fact that iff and g have a
common zero point (x0, y0), theny0 is a zero of their resultanth(y), because

0 = f (x0, y0) s(x0, y0) + g(x0, y0) t(x0, y0) = 1 ⋅ h(y0).

Therefore, intersection points off andg, be they real or complex, are projected to roots of their
resultant. Clearly, efficient algorithms to compute resultants are connected to the GCD problem
and we refer to Collins (1971) [42], Schwartz (1980) [157], and Rothstein (1984) [145].

Once the GCD algorithms are in place we are in the position of performing exact rational
number and function arithmetic (“slash arithmetic”) and keep the explicitly found numerators
and denominators in lowest terms (Knuth 1981 [94], §4.5.1).However, slash arithmetic is likely
to lose in efficiency to computing in homomorphic images such as modular or approximating
domains.

Floating Point Numbers and Power Series

Although truncated formal power series are well accepted objects in computer algebra (Lipson
1981 [111], §IX.3; Zippel 1976 [187]; Knuth 1981, §4.7) [94], floating point numbers may be
thought to belong to numerical computing, where the exactness principle of computer algebra is
replaced by numerical error analysis. Indeed, both the floating point number and power series
domains can be considered what Knuth calls seminumerical data. The exactness principle must
still apply as such data is manipulated in computer algebra, and that means for the power series
domain that the computed Taylor series coefficients are correct up to the indicated truncation
point. Whenusing floating point numbers in computer algebra we shall at least require that the
numbers returned as answers must be guaranteed correct within an explicitly stated tolerance.
Computer algebra systems therefore should support floating point operations with arbitrary set-
table mantissa length, and indeed several systems do.A good example of a problem for this
principle is complex root approximation of a univariate polynomial, where the ability to select
the floating point precision dependent on the input polynomial is important to guaranteeing the
desired tolerance. Solutions to this problem go as far back as to Sturm in 1835, and Schönhage
(1982b) [151] recently developed a comprehensive complexity theory for this fundamental

problem of algebra.Earlier in 1976, Collins & Loos had already established that for real root
isolation Newton iteration is computationally superior to the Sturm bisection method, which was
used to find the answer to Equation 2, above. I refer to Collins & Loos (1982) [44] for a full
account on modern methods.

Several problems in computer algebra, such as computing polynomial GCDs or Jordan
normal forms of matrices over C represented as floating point numbers are considered “inher-
ently numerically unstable.” Sch ̈onhage’s (1985) [153] quasi-GCD algorithm is a step towards
dealing with such problems.Obviously, the semi-numerical approach to computer algebra prob-
lem solving must incorporate numerical analysis techniques and is at this time restricted to a few
problems. However, if a difference scheme leads to a linear system best solved by a conjugate
gradient method, this should be done, keeping in mind that a different notion of error analysis
applies.

Power series manipulation is probably better understood, perhaps for the lack of carry
propagation in the arithmetic. Here I only add new information to the discussion by Knuth (1981
[94], §4.7). The coefficient growth in the Newton algorithm for power series expansion of alge-
braic functions (Kung & Traub 1978) [98] has been analyzed (Kaltofen 1985c [78]; Chistov
1986) [37]. It turns out that for a fixed algebraic function the expansion can be computed in lin-
ear time in the requested order (Chudnovsky & Chudnovsky 1986) [40]. Closely related to
power series are the p-adic numbers (Krisnamurthy et al 1975) [96], which can be used as an
alternative to floating point numbers to approximate certain complex numbers.

Matrix Arithmetic

Algorithms for manipulating matrices form the basis to linear system solving. As mentioned, the
great Gaussian elimination algorithm is generic in that it can be carried out over an abstract field.
As such, Gaussian elimination constitutes the basis for linear system solving in computer alge-
bra, and homomorphic imaging can then be applied to it (McClellan 1973 [116]; Moenck &
Carter 1979) [120].

Theoretically, it turns out that the complexity of many matrix problems is reducible to the
complexity of n by n matrix multiplication (Aho et al 1974) [5].Now it is well-known thatn by
n matrices can be multiplied asymptotically faster than inO(n3) arithmetic steps. In Knuth
(1981 [94], §4.6.4), the developments leading to anO(n2.498) algorithm are described.Recently,
Strassen (1986) [169] has introduced the new “LASER” technique for aligning a nonmultiplica-
tion tensor, which has led to the new world record ofO(n2.376) by Coppersmith & Winograd
(1987) [47]. Although the actual algorithms are purely of theoretical interest, the innovations
such as the border rank or the asymptotic spectrum of a tensor can be expected to have an impact
in computational algebra.

Linear algebra appears to be an important subject of advanced studies in computer algebra,
for it is part of the solution to many problems, be it to compute a Taylor series solution to a dif-
ferential equation or to factor integers by the continued fraction method, to name but two very

distant ones. The work on computing matrix canonical forms (Kaltofen et al 1986 [85], 1987)
[86], as well as Wiedemann’s (1986) [180] spectral methods for sparse linear system solving
over finite fields demonstrates randomization as a powerful new tool in this area. The control of
coefficient growth in diophantine linear system solving (Kannan & Bachem 1981 [88], Chou &
Collins 1982) [39], as well as the lattice reduction algorithm (Kannan, in this volume) arises as
an important issue. And finally, methods to manipulate sparse matrices must be introduced to
computer algebra. Both the combinatorical approaches (Lipton et al 1979 [112]; Gentleman &
Johnson 1976 [62]; Pan & Reif 1985) [134] and the algebraic approach (Wiedemann 1986) [180]
have high potential to improve significantly the linear system solving capability within computer
algebra.

Arithmetic with Concisely Represented Expressions

Sparse polynomials certainly play as important a role in the polynomial calculus as do sparse
matrices in large linear system solving.A representation at hand is the vector of nonzero terms
together with the corresponding exponents

((ae1,..., en
, e1,..., en))(e1,..., en)∈J denotes

(e1,..., en)∈J
Σ ae1,..., en

xe1
1 ⋅ ⋅ ⋅ xen

n ,

whereae1,..., en
≠ 0 for (e1,..., en) ∈ J. A main consideration in addition and multiplication is

the sorting of the terms in the answer (Horowitz 1975) [71].However, the problem of deciding
whether polynomials have a common nontrivial divisor becomes NP-hard for even univariate
inputs, if exponents are represented in binary (Plaisted 1977) [136].In general, allowing very
large exponents spoils the ability to manipulate such “ultrasparse” polynomials. Neither can the

polynomial x2d

be evaluated at sayx = 3, nor canx2d

− 1 be divided byx − 1, for in both cases
the inputs are of sizeO(d), whereas the outputs requireΩ(2d) bits.

The sparse representation becomes more natural if the number of variablesn is large, yet

the degree stays polynomially bounded.There are

n + d

n



termsxe1
1 ⋅ ⋅ ⋅ xen

n of total degreee1 +

... + en ≤ d - that is, exponentially many in n, even though the number of nonzero terms can be
quite small. GCD and factorization algorithms on such multivariate sparse polynomials were
studied both theoretically and empirically as early as a decade ago (Wang 1978) [177], and ran-
domization became one of the major ingredients to sparsity preserving operations (Zippel 1979)
[188]. Early on Moses (1971b) [125] pointed out, however, that sparsity is not measured in
terms of nonzero coefficients alone, as his example

∫ (z + 1)1000dz =
(z + 1)1001

1001
3.

demonstrates. Fromalgebraic complexity theory (Strassen 1973a [166], b [167]; Valiant 1982)
[174] one can adopt straight-line programs as a concise representation of polynomials.Figure 2
exhibits the straight-line representation for a very dense multivariate polynomial.Moses’s exam-
ple (Expression 3) can be recast in these terms as: “Given a straight-line program of lengthl for a

Figure 2: Straight-line program example for the expression

1

x6


(xa2 + xb2 + xc2 − xw2 − xy2 − xz2 − xa − 2xb+ 3xc − 4xw + 5xy − 6xz+ 10x2 − 5x)6 − x18


.

Following is the program produced for the above expression by the conversion procedure of
Freeman et al (1986) [57].

v1:=0 v16:=a v31:=v28*v28 v46:=v43*v43 v61:=v36+v60

v2:=1 v17:=v16*v3 v32:=v31*v3 v47:=v3*v46 v62:=v32+v61

v3:=x v18:=v8*v17 v33:=−4 v48:=v8*v47 v63:=v30+v62

v4:=v3*v3 v19:=v16*v16 v34:=w v49:=−6 v64:=v26+v63

v5:=v3*v4 v20:=v19*v3 v35:=v34*v3 v50:=z v65:=v24+v64

v6:=v5*v5 v21:=−2 v36:=v33*v35 v51:=v3*v50 v66:=v20+v65

v7:=v2/v6 v22:=b v37:=v34*v34 v52:=v49*v51 v67:=v18+v66

v8:=−1 v23:=v22*v3 v38:=v37*v3 v53:=v50*v50 v68:=v15+v67

v9:=v4*v4 v24:=v21*v23 v39:=v8*v38 v54:=v3*v53 v69:=v68*v68

v10:=v9*v9 v25:=v22*v22 v40:=10 v55:=v8*v54 v70:=v68*v69

v11:=v3*v10 v26:=v25*v3 v41:=v40*v4 v56:=v52+v55 v71:=v70*v70

v12:=v11*v11 v27:=3 v42:=5 v57:=v48+v56 v72:=v13+v71

v13:=v8*v12 v28:=c v43:=y v58:=v45+v57 v73:=v7*v72

v14:=−5 v29:=v28*v3 v44:=v3*v43 v59:=v41+v58

v15:=v14*v3 v30:=v27*v29 v45:=v42*v44 v60:=v39+v59

polynomial functionf (z) ∈ C[z], find another straight-line program of lengthlO(1) that computes

∫ f (z)dz.” Howev er, it is not even clear that such programs always exist (Strassen 1986 [168],

Problem X). Again, the high degree may be held responsible for the difficulty of this integration
problem. Thisis not the case in Valiant’s (1982) [174] multivariate example:

∂n

∂y1 ⋅ ⋅ ⋅ ∂yn





n

i=1
Π(

n

j=1
Σ xi , j y j)





= PERMANENT(







x1,1

...
xn,1

⋅ ⋅ ⋅

⋅ ⋅ ⋅

x1,n

...
xn,n







). 4.

