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INTRODUCTION

The origins of the discipline of computer algebra can be found in Isaatoig Universal
Arithmetic (1728) [130], where methods for manipulatingversal mathematicalxpressions

(i.e. formulas containing symbolic indeterminates) and algorithms for solving equatitins b

with these expressions are systematically discussed. One can interpret the mission of computer
algebra as the construction of computer systems that enable scientific or engineering users, for
instance, to carry out mathematical manipulation automatichilyeed, systems with this goal
already exist, among them NOBSYMA, MAPLE, muMATH, REDUCE, SAC/2, SCRECH-

PAD/II, and SMP These systems carry out scientific computing tasks, whose results are distin-
guished from numerical computing indvprinciple aspects. (a) The results are symbolic rather
than numerical, as the typical example of therision of a symbolic matrix demonstrates.
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(b) The results are exact; for instance, the real roots of a polynomial are computed as

_ 5119905168138849576539
a 268 '

where the actual real root is guaranteed to lie closer th&f ththe gven rational answer An
important ingredient in such systems is therefore thgtdaie handle expressions with symbolic
variables and that there is no digiveoflow in the number arithmeticHence the basic data
objects are arbitrarily long integers, polynomials iwess variables with rational codients,
and matrices with polynomial entries.

REALROOTSK® - x3 - 2x% -2x-1,10%%) - [x

Many algorithms can be performed by viewing the data objects as abstract algebraic struc-
tures; for example, Gaussian elimination is vaNe@raany field, be it the rational numbers or
Laurent series.Such algebraic algorithms and the corresponding complexity theory constitute
the subject of computational algebr@f course, this is an important part of computer algebra.
Long integer arithmetic and associated operations such as integer primality testing are perhaps
more number theoretical in natureytbalso play a significant role in computer algebra.



Operations on approximate data such as truncated power series, and on perhaps more combina-
torical objects, such as finite permutation groups, constitute yet another category of computer
algebra actiity. | think all algorithms discussed in this articlevéan impact on computerizing
mathematical formula manipulation and equation solving, andy mmathem are wailable on

existing computer algebra systems.

First | discuss the delopment of efficient arithmetic algorithms.then list five problem
areas that hee led to major results and implementations: factorization, computational group the-
ory, integration in finite terms, polynomial system solving, and theorem proving in real closed
fields. Thenl briefly note linkages of computer algebra to logic programming, hig-lan-
guage design, artificial intelligence, and application areas outside computer science.

Computer algebra is a field of wide scope with ynemnnections to other areas in com-
puter science. The reader can get a matensve introduction from seeral books (Lipson
1981 [111]; Buchbeyer et al 1982) [22] and swy aticles (Yun & Stoutemyer 1981 [184];
Caviness 1986) [31]. References to computational algebra include the book by Borodin &
Munro (1975) [15] and the twvsurvey aticles (Strassen 1984 [168]; Sxthage 1986b) [154].
Recent research topics are reported imiligsss (1985) [51], in Char (1986) [52], and in foar-
nal of Symbolic ComputationAn article in theScientific AmericarfPavdle et al 1981) [135]
gives a kss academic look at the subject.

Notation By Z | denote the set of integers, Qythe set of rational numbers, and @ythe set of
complex numbers. ByF, | denote a finite field witly elements. ByD[X] | denote the polyno-
mials in the ariablex with coefficients from the domaiD, and by D(x) | denote their rational
functions - that is, fractions of polynomials frddjx].

ARITHMETIC

A prerequisite to carrying out computer algebrécieitly is the ability to perform arithmetic in
the basic domainat. Fortunately today algorithms arevailable whose diciengy significantly
surpasses the classical metho#tere | report on these algorithms not only for the integer and
polynomial domains, dtt also for power series, floating point numbers, and matrix algebras.
main reference to this subject is Chapter 4 in Krsutlvok (1981) [94].