Clearly, the argument to the iterated partial derivatives in Expression 4 has a straight-line compu-
tation of lengthO(n2), whereas the general permanent on the right-hand side constitutes a #P
complete problem (Valiant 1979) [173]. Therefore partial derivatives of functions given by
straight-line programs are difficult to compute. I l ike to look upon Expression 4 as a central
infeasible computer algebra problem, and Moses’s problem may fall into this category as well.

Despite Valiant’s permanent example, the polynomial factoring problem of multivariate
polynomials in straight-line representation such as the one in Figure 2 could be shown feasible in
ev en the sense of efficient straight-line answer generation (discussed in the next section). Aside
from this, there are several other basic operations known to be feasible on multivariate polynomi-
als of polynomially bounded degree given by straight-line programs, such as automatic paral-
lelization (Valiant et al 1983 [175], Miller et al 1986) [118], GCD, separation of numerator and
denominator of a rational function, and multiple partial derivatives in a single variable (Kaltofen
1987b) [84].

SEMINAL PROBLEMS

Five problems have led to a substance of work in computer algebra not found for any other of its
problem areas, if we exclude the arithmetic discussed before. Each of these has also initiated a
major implementation effort.

Factorization

The two domains basic to factorization are the integersZ, and multivariate polynomials over a
field F [x1 ,..., xn]. In the latter, F is typically an algebraic extension of the rationals or the inte-
gers modulo a prime number. Integer factorization is, strictly speaking, a problem in computa-
tional number theory, and many algorithms utilize number theoretic properties.Refer to the sur-
vey by Pomerance (1984) [137] for the work until 1984.Recently, the use of elliptic and hyper-
elliptic curves has led to a new approach in integer factoring and primality testing (Lenstra 1986
[109]; Goldwasser & Kilian 1986 [63]; Adleman & Huang 1987) [3].This approach leads to
both a randomized primality test that certifies its inputs≤ N to be prime and has (logN)O(1)

expected running time, and to a factorization procedure that has constant space requirement and
works well on numbers with fairly many factors (Montgomery 1987) [122].Previously known
primality testing procedures establish the primality of their inputs either with overwhelming
probability of being right [that probability being independent of the input number (Solovay &
Strassen 1977 [163]; Rabin 1980a)] [138], or with correctness that is subject to an unproven
extension of the Riemann hypothesis (Miller 1976 [117]; Bach 1985) [9]. It is fair to say that
today prime numbers can be recognized and generated feasibly in both a strong theoretical and
practical sense. These developments are definitely useful in computer algebra tasks - for
instance, for probabilistically verifying polynomial identities (Schwartz 1980) [157]. On the
other hand, the fact remains that factoring an arbitrary integer ≤ N by any of the fastest known
probabilistic methods requires at least

exp(√ log(N) log(logN))1+o(1)

steps. Thiscomputational difficulty of integer factoring has led to the belief that integer multipli-
cation is an irreversible process with respect to the resources required to undo it.Modern cryp-
tography is based on this hypothesis, and with it encoding schemes could be proven secure
(Goldwasser & Micali 1984) [64].

We now come to the problem of factoring polynomials. Isaac Newton’s classical approach
(see van der Waerden 1953) [176] reduces the problem to integer factorization, but the problem
of factoring the arising integers remains computationally difficult. For evidence, see Monagan
(1986) [121], who provides an irreducibility test based on Newton’s method. Itis a fine example
of computer algebra work to remove this exponential complexity from the polynomial factoring
problem and today multivariate polynomial factorization is theoretically and practically feasible.
Consider the following far reaching theorem.

Theorem (Kaltofen 1987a) [80]:Let F be an algebraic extension of a prime field - that is, either
F = Q[θ] modulo m(θ), where m(θ) ∈ Q[θ] is the defining minimal polynomial of the algebraic
numberθ , or F = Fq, q a prime power. Assume we are given a straight-line program P of length
l that computes a polynomial f∈ F [x1,..., xn], a failure probability ε << 1, and a maximum
number of terms bound t. Then we can find in polynomially many binary steps as a function of

l ; t; log(1 /ε);
element-size(P), the binary size of the scalars in P;
deg(f), the total degree of f;
coeff-size(f), the number of bits needed to represent the coefficients of f in F;

sparse polynomials that with probability >1 − ε constitute all irreducible factors of f with no
more than t monomials.

In fact, the algorithm first finds straight-line programs for all irreducible factors off and
then converts those programs to sparse representation, with abortion if the polynomials have
more thant terms. Aconsequence is, for example, that the factorization of the polynomial in
Figure 2 can be found automatically even though the polynomial has 14,379 terms.I consider
the above theorem to be the culmination to date of work begun in the mid-1950s on the polyno-
mial factoring problem.Instead of referring to the extensive literature available now, I note
below what I consider the stepping stones toward the above theorem. For more detailed informa-
tion, consult the two survey articles (Kaltofen 1982c [74], 1986c) [82].

1. A reduction from factoring inQ(θ)[x] to factoring inQ[x] is giv en (Kronecker 1882 [97];
Trager 1976 [170]; Landau 1985) [100]. This is the only classical algorithm of polynomial
running time, although the lattice method (Lenstra 1982 [106]; Abbot et al 1986) [1] may
be more efficient.

2. Thefactoring problem inFq[x] is resolved in polynomial time, using randomization for
large characteristic (Butler 1954 [24]; Berlekamp 1967 [11]; 1970 [12]; Rabin 1980b
[139]; Cantor & Zassenhaus 1981) [28].

3. TheHensel lemma is applied to reconstructing rational factors from modulop factors and
multivariate factors from univariate ones (Zassenhaus 1969 [186]; Musser 1975 [128]; Yun
1980) [183].

4. An interpolation and lifting scheme for sparse polynomials is introduced using randomiza-
tion (Zippel 1979 [188], 1981 [189]; von zur Gathen & Kaltofen 1985 [61]; Kaltofen
1985b) [77]

5. Effective versions of the Hilbert irreducibility theorem are employed to guarantee the cor-
rectness of the factors reconstructed by Hensel lifting (Heintz & Sieveking 1981 [69];
Kaltofen 1982a [75], 1985a [79], 1985c [78]; von zur Gathen 1985) [59].

6. Thelattice algorithm (see Kannan, this volume) is employed to obtain a polynomial-time
factorization algorithm inQ[x] (Lenstra et al 1982 [108]; Schönhage 1984) [152].

7. Factoring multivariate polynomials over the integers is reduced to univariate algorithms.
The algorithms are exponential in the number of variables (Kaltofen 1982b [76], 1985c
[78]; Chistov & Grigoryev 1982 [38]; Lenstra 1984) [107].

8. Straight-lineprograms are used to represent dense polynomials as inputs, intermediate
results, and final answers (Kaltofen 1986a [81], 1987a) [80].

I hav enot given the asymptotic complexity associated with the theorem.I believe that any
crude upper bound would be quite useless in judging the practical feasibility of any of the algo-
rithms. Fortunately, fine-tuned implementations of most methods are available (Wang 1978
[177]; Moore & Norman 1981 [123]; Freeman et al 1986) [57] and perform remarkably well.If
the reader has a polynomial needing to be factored, I estimate that with 98% chance the appropri-
ate procedure will be able to do the job. For instance, the factors of the polynomial in Figure 2
were found by our system in 100 seconds.I believe that no other of our seminal problems, with
the exception perhaps of some of the group problems discussed next, is as far advanced towards
its computational solution.

Computing with Groups

The discovery of the interconnection between finite group theory and solving a single equation
by radicals, known as Galois theory, is already 150 years old (van der Waerden 1953, Ch. 7)
[176]. Theactivity on the polynomial factorization problem led to a polynomial-time solution
for deciding whether the Galois group of a rational polynomial is solvable (Landau & Miller
1984) [101]. I hope this result will open a computational approach to classical Galois theory.
However, the fundamental question of finding the Galois group of a polynomial inQ[x] in poly-
nomial-time remains unsolved. Sincethe group can have exponentially many elements in the
degree of the equation, we must ask for a concise representation, say a set of permutations gener-
ating the group. Notice that there always exists a generating set whose cardinality is the loga-
rithm of the order of the group. Given a generating set of a permutation group, problems like

Cardinality, Membership, Solvability,

are all solvable in polynomial-time. Such results are precisely the theme of the well developed
computational group theory (see Neubüser 1982 [129] and the references there).Computer

systems such as CAYLEY (Cannon 1976) [26] and CAMAC (Leon & Pless 1979) [110] provide
sophisticated procedures to actually compute such answers.

Computational group theory does not lack of challenging problems such as finding a gen-
erating set for the intersection of two permutation groups given by generating sets.Although
some applications of this theory are fairly combinatorial, as the relation to the graph isomor-
phism problem may indicate (Luks 1982) [114], the link to equation solving grows even stronger
if we include matrix groups. The theory by Picard & Vessiot relates the question of finding Liou-
villian solutions of linear ordinary differential equations to the solvability question of (infinite)
matrix groups.Recently, this theory has been exploited to construct the remarkable decision pro-
cedures by Kovacic (1986) [95] and Singer (1981) [158]. The computational complexity of
problems relating to groups multiplicatively generated by matrices over even finite fields must be
expected to be quite high (Babai & Szemerédi 1984) [8], and the same may be true for the gen-
eral case in the Singer algorithm. Nonetheless, the group theory in Kovacic’s algorithm is simple
enough to make it worthwhile to implement it (Saunders 1981 [147]; Smith 1984) [161].For the

special ODE dy/dz = f , or y = ∫ f dz, we need no group theory but the methods are not less

beautiful, as we see next.

Integration in Closed Form

The calculation of a “closed form expression” whose derivative equals a given expression, such
as

∫ log(exp(z) + 1) +
zexp(z)

exp(z) + 1
dz → z log(exp(z) + 1), 5.

is the subject of extensive study in computer algebra. As the student of ordinary calculus learns,
there are several heuristics to aid the solution of such a problem, like substitution or integration
by parts.These heuristics entered into the artificial intelligence approach of the pioneers in com-
puterizing integration (Slagle 1961 [160]; Moses 1967) [124], but it is Risch’s (1969) [140] inge-
nious recursive descent argument that replaces the heuristics by a full-fledged algorithm. As is
known in the folklore of calculus, certain functions like sin(z)/z do not allow closed form inte-
gration in some sense, which we can make precise. LetC ⊂ C and let

F0 = C(z) ⊂ F1 ⊂ F2 ⊂ ⋅ ⋅ ⋅ ⊂ Fn

be a tower of complex function fields such that

Fi+1 = Fi (θ i) where







θ i = log(λ i), λ i ∈Fi , or

θ i = exp(η i), η i ∈Fi , or

θ i is algebraic over Fi .

ThenFn is called anelementary Liouvillian extensionof C(z). If no extensions are by algebraics
then we callFn purely transcendental.We call the constant fieldC computableif we have

effective procedures for carrying out arithmetic and testing elements for zero and for being inte-
gral. Inour Expression 5,

C = Q ⊂ Q(z) ⊂ Q(z, exp(z)) ⊂ Q(z, exp(z), log(exp(z) + 1)).

Here is the theorem.

Theorem (Risch 1969 [140]; Rothstein 1976) [144]:Given f ∈ K , K a purely transcendental
elementary Liouville extension ofC(z), and given the constant field of K as a computable sub-
field of C, we can decide in finitely many steps whether there exists an elementary Liouville
extension L⊃ K and a y ∈ L such that dy/dz = f . In that case we call f elementary integrable
and the algorithm will also produce such a y.

All trigonometric, hyperbolic, and inverse tangent functions lie in such fieldsK , and this
theorem therefore covers a wide range of functions.Surprisingly, the approach is purely alge-
braic and in fact uses multivariate polynomial domains.Clearly, K is isomorphic as a field to
C(z, x1,..., xn) on which we can define a formal derivative

z′ = 1, xi ′ =




λ i ′/λ i

xiη i ′
if xi is the image oflog(λ i),

if xi is the image ofexp(η i).

With this derivative C(z, x1,..., xn) becomes a so-called differential field.An 1834 theorem by
Liouville now allows us to restrictL and the structure ofy. An entirely algebraic proof was
devised by Rosenlicht (1968) [143]. Expanding on these ideas (see also Ostrowski 1946) [133],
Risch could reduce the slightly more general ODE problemy′ + f y = g, f , g, and the solutiony
∈ C(z, x1,..., xn), to integration and corresponding ODE problems inC(z, x1,..., xn−1). Roth-
stein (1976) [144] significantly improved Risch’s algorithm by showing how to find the minimal
algebraic extension ofK necessary to expressy [in the caseK = C(z) see also Trager (1976)]
[170]. Oncethe algorithm is in place, and has been implemented (Moses 1971a [126]; Norman
& M oore 1977) [131], it quickly solves Expression 5 or determines sin(z)/z = (eiz − e−iz)/(2zi), i
= √ −1, nonelementary. Attempts have also been made to replace the recursive descent by com-
puting an a priori degree bound (Fitch 1981 [55]; Davenport & Trager 1985) [50], but universally
valid such bounds appear excessively high.

If K in the above theorem is allowed also to contain algebraic functions, the theory
becomes substantially more involved and algebraic geometric in flavor. Howev er, Risch (1970)
[141] announced a finite decision method in this case as well.Davenport (1981) [49] and Trager
(1984) [171] have since then extensively studied this case, and a procedure for integrands built
by purely quadratic extensions ofQ(z) by Dav enport exists for the system REDUCE.

Although ∫ exp(z2)dz is not elementary we can express it as−√ π i erf (iz)/2. It is natural to

ask which other nonelementary integrals can now be expressed with the additional help of error
function extensions. Generally, we may allow special functions as extensions fromK to L that
satisfy certain differential equations.In case ofy = erf (g) this is y′ = g′ exp(−g2), ignoring the

scaling factor. Decision procedures based on Liouville type theorems and the Risch approach
have been devised in this setting, but here we can only refer to Singer et al (1985) [159], Cherry
(1985 [36], 1986) [35], and Knowles (1986) [92].

In modeling elementary functions by expressions, the tower of transcendental extensions
has to be built before the Risch algorithm can be applied. That means in particular that we must
have a transcendence test for exponentials and logarithms. Known algorithms for these are based
on so called structure theorems for elementary functions (Epstein & Caviness 1979 [53]; Roth-
stein & Caviness 1979 [146]; Risch 1979) [142]. The computability of arithmetic in the arising
constant fields can become a problem.I note that even in Q(exp(1),π) zero-testing hinges on the
hypothesis of algebraic independence of exp(1) andπ . The interpretation of expressions as
meromorphic functions must also account for suitable branch selection of multivalued functions
(such as a log), and an appropriate representation for this mathematical knowledge remains a
challenge. However, once the embedding into a tower of fields is found, the integration algo-
rithms are independent of the particular meromorphic model of these differential fields (Risch
1969 [140], Proposition 2.3).

There is a remarkable similarity between the problem of integration in closed form and the
problem of summation in closed form, which we only mention in passing (Gosper 1978 [66];
Karr 1985) [91].

Solving Systems of Polynomial Equations

In the later half of the last century, the theory of invariants constituted a main subject of mathe-
matical research. The fundamental insight to solving systems of polynomial equation was
obtained in this setting, the Hilbert Nullstellensatz.Let us first establish a bit of modern termi-
nology. The algebraic variety of a system of polynomial equationsf1,..., fr ∈ C[x1,..., xn] is
the set of their common zeros,

V(f1,..., fr) : = {(a1,..., an) ∈ Cn | f1(a1,..., an) = ⋅ ⋅ ⋅ = fr (a1,..., an) = 0}.

The ideal generated byf1 ,..., fr over C[x1 ,..., xn] is the set of all linear combinations

(f1,..., fr) : = {h1 f1 + ⋅ ⋅ ⋅ + hr fr | h1,..., hr ∈ C[x1,..., xn]}.

Now a version of the Nullstellensatz states that

V- (a1,..., an) ∈ V(f1,..., fr): g(a1,..., an) = 0

☞☞ 1 ∈ (f1,..., fr , xn+1g − 1) over C[x1,..., xn+1].

In particular,

V(f1,..., fr) = ∅ ☞☞ 1 ∈ (f1,..., fr) over C[x1,..., xn]. 6.

By Expression 6 solvability of polynomial systems is related to polynomial ideal membership,
the “Hauptproblem:”

Given f1,..., fr , g ∈ F [x1,..., xn], F a field, is g
?
∈ (f1,..., fr)

☞☞  h1,..., hr ∈ F [x1,..., xn]: g =
r

i=1
Σ hi fi .

The decidability of the ideal membership is long known (Hermann 1926) [70], because the exis-
tence ofhi with deg(hi) ≤ deg(g) + (rd)2n

, whered = max{deg(fi)}, in case of membership can
be guaranteed and reduces the problem to solving a (large) linear system in the unknown term
coefficients of the hi . The degree bound has been improved by Lazard (1977) [104] to

O((r max{d , deg(g)})3n/2
). In 1965 Buchberger invented an important new approach to polyno-

mial ideal manipulation.First the generating setf1 ,..., fr is rewritten into a new basis f *
1 ,...,

f *
s for the same ideal, which has strong completeness properties. In particular, with respect to

this so-called Gr̈obner or standard basis and with a generalized polynomial remainder process we
have

g ∈ (f1,..., fr) ☞☞ REMAINDER(g; f *
1 ,..., f*s) = 0.