Integer and Polynomial Addition, Multiplication, and Division with Remainder

Integers and polynomials are usually represented as lists or arrays of digits dindeot&f
respectrely:

n .
(1, ay,..., g,) denotes N=%3> ar',0<a <r,
i=0

and

n .
(X, ag,..., &) denotes f(x)=> a;x', a O -coefficient domain.
i=0



The radixr is usually chosen a suitable power of 2, such that each digit fits inbodaofvcom-
puter memory The school methods for addition and subtraction with running @me bit or
coeficient domain operations suffice on a sequential compitefor multiplication theO(n?)
school algorithm can be significantly imped. Thefastest methods today from both a theoreti-
cal and a practical point of wieare all based on the discretadt Fourier Transformation (Coo-

ley & Tukey 1965) [46]. In fact, if the coefficient domain contains priw@tioots of unity as 5

true for the compbe numbers, polynomials can be multiplied @{nlog(n)) arithmetic opera-
tions. Otherwisesuch roots can be synthetically adjoined to the coefficient ring and the best
known running time is the asymptotically slightly wler O(nlog(n)log(logn)) (Sclbonhage
1977 [149]; Nussbaumer 1980 [132]; Cantor & Kaltofen 1987) [EXEn earlier these ideas led

to the O(nlog(n) log(log n)) algorithm for intger multiplication, counting bit operations on a
circuit or multitape Turing machine (Sathage & Strassen 1971) [156]. It is a major unresblv
theoretical problem to impre tese running times t®(nlog(n)).! The FFT-based multiplica-

tion algorithms for both polynomial and integer multiplication are also of practical significance.
In the integer case we refer especially to Poliatttiree primes” algorithm (Lipson 1981 [111],
81X.2.2) or to Schnhages (1982a) [150] impreements.

Multivariate polynomial multiplication can be accommodated by the ubiquitous algorith-
mic paradigm of computing by homomorphic imaging. Figure 1 exhibits the particular instance
used in that case, the Kroneckhomomorphism. Other imaging schemes appear in the FFT
based multiplication algorithms, in general Chinese remaindering and interpolation (Lipson 1981
[111], 8VIIL.2), in the paverful Hensel lifting technique (Yun 1980 [183], and the references to
earlier work there; Lauer 1982 [103]; Kaltofen 1985b [77], 1987b) [83], and in algorithms based
on continued fraction (Krishnamusttet al 1975 [96]; Wang 1981) [178] andd®@E gproxima-
tion (Czapor & Geddes 1984) [48].

An important impreement aer the school method of integer division with remainder are
the fast quotient digit prediction techniques (Knuth 1981, 84.3.1) [Pd]polynomial dvision
with remainder ver the intgers the neel application of Hensel lifting (Lauer 1982) [103]
should pree wseful.

Integer and Polynomial Greatest Common Divisor (GCD)

A fundamentally important operation in computer algebra is integer and polynomial G&D.
roots of perhaps all algorithms lie in Eucidémainder sequence scheme. Substantial computa-
tional improvements in the case of integer GCDs are due to Lehmer (Knuth 1981, 84.5.2) [94],
Knuth (1970) [93], and Sdmhage (1971) [148]. These impaments carry eer to polynomial

GCD (Moenck 1973) [119] in terms of coefficient field operation coldbwever a aitical
problem of exponential coefficient size gth arises in case the coefficients are rational numbers
or polynomials themselves, the latter in the matiate case.The beautiful theory of subresul-
tants (Collins 1967 [41]; Brown & Traub 1971) [18] explains that the size growth is not inherent

' For integer multiplication, the optimal circuit size appears tabeg(n) o(log(log n)) as the hypothetical results
reported by M. Brer at the 1986 Oberwolfach complexity conference strongly suggest.



Figure 1. Multivariate polynomial multiplication by Homomorphic Imaging, the Kroreeck

scheme.
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but a result of wersimplified rational coefficient arithmeticEfficient algorithms are then
obtained in various ways: One can keep coefficients small by exactly dividing aut koon-

mon factors (Knuth 1981, 84.6.1 [94]; Hearn 1979 [68]; Stoutemyer 1985b) [164] oryemplo
Chinese remaindering (Brown 1971) [17] or Hensel lifting (Moses & Yun 1973) [127].

It comes as a surprise that GCDs of gim# polynomials can be found efficiently via inte-
ger GCDs. Clearlyif f1(x), fo(x) OZ[x] and g(x) = GCD(f,(x), f»(x)) then for ay integerN

g(N) divides M = GCD(f,(N), f»(N)).

Char et al (1984) [33] first establishednhto invet this mapping - that is, deducefrom M.
Although the inentors viewed their method as an efficient heuristic, a rigorous probabilistic
analysis has been recently accomplisheddtthge 1986a) [155].