Another property of Gr̈obner bases is best demonstrated by an example (Trinks 1978)172 .For
the input basis, for instance,

f1 = 45p + 35s − 165b − 36,
f2 = 35p + 40z + 25t − 27s,
f3 = 15w + 251 + 30z − 18t − 165b2,
f4 = −9w + 15pt + 20zs,
f5 = wp + 2zt − 11b2,
f6 = 99w − 11sb+ 3b2,
f7 = b2 − 33/50b + 2673/10000,

one obtains under lexicographical ordering withw > p > z > t > s > b a Gröbner basis in which
the variables are “diagonalized” such that the finitely many solutions can be computed by back-
substitution:

f *
1 = w + 19/120b + 1323/20000,

f *
2 = p − 31/18b − 153/200,

f *
3 = z + 49/36b + 1143/2000,

f *
4 = t − 37/15b + 27/250,

f *
5 = s − 5/2 b − 9/200,

f *
6 = f7.

Gr ̈obner bases can be used as a tool for many polynomial ideal theoretic operations, which fortu-
nately has recently been surveyed in the article (Buchberger 1985a) [20].

The polynomial ideal membership problem is extremely difficult from a complexity theory
point of view. It can be shown that ideal membership is exponentially space hard as a function of

n, the number of variables (Cardoza et al 1976 [29], Mayr & Meyer 1982) [115]. Therefore, the
Gr ̈obner basis construction and generalized remaindering is for general inputs a complex proce-
dure. Inlight of the popularity of the Gröbner basis algorithm, surprisingly little is known on
classifying ideals according to their computational complexity, a measure that has yet to be made
precise. Bayer& Stillman (1985) [10] have made an attempt to measure ideal complexity in
terms of m-regularity, but compared to the notion of straight-line complexity for individual poly-
nomials, we have almost no insight why certain polynomial ideals are difficult and others are
easy to manipulate, both of which phenomena have repeatedly been demonstrated by the
Gr ̈obner basis method.

The special and from a geometric point of view more important question whether a poly-
nomial system is solvable - that is, membership of 1 (see Expression 6), can be shown to have
much smaller complexity. The recently announced degree bounds by Brownawell (1986) [19]

1 =
r

i=1
Σ hi fi , deg(hi) ≤ 3 min(n, r) n dmin(n, r), d = max{deg(fi)},

lead to an algorithm of subexponential time with respect to the dense term count of thefi . This
result already followed from the work announced earlier by Grigoryev & Chistov (1984) [67].
For sparse polynomials, it is relatively easy to show co-NP hardness of the solvability problem
(Agnarsson et al 1984) [4], and exponential dependence onn will therefore remain.

Even though solvability of polynomial systems is from the complexity point of view an
easier problem than ideal membership, the best computerized attack on any such problem to-date
appears the Gröbner basis construction. Indeed, well-tuned implementations are available
(Boege et al 1986) [13], and further speed-ups may be expected from an increased understanding
of its relationship to classical elimination by resultants (van der Waerden 1953) [176] and linear
system solving.

Gr ̈obner bases have recently been used in Wu’s (1978) [182] algebraic approach of geo-
metrical theorem proving (Kapur 1986 [89]; Kutzler & Stifter 1986) [99]; but when using this
method, statements in geometry cannot easily be refuted, since a counterexample has the added
restriction that its parameters be real numbers.However, an even larger theory encompassing
inequalities and first order quantification still remains decidable, which is our last problem.

Decision Methods for Elementary Algebra and Geometry

Sentences in the elementary theory of real numbers are constructed from polynomials
fi (x1,..., xn) ∈ Q[x1,..., xn] by the predicate symbols =0,≠0, > 0, the Boolean operatorsand,
andor, and the first order quantifiers V-x j , and  x j . For example, the sentence

V- x, y: (a2 (x − x0)2 + b2 (y − y0)2 − a2b2 ≠ 0 or x2 + y2 < 1) 7.

expresses the geometrical statement that the ellipsoid given by the real quantitiesx0, y0, a, and b
lies entirely within the unit circle.It is Tarski’s accomplishment (published in 1948) to show that

the truth or falsehood of a sentence in the theory of real closed fields can be decided by an algo-
rithm in a finite number of steps. One important principle is that of elimination of quantifiers -
e.g., that for the above sentence one can find a quantifier free sentence inx0, y0, a, and b, whose
real solutions, which form a so-called semi-algebraic set, are exactly the quadruples for which
the sentence is true.

Tarski’s original algorithm has a horrendous complexity, but much better algorithms have
been found since then.The sophisticated 1975 approach by Collins is based on decomposing a
semi-algebraic set into cylindrical cells. Projections by resultants and exact real root isolations
(discussed in the arithmetic section above) are a major tool in this cell decomposition algorithm.
I recommended the article by Arnon et al (1984) [7], which gives an introductory account of this
method, and the one by Collins (1982) [43] which contains a full set of references to the classical
and modern literature.Unfortunately, the general problem again requires at least exponential
time in the number of variables (Fischer & Rabin 1974) [54]. Nonetheless, Arnon (1985) [6] has
managed to solve selected nontrivial problems by his implementation of the cylindrical algebraic
decomposition method.A quantifier-free formula to Expression 7 can be found in Lauer (1977)
[102]. Perhapsentire subtheories, like Wu’s theory of geometry, can be computerized success-
fully with these new algorithms.

LINKAGES

Computer algebra has connections to various areas inside and outside computer science.The
major ones, which could themselves be considered as sub-disciplines within computer algebra,
are now discussed.

Parallel Algorithms

As parallel computers become available, computer algebra systems will benefit from their
increased performance. Some algorithms are obviously executable in parallel - the Chinese
remainder imaging scheme, or the probabilistic elliptic curve factoring algorithm, to name but
two. In these applications of parallel computing the task gets distributed to several processors,
each of which is required to possess relatively large computing power. The arithmetic is
speeded-up by a finer grain of parallelism available, for example on a vector computer, and this
will require the redesigning of some of the basic algorithms.Fortunately, computer algebra can
borrow from a significant amount of research done already on this subject.For example, carry
save integer addition and multiplication, the systolic algorithms for integer and polynomial GCD
(Brent & Kung 1983 [16]; Yun & Zhang 1986) [185], for linear system solving Leiserson’s work
(1983) [105], or the FFT algorithm performed on a butterfly network can serve as a starting
point. It is the challenge of the immediate future to adapt such concepts to the needs of computer
algebra and to incorporate them into our systems. On the theoretical side, the theory of problem
solving by circuits of polylogarithmic depth has received much attention, refer to the surveys by
Cook (1985) [45] and von zur Gathen (1986) [60]. That work may prove useful to computer
algebra in the more distant future.

Logic Programming and Simplification

One main task in computer algebra is to transform mathematical expressions into simpler ones.
The notion of simplicity itself is subjective, and different approaches are compared by Moses
(1971) [125] and Buchberger & Loos (1982) [23]. One such concept prescribes simplification to
canonical forms (as in Caviness 1970) [30], which means that the simplified versions of different
expressions with the same meaning must be identical. The generalized remainders of multivari-
ate polynomials computed with respect to Gröbner bases discussed earlier turn out to be such
canonical normal forms. Loos observed that the Gröbner basis construction is very similar to the
so-called Knuth-Bendix completion procedure for equational theories, and much recent work has
been directed to formalizing this relationship (e.g. by Kandri-Rody & Kapur 1983 [87]; Winkler
1984) [181]. A sound foundation for algebraic simplification is therefore the theory of term
rewriting, which is discussed in the survey article by Buchberger (1985b) [21]

The logic programming approach to simplification deals with expressions purely syntacti-
cally, which is both its strength [the algorithms are well suited for computer implementations
(Kapur & Sivakumar 1984)] [90], and its weakness [the approach is oblivious to additional math-
ematical knowledge about the problem]. As an example we offer the problem of simplification
of expressions with radicals (Caviness & Fateman 1976 [32]; Borodin et al 1985 [14]; Zippel
1985) [190], which is strongly connected to Galois theory. Nonetheless, term rewriting is the
most powerful general tool for algebraic simplification to date.

Canonical simplifiers can be used to test the equality of two expressions. Onthe other
hand, if we represent expressions by straight-line programs, canonical normal forms are difficult
to obtain. However, equality testing can be accommodated by a modern randomized algorithm,
which evaluates the programs at random points modulo a large random prime number (Schwartz
1980 [157]; Ibarra & Moran 1983 [72]; Gonnet 1984) [65]. Therefore, with respect to the iden-
tity problem canonical forms are generally not as important any longer.

Algebraic simplification is perhaps the trickiest problem in computer algebra, and fully
satisfactory solutions can only be expected from future research.

Language and System Design

One of the biggest successes in computer algebra is the fact that the algorithms are not just
designed by pencil and paper but are available within systems of substantial dimension. The sys-
tems MACSYMA, muMATH, and REDUCE are second-generation general-purpose Computer
Algebra systems based on LISP; the system SAC/2 is based on FORTRAN; and the systems
MAPLE and SMP are based on C; but all of them are programmable in their own language.For
example, the problem in Expression 1 (see the introduction) could be carried out by MACSYMA
on a SYMBOLICS 3670 in 38 seconds.In my view, SCRATCHPAD/II (Jenks 1984) [73] begins
a new generation of computer algebra systems because of its abstract data types (at last, a pro-
gram for Gaussian elimination can be written, in which the entries lie in an abstractly denoted
field) and because of its domain building capabilities. Other such systems are NEWSPEAK

(Foderaro 1983) [56] and VIEWS (Abdali et al 1986) [2], but compared to SCRATCHPAD/II
these other efforts are still in their experimental stages.Abstraction mechanisms will find their
way into most computer algebra implementation efforts, if not on the user level then at least for
library package programming.

Aside from general purpose system design, selected specialized efforts are noteworthy,
such as generation of optimized FORTRAN code from symbolic solutions (Gates 1986 [58];
Wang 1986) [179], or the design of user friendly interfaces custom tailored for formula entry
(Smith & Soiffer 1986) [162].

Activities Outside Computer Science

It is not unreasonable to conjecture that most users of computer algebra systems are not com-
puter scientists.I am not in a position to survey the application and assess the impact of com-
puter algebra in the mathematical and natural sciences, in engineering, and in mathematical
economy, but instead refer the reader to the article by Calmet & van Hulzen (1982) [25] and to
the application letters in theJournal of Symbolic Computation.As computer algebra systems
become available on personal computers (Stoutemyer 1985a) [165], I expect that teaching the
universal arithmetic will be influenced by its automation, perhaps as strongly as calculators have
changed education in basic arithmetic.For an experimental study, see Char et al (1986) [34].

CONCLUSION

Any intellectual activity that enlists mathematics as one of its tools ultimately needs to manipu-
late mathematical expressions. Computeralgebra puts the burden of “formula crunching” on
computing machines. The design of efficient algorithms and systems that can solve such sym-
bolic computation tasks successfully requires great ingenuity, because the classical approach is
likely to fail, as modern computation complexity theory can even prove. Here I have listed
seminumerical arithmetic and five major problem areas as the hallmarks of today’s computer
algebra. Inorder to see these accomplishments at work, the reader is encouraged to test the
locally available computer algebra system with his favorite symbolic problem.Eventually, some
shortcomings of the algorithms and systems will be revealed to the user. At times, these difficul-
ties are caused by a lack of manpower to refine and implement the best known algorithms.But
there are situations for which we have just begun a computerized attack, be it to use parallel com-
puting power or to classify problems according to their intrinsic computational complexity and
identify and solve the easy ones.Clearly, many problems are temptingly open, but the state of
the art in computer algebra might already impress the ghost of Isaac Newton.

Acknowledgments

Work for this article has been supported in part by the National Science Foundation under Grant
No. DCR-85-04391 and by an IBM Faculty Development Award. All computational examples
were carried out on the MACSYMA system.I also thank my wife Hoang for her help in typing
the manuscript.

References

1. Abbott,J. A., Bradford, R. J., and Davenport, J. H., “The Bath algebraic number package,” Proc. 1986 ACM
Symp. Symbolic Algebraic Comp.,pp. 250-253 (1986).

2. Abdali,S. K., Cherry, G. W., and Soiffer, N., “An object-oriented approach to algebra system design,” Proc.
1986 ACM Symp. Symbolic Algebraic Comp.,pp. 24-30 (1986).

3. Adleman,L. M. and Huang, M.-D. A., “Recognizing primes in random polynomial time,” Proc. 19th ACM
Symp. Theory Comp.,pp. 462-469 (1987).

4. Agnarsson,S., Kandri-Rody, A., Kapur, D., Narendran, P., and Saunders, B. D., “Complexity of testing
whether a polynomial ideal is nontrivial,” Proc. 1984 MACSYMA Users’ Conf., pp. 452-458, General Electric
(1984).

5. Aho,A., Hopcroft, J., and Ullman, J.,The Design and Analysis of Algorithms,Addison and Wesley, Reading,
MA (1974).

6. Arnon,D. S., “On mechanical quantifier elimination for elementary algebra and geometry: Solution of a non-
trivial problem,”Proc. EUROCAL ’85, Vol. 2, Springer Lec. Notes Comp. Sci.204, p. 271 (1985).

7. Arnon, D. S., Collins, G. E., and McCallum, S., “Cylindrical algebraic decomposition I: The basic algo-
rithm,” SIAM J. Comp.13, pp. 865-877 (1984).

8. Babai,L. and Szemeredi, E., “On the complexity of matrix group problems,” Proc. 25th IEEE Symp. Foun-
dations Comp. Sci.,pp. 229-240 (1984). To appear in Combinatorica.

9. Bach,E., Analytic methods in the analysis and design of number theoretic algorithms,ACM Distinguished
Dissertation Series, MIT Press, Cambridge, MA (1985).

10. Bayer, D. and Stillman, M., “A criterion for detecting m-regularity,” Manuscript (May 1985).

11. Berlekamp,E. R., “Factoring polynomials over finite fields,” Bell Systems Tech. J. 46, pp. 1853-1859 (1967).
Republished in revised form in: E. R. Berlekamp,Algebraic Coding Theory, Chapter 6, McGraw-Hill Publ.,
New York 1968.

12. Berlekamp,E. R., “Factoring polynomials over large finite fields,”Math. Comp.24, pp. 713-735 (1970).

13. Boege, W., Gebauer, R., and Kredel, H., “Some examples for solving systems of algebraic equations by cal-
culating Groebner bases,”J. Symbolic Comp.2, pp. 83-98 (1986).

14. Borodin,A., Fagin, R., Hopcroft, J. E., and Tompa, M., “Decreasing the nesting depth of expressions involv-
ing square roots,”J. Symbolic Comp.1, pp. 169-188 (1985).

15. Borodin,A. and Munro, I.,Computational Complexity of Algebraic and Numeric Problems,American Else-
vier, New York, N.Y. (1975).

16. Brent,R. P. and Kung, H. T., “Systolic VLSI arrays for linear-time GCD computation,” Proc. VLSI ’83,pp.
145-154, IFIP (1983).

17. Brown, W. S., “On Euclid’s algorithm and the computation of polynomial greatest common divisors,” J.
ACM 18, pp. 478-504 (1971).

18. Brown, W. S. and Traub, J. F., “On Euclid’s algorithm and the theory of subresultants,” J. ACM 18, pp.
505-514 (1971).

19. Brownawell, W. D., “Bounds for the degrees in the Nullstellensatz,” M anuscript (October 1986).

20. Buchberger, B., “Gröbner bases: An algorithmic method in polynomial ideal theory” inRecent Trends in
Multidimensional Systems Theory, ed. N. K. Bose, pp. 184-232, D. Reidel Publ. Comp., Dordrecht (Holland)
(1985).

21. Buchberger, B., “Basic features and development of the critical-pair/completion procedure,” Proc. Conf.
Rewriting Techniques Appl., Springer Lec. Notes Comp. Sci.202, pp. 1-45 (1985).

22. Buchberger, B., Collins, G. E., and (eds.), R. Loos,Computer Algebra: Symbolic and Algebraic Computa-
tion, Springer Verlag, Vienna (1982).

23. Buchberger, B. and Loos, R., “Algebraic simplification” inComputer Algebra, 2nd ed.,ed. B. Buchberger et
al., pp. 11-43, Springer Verlag, Vienna (1982).

24. Butler, M. C. R., “On the reducibility of polynomials over a finite field,” Quart. J. Math., Oxford Ser. (2) 5,
pp. 102-107 (1954).

25. Calmet,J. and Hulzen, J. A. van, “Computer algebra applications” inComputer Algebra, 2nd ed.,ed. B.
Buchberger et al., pp. 245-258, Springer Verlag, Vienna (1982).

26. Cannon,J. J., “A draft description of the group theory language Cayley,” Proc. 1976 ACM Symp. Symbolic
Algebraic Comp.,pp. 66-84 (1976).

27. Cantor, D. G. and Kaltofen, E., “Fast multiplication of polynomials with coefficients from an arbitrary ring,”
Manuscript (March 1987).

28. Cantor, D. G. and Zassenhaus, H., “A new algorithm for factoring polynomials over finite fields,” Math.
Comp.36, pp. 587-592 (1981).

29. Cardoza,E., Lipton, R., and Meyer, A. R., “Exponential space complete problems for Petri nets and commu-
tative semigroups,”Proc. 8th ACM Symp. Theory Comp.,pp. 50-54 (1976).

30. Caviness, B. F., “Canonical forms and simplification,”J. ACM 17, pp. 385-396 (1970).

31. Caviness, B. F., “Computer Algebra: Past and Future,”J. Symbolic Comp.2, pp. 217-236 (1986).

32. Caviness, B. F. and Fateman, R., “Simplification of radical expressions,”Proc. 1976 ACM Symp. Symbolic
Algebraic Comp.,pp. 329-338 (1976).

33. Char, B. W., Geddes, K. O., and Gonnet, G. H., “GCDHEU: Heuristic polynomial GCD algorithm based on
integer GCD computation,” Proc. EUROSAM ’84, Springer Lec. Notes Comp. Sci.174, pp. 285-296 (1984).
To appear in J. Symbolic Comp.