The tended Euclidean problem also entails the determination of multiglemdt such
that GCD(f, g) = s f + t g, and most of the mentioned algorithms solais problem as well.
Two immediate applications are the computation of reciprocals mddaind modulay(x) from
the schemes

1=GCD(M, N)=SM+TN, S=(M~modN)



and

1=GCD(f(x), g(x)) = s(x) f (x) + t(x)g(x), s(x) = (f(x)™" mod g(x)).

These constitute the division operations in the basic domains of integers rmbdabb of alge-
braic number fields in Kronecker representa@@n] modulo g(x) (Loos 1982) [113].

For polynomials with coefficients in an integral domain, suchFyg], F a field, the
Euclidean scheme can only be solved by multiplying the GCD by a domain element - that is

h(y) GCD(f(x, y), 9(x, ¥)) = s(x, y) f(x, y) + t(x, Y)g(X, y),

wheres(x, y), t(x, y) O(F[yD[x], 0 # h(y) O F[y]. A particularly important multiplieh(y)

occurs when GCIX, g) = 1, namely the resultant of andg with respect tok (van der Vderden
1953, 8IV) [176]. The importance of the resultant fakofrom the fact that if andg have a
common zero pointg, Yop), thenyy is a zero of their resultan(y), because

0= f(Xo, Yo) S(Xo, Yo) + 9(Xo, Yo) t(Xo0, Yo) =1 [h(yo).

Therefore, intersection points éfandg, be hey real or comple, are projected to roots of their
resultant. Clearlyefficient algorithms to compute resultants are connected to the GCD problem
and we refer to Collins (1971) [42], Schwartz (1980) [157], and Rothstein (1984) [145].

Once the GCD algorithms are in place we are in the position of performing exact rational
number and function arithmetic (“slash arithmetic”) and keep the explicitly found numerators
and denominators in lowest terms (Knuth 1981 [94], 84.51dbwever, dash arithmetic is likly
to lose in diciency to computing in homomorphic images such as modular or approximating
domains.

Floating Point Numbex and Power Series

Although truncated formal power series are well accepted objects in computer algebra (Lipson
1981 [111], 8IX.3; Zippel 1976 [187]; Knuth 1981, 84.7) [94], floating point numbers may be
thought to belong to numerical computing, where tteceess principle of computer algebra is
replaced by numerical error analysis. Indeed, both the floating point number and power series
domains can be considered what Knuth calls seminumerical data. The exactness principle must
still apply as such data is manipulated in computer algebra, and that means for the power series
domain that the computed Taylor series fioeints are correct up to the indicated truncation
point. Whenusing floating point numbers in computer algebra we shall at least require that the
numbers returned as answers must be guaranteed correct within an explicitly stated tolerance.
Computer algebra systems therefore should support floating point operations with arbitrary set-
table mantissa length, and indeedesal systems do.A good example of a problem for this
principle is comple root approximation of a uwariate polynomial, where the ability to select

the floating point precision dependent on the input polynomial is important to guaranteeing the
desired tolerance. Solutions to this problem go as far back as to Sturm in 1835, @mtth§eh
(1982b) [151] recently deloped a comprehens mmpleity theory for this fundamental



problem of algebraEarlier in 1976, Collins & Loos had already established that for real root
isolation Newton iteration is computationally superior to the Sturm bisection method, wdsch w
used to find the answer to Equation 2,\aad refer to Collins & Loos (1982) [44] for a full
account on modern methods.

Several problems in computer algebra, such as computing polynomial GCDs or Jordan
normal forms of matricesver C represented as floating point numbers are considered “‘inher
ently numerically unstable.Schonhages (1985) [153] quasi-GCD algorithm is a stepvénds
dealing with such problemDbviously the semi-numerical approach to computer algebra prob-
lem solving must incorporate numerical analysis techniques and is at this time restricted to a fe
problems. Hwever, if a dfference scheme leads to a linear system best solved by aatenjug
gradient method, this should be done, keeping in mind thafexetif notion of error analysis
applies.