34. Char, B. W., Geddes, K. O., Gonnet, G. H., Marshman, B. J., and Ponzo, P. J., “Computer algebra in the
undergraduate mathematics classroom,” Proc. 1986 ACM Symp. Symbolic Algebraic Comp.,pp. 135-138
(1986).

35. Cherry, G. W., “Integration in finite terms with special functions: the error function,” J. Symbolic Comp.1,
pp. 283-302 (1985).

36. Cherry, G. W., “Integration in finite terms with special functions: the logarithmic integral,” SIAM J. Comp.
15, pp. 1-21 (1986).

37. Chistov, A. L., “Polynomial complexity of the Newton-Puiseux algorithm,” Proc. MFCS ’86, Springer Lec.
Notes Comp. Sci.233, pp. 247-255 (1986).

38. Chistov, A. L. and Grigoryev, D. Yu., “Polynomial-time factoring of multivariable polynomials over a global
field,” LOMI preprint E-5-82,Steklov Institute, Leningrad (1982).

39. Chou,T. J. and Collins, G. E., “Algorithms for the solution of systems of diophantine linear equations,”
SIAM J. Comp.11, pp. 687-708 (1982).

40. Chudnovsky, D. V. and Chudnovsky, G. V., “Computer assisted number theory with applications,” Tech.
Report, IBM T. J. Watson Research Center, Yorktown Heights, N.Y. (1986).

41. Collins, G. E., “Subresultants and reduced polynomial remainder sequences,” J. ACM 14, pp. 128-142
(1967).

42. Collins,G. E., “The calculation of multivariate polynomial resultants,”J. ACM 18, pp. 515-532 (1971).

43. Collins,G. E., “Quantifier elimination for real closed fields: A guide to the literature” inComputer Algebra,
2nd ed.,ed. B. Buchberger et al, pp. 173-187, Springer Verlag, Vienna (1982).

44. Collins,G. E. and Loos, R., “Real zeros of polynomials” inComputer Algebra, 2nd ed.,ed. B. Buchberger et
al, pp. 83-94, Springer Verlag, Vienna (1982).

45. Cook,S. A., “A taxonomy of problems with fast parallel algorithms,”Inf. Control 64, pp. 2-22 (1985).

46. Cooley, J. W. and Tuckey, J. W., “An algorithm for the machine calculation of complex Fourier series,” Math.
Comp.19, pp. 297-301 (1965).

47. Coppersmith,D. and Winograd, S., “Matrix multiplication via arithmetic progressions,” Proc. 19th Annual
ACM Symp. Theory Comp.,pp. 1-6 (1987).

48. Czapor, S. R. and Geddes, K. O., “A comparison of algorithms for the symbolic computation of Pad ́e approx-
imants,”Proc. EUROSAM ’84, Springer Lec. Notes Comp. Sci.174, pp. 248-259 (1984).

49. Davenport, J. H.,On the integration of algebraic functions,Springer Lec. Notes Comp. Sci.102 (1981).

50. Davenport, J. H. and Trager, B. M., “On the parallel Risch algorithm (II),” ACM Trans. Math. Software 11,
pp. 356-362 (1985).

51. (ed.),B. F. Caviness,Proc. EUROCAL ’85, Vol. 2,Springer Lec. Notes Comp. Sci.204 (1985).

52. (ed.),B. W. Char, “SYMSAC ‘86,” Proc. 1986 Symp. Symbolic Algebraic Comp.,Assoc. Comp. Machinery,
New York, N.Y. (1986).

53. Epstein,H. I. and Caviness, B. F., “A structure theorem for the elementary functions and its application to the
identity problem,”Internat. J. Comp. Inf. Sci. 8, pp. 9-37 (1979).

54. Fischer, M. J. and Rabin, M. O., “Super-exponential complexity of Presburger arithmetic” inComplexity of
Computation,ed. R. M. Karp, pp. 27-41, Amer. Math. Soc. (1974).

55. Fitch,J., “User-based integration software,”Proc. 1981 ACM Symp. Symbolic Algebraic Comp.,pp. 245-248
(1981).

56. Foderaro, J., “Newspeak,” Ph.D. Thesis, Univ. California-Berkeley (1983).

57. Freeman,T. S., Imirzian, G., Kaltofen, E., and Yagati, Lakshman, “DAGWOOD: A system for manipulating
polynomials given by straight-line programs,” Tech. Report 86-15, Dept. Comput. Sci., RPI. Preliminary ver-
sion in Proc. 1986 ACM Symp. Symbolic Algebraic Comp., pp. 169-175, 1986.

58. Gates,B. L., “A numerical code generation facility for Reduce,” Proc. 1986 ACM Symp. Symbolic Algebraic
Comp.,pp. 94-99 (1986).

59. Gathen,J. von zur, “Irreducibility of multivariate polynomials,”J. Comp. System Sci.31, pp. 225-264 (1985).

60. Gathen,J. von zur, “Parallel arithmetic computation: A survey,” Proc. MFCS ’86, Springer Lec. Notes Comp.
Sci.233, pp. 93-112 (1986).

61. Gathen,J. von zur and Kaltofen, E., “Factoring sparse multivariate polynomials,” J. Comp. System Sci.31,
pp. 265-287 (1985).

62. Gentleman,W. M. and Johnson, S. C., “Analysis of algorithms, a case study: Determinants of matrices with
polynomial entries,”ACM Trans. Math Software2, pp. 232-241 (1976).

63. Goldwasser, S. and Kilian, J., “A provable correct and probably fast primality test,” Proc. 18th ACM Symp.
Theory Comp.,pp. 316-329 (1986).

64. Goldwasser, S. and Micali, S., “Probabilistic encryption,”J. Comp. System Sci.28, pp. 270-299 (1984).

65. Gonnet,G. H., “Determining equivalence of expressions in random polynomial time,” Proc. 16th ACM
Symp. Theory Comp.,pp. 334-341 (1984).

66. Gosper, R. W., “Decision procedure for indefinite hypergeometric summation,” Proc. Natl. Acad. Sci. USA
75, pp. 40-42 (1978).

67. Grigoryev, D. Yu. and Chistov, A. L., “Fast decomposition of polynomials into irreducible ones and the solu-
tion of systems of algebraic equations,”Soviet Math. Dokl. (AMS Translation)29, pp. 380-383 (1984).

68. Hearn,A. C., “Non-modular computation of polynomial GCDs using trial division,” Proc. EUROSAM ’79,
Springer Lec. Notes Comp. Sci.72, pp. 227-239 (1979).

69. Heintz,J. and Sieveking, M., “Absolute primality of polynomials is decidable in random polynomial-time in
the number of variables,”Proc. ICALP ’81, Springer Lec. Notes Comp. Sci.115, pp. 16-28 (1981).

70. Hermann,G., “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale,” Math. Ann.95, pp.
736-788 (1926). (In German).

71. Horowitz, E., “A sorting algorithm for polynomial multiplication,”J. ACM 22, pp. 450-462 (1975).

72. Ibarra,O. H. and Moran, S., “Probabilistic algorithms for deciding equivalence of straight-line programs,” J.
ACM 30, pp. 217-228 (1983).

73. Jenks,R. D., “A primer: 11 keys to new SCRATCHPAD,” Proc. EUROSAM ’84, Springer Lec. Notes Comp.
Sci.174, pp. 123-147 (1984).

74. Kaltofen,E., “Polynomial factorization” inComputer Algebra, 2nd ed.,ed. B. Buchberger et al, pp. 95-113,
Springer Verlag, Vienna (1982).

75. Kaltofen,E., “A polynomial reduction from multivariate to bivariate integral polynomial factorization,”Proc.
14th Annual ACM Symp. Theory Comp.,pp. 261-266 (1982).

76. Kaltofen,E., “A polynomial-time reduction from bivariate to univariate integral polynomial factorization,”
Proc. 23rd IEEE Symp. Foundations Comp. Sci.,pp. 57-64 (1982).

77. Kaltofen,E., “Sparse Hensel lifting,” Proc. EUROCAL ’85, Vol. 2, Springer Lec. Notes Comp. Sci.204, pp.
4-17 (1985).

78. Kaltofen,E., “Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factor-
ization,” SIAM J. Comp.14, pp. 469-489 (1985).

79. Kaltofen,E., “Effective Hilbert irreducibility,” Information and Control66, pp. 123-137 (1985).

80. Kaltofen,E., “Factorization of polynomials given by straight-line programs,” Math. Sci. Research Inst. Pre-
print 02018-86, Berkeley, CA (1986). To appear in: ‘‘Randomness in Computation,’’ A dvances in Computing
Research, S. Micali ed., JAI Press Inc., Greenwich, CT, January 1987.

81. Kaltofen,E., “Uniform closure properties of p-computable functions,” Proc. 18th ACM Symp. Theory Comp.,
pp. 330-337 (1986).

82. Kaltofen,E., “Polynomial Factorization 1982-1986,” Tech. Report, Dept. Comp. Sci., Rensselaer Polytech.
Inst. (September 1986).

83. Kaltofen,E., “Single-factor Hensel lifting and its application to the straight-line complexity of certain poly-
nomials,”Proc. 19th Annual ACM Symp. Theory Comp.,pp. 443-452 (1987).

84. Kaltofen,E., “Greatest common divisors of polynomials given by straight-line programs,” J. ACM 35(1), pp.
231-264 (1988).

85. Kaltofen,E., Krishnamoorthy, M. S., and Saunders, B. D., “Fast parallel algorithms for similarity of matri-
ces,”Proc. 1986 ACM Symp. Symbolic Algebraic Comp.,pp. 65-70 (1986).

86. Kaltofen,E., Krishnamoorthy, M. S., and Saunders, B. D., “Fast parallel computation of Hermite and Smith
forms of polynomial matrices,”SIAM J. Alg. Discrete Meth.8, pp. 683-690 (1987).

87. Kandri-Rody, A. and Kapur, D., “On the relationship between Buchberger’s Gröbner basis algorithm and the
Knuth-Bendix completion procedure,” Tech. Rep. 83 CRD 286, General Electric ResearchDevelopment
Center, Schenectady, N.Y. (1983).

88. Kannan,R. and Bachem, A., “Polynomial algorithms for computing the Smith and Hermite normal forms of
an integer matrix,”SIAM J. Comp.8, pp. 499-507 (1981).

89. Kapur, D., “Geometry theorem proving using Hilbert’s Nullstellensatz,”J. Symbolic Comp.2, pp. 399-408
(1986).

90. Kapur, D. and Sivakumar, G., “Architecture of and experiments with RRL, a rewrite rule laboratory” inProc.
NSF Workshop Rewrite Rule Laboratory, Tech. Rep. 84 GEN 008, pp. 33-56, General Electric Research
Development Center, Schenectady, N.Y. (1984).

91. Karr, M., “Theory of summation in finite terms,”J. Symbolic Comp.1, pp. 303-315 (1985).

92. Knowles, P. H., “Integration of Liouvillian functions with special functions,” Proc. 1986 ACM Symp. Sym-
bolic Algebraic Comp.,pp. 179-184 (1986).

93. Knuth, D. E., “The analysis of algorithms,” Actes du congr`es international des Mathématiciens3, pp.
269-274, Nice, France (1970).

94. Knuth,D. E.,The Art of Programming, vol. 2, Semi-Numerical Algorithms, ed. 2,Addison Wesley, Reading,
MA (1981).

95. Kovacic, J. J., “An algorithm for solving second order linear homogeneous differential equations,” J. Sym-
bolic Comp.2, pp. 3-43 (1986).

96. Krishnamurthy, E. V., Rao, T. M., and Subramanian, K., “Finite segment p-adic number systems with appli-
cations to exact computation,”Proc. Indian Acad. Sci.81, sec. A, no. 2, pp. 58-79 (1975).

97. Kronecker, L., “Grundz̈uge einer arithmetischen Theorie der algebraischen Grössen,”J. reine angew. Math.
92, pp. 1-122 (1882).

98. Kung, H. T. and Traub, J. F., “All algebraic functions can be computed fast,”J. ACM 25, pp. 245-260 (1978).

99. Kutzler, B. and Stifter, S., “On the application of Buchberger’s algorithm to automated geometry theorem
proving,” J. Symbolic Comp.2, pp. 389-397 (1986).

100. Landau,S., “Factoring polynomials over algebraic number fields,”SIAM J. Comp.14, pp. 184-195 (1985).

101. Landau,S. and Miller, G. L., “Sovability by radicals,”J. Comp. System Sci.30, pp. 179-208 (1985).

102. Lauer, M., “A solution to Kahan’s problem (SIGSAM problem no. 9),” ACM SIGSAM Bulletin11, pp. 16-20
(1977).

103. Lauer, M., “Computing by homomorphic images” inComputer Algebra, 2nd ed.,ed. B. Buchberger et al, pp.
139-168, Springer Verlag, Vienna (1982).

104. Lazard,D., “Alg`ebre lińeaire surK [X1,ts,X_n] et élimination,” Bull. Soc. Math. France 105, pp. 165-190
(1977). (In French).

105. Leiserson,C. E., Area-efficient VLSI computation,The ACM Doctoral Dissertation Award, M.I.T. Press,
Cambridge, MA (1983).

106. Lenstra,A. K., “Lattices and factorization of polynomials over algebraic number fields,” Proc. EUROCAM
’82, Springer Lec. Notes Comp. Sci.144, pp. 32-39 (1982).

107. Lenstra,A. K., “Factoring multivariate integral polynomials,”Theoretical Comp. Sci.34, pp. 207-213 (1984).

108. Lenstra,A. K., Jr., H. W. Lenstra, and Lovász, L., “Factoring polynomials with rational coefficients,” Math.
Ann.261, pp. 515-534 (1982).

109. Lenstra,H. W., Jr., “Factoring integers with elliptic curves,” M anuscript (May 1986).

110. Leon,J. S. and Pless, V., “CAMAC 79,” Proc. EUROSAM ’79, Springer Lec. Notes Comp. Sci.72, pp.
249-257 (1979).

111. Lipson,J.,Elements of Algebra and Algebraic Computing,Addison-Wesley Publ., Reading, Mass. (1981).

112. Lipton,R., Rose, D., and Tarjan, R. E., “Generalized nested dissection,” SIAM J. Numer. Anal. 16, pp.
346-358 (1979).

113. Loos,R., “Computing in algebraic extensions” inComputer Algebra, 2nd ed.,ed. B. Buchberger et al, pp.
173-187, Springer Verlag, Vienna (1982).

114. Luks,E. M., “Isomorphism of graphs of bounded valence can be tested in polynomial time,” J. Comp. System
Sci.25, pp. 42-65 (1982).

115. Mayr, E. W. and Meyer, A. R., “The complexity of the word problem for commutative semigroups and poly-
nomial ideals,”Advances Math.46, pp. 305-329 (1982).

116. McClellan,M. T., “The exact solution of systems of linear equations with polynomial coefficients,” J. ACM
20, pp. 563-588 (1973).

117. Miller, G. L., “Riemann’s hypthesis and tests for primality,” J. Comp. System Sci.13, pp. 300-317 (1976).

118. Miller, G. L., Ramachandran, V., and Kaltofen, E., “Efficient parallel evaluation of straight-line code and
arithmetic circuits,”Proc. AWOC ’86, Springer Lec. Notes Comp. Sci.227, pp. 236-245 (1986).

119. Moenck,R. T., “Fast computation of GCDs,”Proc. 5th ACM Symp. Theory Comp.,pp. 142-151 (1973).

120. Moenck,R. T. and Carter, J. H., “Approximate algorithms to derive exact solutions to systems of linear equa-
tions,” Proc. EUROSAM ’79, Springer Lec. Notes Comp. Sci.72, pp. 65-73 (1979).

121. Monagan, M. B., “A heuristic irreducibility test for univariate polynomials,” J. Symbolic Comp.submitted
(1986).

122. Montgomery, P. L., “Speeding the Pollard and elliptic curve methods of factorization,”Math. Comp.48, pp.
243-264 (1987).

123. Moore,P. M. A. and Norman, A. C., “Implementing a polynomial factorization problem,” Proc. 1981 ACM
Symp. Symbolic Algebraic Comp.,pp. 109-116 (1981).

124. Moses,J., “Symbolic integration,” Ph.D. Thesis and Project MAC Tech. Rep. 47, MIT (1967).

125. Moses,J., “Algebraic simplification: A guide for the perplexed,” Commun. ACM14, pp. 548-560 (1971).

126. Moses,J., “Symbolic integration: The stormy decade,”Commun. ACM14, pp. 548-560 (1971).

127. Moses,J. and Yun, D. Y. Y., “The EZ-GCD algorithm,” Proc. 1973 ACM National Conf., pp. 159-166
(1973).

128. Musser, D. R., “Multivariate polynomial factorization,”J. ACM 22, pp. 291-308 (1975).

129. Neub̈user, J., “Computing with groups and their character tables” inComputer Algebra, 2nd ed.,ed. B.
Buchberger et al, pp. 45-56, Springer Verlag, Vienna (1982).

130. Newton, I., Arithmetica Universalis, 2nd ed.,London (1728). In English. Reprinted inThe Mathematical
Works of Isaac Newton, vol. 2, D. T. Whiteside, ed., Johnson Reprint Corp., New York, 1967.

131. Norman,A. C. and Moore, P. M. A., “Implementing the new Risch algorithm,” Proc. Conf. Adv. Comp.
Methods Theor. Physics at St. Maximin,pp. 99-110 (1977).

132. Nussbaumer, H. J., “Fast polynomial transform algorithms for digital convolutions,” IEEE Trans. ASSP28,
pp. 205-215 (1980).

133. Ostrowski, M. A., “Sur l’inté grabilit ́e él ́ementaire de quelches classes d’expressions,”Comment. Math. Helv.
28, pp. 283-308 (1946). (In French).

134. Pan, V. and Reif, J., “Efficient parallel solution of linear systems,” Proc. 17th ACM Symp. Theory Comp.,pp.
143-152 (1985).

135. Pav elle, R., Rothstein, M., and Fitch, J., “Computer algebra,”Scientific American245, pp. 135-152 (1981).

136. Plaisted,D. A., “Sparse complex polynomials and polynomial reducibility,” J. Comp. System Sci.14, pp.
210-221 (1977).

137. Pomerance,C., “Analysis and comparison of some integer factoring algorithms” inComputational Methods
in Number Theory, Part I, ed. H. W. Lenstra, Jr. and R. Tijdeman, Mathematical Centre Tracts 154, pp.
89-139, Mathematisch Centrum, Amsterdam (1982).

138. Rabin,M. O., “Probabilistic algorithms for testing primality,” J. Number Theory12, pp. 128-138 (1980).

139. Rabin,M. O., “Probabilistic algorithms in finite fields,”SIAM J. Comp.9, pp. 273-280 (1980).

140. Risch,R. H., “The problem of integration in finite terms,”Tr ans. Amer. Math. Soc.139, pp. 167-189 (1969).

141. Risch,R. H., “The solution of the problem of integration in finite terms,” Bull. Amer. Math. Soc.76, pp.
605-608 (1970).

142. Risch,R. H., “Algebraic properties of the elementary functions of analysis,” Amer. J. Math.101, pp. 743-759
(1979).

143. Rosenlicht,M., “Liouville’ s theorem on functions with elementary integrals,” Pacific J. Math. 24, pp.
153-161 (1968).

144. Rothstein,M., “Aspects of symbolic integration and simplification of exponential and primitive functions,”
Ph.D. Thesis, Univ. Wisconsin-Madison (1976).

145. Rothstein,M., “On pseudo-resultants,” Proc. EUROSAM ’84, Springer Lec. Notes Comp. Sci.174, pp.
386-396 (1984).

146. Rothstein,M. and Caviness, B. F., “A structure theorem for exponential and primitive functions,”SIAM J.
Comp.8, pp. 357-367 (1979).

147. Saunders,B. D., “An implementation of Kovacic’s algorithm for solving second order linear differential
equations,”Proc. 1981 ACM Symp. Symbolic Algebraic Comp.,pp. 105-108 (1981).

148. Scḧonhage, A., “Schnelle Kettenbruchentwicklungen,”Acta Inf.1, pp. 139-144 (1971). (In German).

149. Scḧonhage, A., “Schnelle Multiplikation von Polynomenüber Körpern der Charakteristik 2,” Acta Inf. 7, pp.
395-398 (1977). (In German).

150. Scḧonhage, A., “Asymptotically fast algorithms for the numerical multiplication and division of polynomials
with complex coefficients,”Proc. EUROCAM ’82, Springer Lec. Notes Comp. Sci.144, pp. 3-15 (1982).

151. Scḧonhage, A., “The fundamental theorem of algebra in terms of computational complexity,” Tech. Report,
Univ. Tübingen (1982).

152. Scḧonhage, A., “Factorization of univariate integer polynomials by diophantine approximation and an
improved basis reduction algorithm,” Proc. ICALP ’84, Springer Lec. Notes Comp. Sci.172, pp. 436-447
(1984).

153. Scḧonhage, A., “Quasi-GCD computations,”J. Complexity1, pp. 118-137 (1985).

154. Scḧonhage, A., “Equation solving in terms of computational complexity,” Proc. Internat. Congr. Math.
(1986).

155. Scḧonhage, A., “Probabilistic computation of integer GCDs,”J. Algorithms(to appear).

156. Scḧonhage, A. and Strassen, V., “Schnelle Multiplikation grosser Zahlen,” Computing7, pp. 281-292 (1971).
(In German).

157. Schwartz, J. T., “Fast probabilistic algorithms for verification of polynomial identities,” J. ACM 27, pp.
701-717 (1980).

158. Singer, M. F., “Liouvillian solutions of nth order homogeneous linear differential equations,” Amer. J. Math.
103, pp. 661-682 (1981).

159. Singer, M. F., Saunders, B. D., and Caviness, B. F., “An extension of Liouville’s theorem on integration in
finite terms,”SIAM J. Comp.14, pp. 966-990 (1985).

160. Slagle,J. R., “A heuristic program that solves symbolic integration problems in freshman calulus, symbolic
automatic integrator (SAINT),” Ph.D. Thesis, MIT (1961).

161. Smith,C. J., “A discussion and implementation of Kovacic’s algorithm for ordinary differential equations,”
Research Rep., Dept. Comp. Sci., Univ. Waterloo (Oct. 1984).

162. Smith,C. J. and Soiffer, N. M., “MathScribe: A user interface for computer algebra systems,” Proc. 1986
ACM Symp. Symbolic Algebraic Comp.,pp. 7-12 (1986).

163. Solovay, R. M. and Strassen, V., “A fast Monte-Carlo test for primality,” SIAM J. Comp.6, pp. 84-85 (1977).
Correction: vol. 7, p. 118 (1978).

164. Stoutemyer, D. R., “Polynomial remainder sequences: Greatest common divisors revisited” inProc. Second
RIKEN Internat. Symp. Symbolic Algebraic Comp. by Computers,ed. N. Inada and T. Soma, Ser. Comp. Sci.
2, pp. 1-12, World Scientific Publ., Philadelphia, PA (1985).

165. Stoutemyer, D. R., “A preview of the next IBM-PC version of muMATH,” Proc. EUROCAL ’85, Vol. 1,
Springer Lec. Notes Comp. Sci.203, pp. 33-44 (1985).

166. Strassen,V., “Vermeidung von Divisionen,”J. reine u. angew. Math.264, pp. 182-202 (1973). (In German).

167. Strassen,V., “Die Berechnungskomplexit ̈at von elementarsymmetrischen Funktionen und von Interpolation-
skoeffizienten,”Numer. Math.20, pp. 238-251 (1973). (In German).

168. Strassen,V., “Algebraische Berechnungskomplexit ̈at” in Anniversary of Oberwolfach 1984, Perspectives in
Mathematics, pp. 509-550, Birkhäuser Verlag, Basel (1984). (In German).

169. Strassen,V., “The asymptotic spectrum of tensors and the exponent of matrix multiplication,” Proc. 27th
Annual Symp. Foundations Comp. Sci.,pp. 49-54 (1986).

170. Trager, B. M., “Algebraic factoring and rational function integration,”Proc. 1976 ACM Symp. Symbolic Alge-
braic Comp.,pp. 219-228 (1976).

171. Trager, B. M., “Integration of algebraic functions,” Ph.D. Thesis, MIT (1984).

172. Trinks, W., “̈Uber B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen,”J. Number The-
ory 10, pp. 475-488 (1978).

173. Valiant, L., “The complexity of computing the permanent,”Theoretical Comp. Sci.8, pp. 189-201 (1979).

174. Valiant, L., “Reducibility by algebraic projections,”L’Enseignement mathématique28, pp. 253-268 (1982).

175. Valiant, L., Skyum, S., Berkowitz, S., and Rackoff, C., “Fast parallel computation of polynomials using few
processors,”SIAM J. Comp.12, pp. 641-644 (1983).

176. Waerden, B. L. van der,Modern Algebra,F. Ungar Publ. Co., New York (1953).

177. Wang, P. S., “An improved multivariate polynomial factorization algorithm,” Math. Comp.32, pp. 1215-1231
(1978).

178. Wang, P. S., “A p-adic algorithm for univariate partial fractions,” Proc. 1981 ACM Symp. Symbolic Algebraic
Comp.,pp. 212-217 (1981).

179. Wang, P. S., “FINGER: A symbolic system for automatic generation of numerical programs in finite element
analysis,”J. Symbolic Comp.2, pp. 305-316 (1986).

180. Wiedemann, D., “Solving sparse linear equations over finite fields,” IEEE Trans. Inf. TheoryIT-32, pp. 54-62
(1986).

181. Winkler, F., “The Church-Rosser property in computer algebra and special theorem proving,” Doctoral The-
sis, Univ. Linz (Austria) (1984).

182. Wu, W.-T., “On the decision problem and the mechanization of theorem proving in elementary geometry” in
Theorem Proving: After 25 Years,ed. Bledsoe, W. W. Loveland, D. W., Contemporary Mathematics29, pp.
235-241, AMS, Providence, RI (1984). Originally published inScientia Sinicavol. 21, 150-172 (1978).

183. Yun, D. Y. Y., “The Hensel lemma in algebraic manipulation,” Ph.D. Thesis, M.I.T. (1974). Reprint: Garland
Publ., New York 1980.

184. Yun, D. Y. Y. and Stoutemyer, D. R., Symbolic mathematical computation,Encyclopedia of Computer Sci-
ence and Technology15 (Supplement), Marcel Dekker, Inc., New York, N.Y. (1981).

185. Yun, D. Y. Y. and Zhang, C. H., “A fast carry-free algorithm and hardware design for extended integer GCD
computation,”Proc. 1986 ACM Symp. Symbolic Algebraic Comp.,pp. 82-84 (1986).

186. Zassenhaus,H., “On Hensel factorization I,”J. Number Theory1, pp. 291-311 (1969).

187. Zippel,R. E., “Univariate power series expansions in algebraic manipulation,” Proc. 1976 ACM Symp. Sym-
bolic Algebraic Comp.,pp. 198-208 (1976).

188. Zippel,R. E., “Probabilistic algorithms for sparse polynomials,” Proc. EUROSAM ’79, Springer Lec. Notes
Comp. Sci.72, pp. 216-226 (1979).

189. Zippel,R. E., “Newton’s iteration and the sparse Hensel algorithm,” Proc. ’81 ACM Symp. Symbolic Alge-
braic Comp.,pp. 68-72 (1981).

190. Zippel,R. E., “Simplification of expressions by radicals,”J. Symbolic Comp.1, pp. 189-210 (1985).