Paver series manipulation is probably better understood, perhaps for the lack of carry
propagtion in the arithmetic. Here | only addwenformation to the discussion by Knuth (1981
[94], 84.7). The coefficient growth in the Newton algorithm for power series expansion of alge-
braic functions (Kung & faub 1978) [98] has been analyzed (Kaltofen 1985c [78]; Ghisto
1986) [37]. It turns out that for a fixed algebraic function the expansion can be computed in lin-
ear time in the requested order (Chudsky & Chudnovsk 1986) [40]. Closely related to
power series are the p-adic numbers (Krisnanyuehal 1975) [96], which can be used as an
alternatve to floating point numbers to approximate certain compilenbers.

Matrix Arithmetic

Algorithms for manipulating matrices form the basis to linear system solving. As mentioned, the
great Gaussian elimination algorithm is generic in that it can be carriegte@rodstract field.

As such, Gaussian elimination constitutes the basis for linear system solving in computer alge-
bra, and homomorphic imaging can then be applied to it (McClellan 1973 [116]; Moenck &
Carter 1979) [120].

Theoretically it turns out that the complexity of mamatrix problems is reducible to the
compleity of n by n matrix multiplication (Aho et al 1974) [5]Now it is well-known thatn by
n matrices can be multiplied asymptoticallgster than irO(n®) arithmetic steps. In Knuth
(1981 [94], §4.6.4), the delopments leading to a®(n>*%%) algorithm are describedRecently,
Strassen (1986) [169] has introduced the hEASER” technique for aligning a nonmultiplica-
tion tensor which has led to the meworld record ofO(n*3’9 by Coppersmith & Whograd
(1987) [47]. Although the actual algorithms are purely of theoretical interest, thestions
such as the border rank or the asymptotic spectrum of a tensor can be expedctedrtonmaact
in computational algebra.

Linear algebra appears to be an important subject of advanced studies in computer algebra,
for it is part of the solution to mguproblems, be it to compute a Taylor series solution to a dif-
ferential equation or to factor integers by the continued fraction method, to nameoburyw



distant ones. The work on computing matrix canonical forms (Kaltofen et al 1986 [85], 1987)
[86], as well as Wedemanrs (1986) [180] spectral methods for sparse linear system solving
ove finite fields demonstrates randomization as a powerfmltoel in this area. The control of
coeficient growth in diophantine linear system solving (Kannan & Bachem 1981 [88], Chou &
Collins 1982) [39], as well as the lattice reduction algorithm (Kannan, in this volume) arises as
an important issue. And finaJlynethods to manipulate sparse matrices must be introduced to
computer algebra. Both the combinatorical approaches (Lipton et al 1979 [112]; Gentleman &
Johnson 1976 [62];dh & Reif 1985) [134] and the algebraic approach (Wiedemann 1986) [180]
have hgh potential to impree sgnificantly the linear system solving capability within computer
algebra.

Arithmetic with Concisely Represented Expressions

Sparse polynomials certainly play as important a role in the polynomial calculus as do sparse
matrices in lage linear system solvingA representation at hand is the vector of nonzero terms
together with the corresponding exponents

((ae1 ..... g1 €100y en))(el ..... e)0J denotes > Qe,,... 6 Xil OO0k,

wherea, o # 0 for (e;,..., §) O J. A main consideration in addition and multiplication is

the sorting of the terms in the answer (Horowitz 1975) [Hdwever, the problem of deciding
whether polynomials v@ a @mmon nontwrial divisor becomes NP-hard fovem univariate

inputs, if exponents are represented in binary (Plaisted 1977) [I8@Jeneral, allowing ery

large exponents spoils the ability to manipulate such “ultrasparse” polynomials. Neither can the
polynomial x2 be wauated at sak = 3, nor canx? -1 be dvided byx -1, for in both cases

the inputs are of siz®(d), whereas the outputs requi¢2%) bits.

The sparse representation becomes more natural if the numbaradfiesn is large, yet
: +d
the degree stays polynomially boundddhere aregn 0 gtermsxf1 O00Ox of total dgreee; +

... +e, < d - that is, exponentially marin n, even though the number of nonzero terms can be
quite small. GCD and factorization algorithms on such nwaltiate sparse polynomials were
studied both theoretically and empirically as early as a decade agyg (Y978) [177], and ran-
domization became one of the major ingredients to sparsity preserving operations (Zippel 1979)
[188]. Earlyon Moses (1971b) [125] pointed out,wWever, that sparsity is not measured in
terms of nonzero coefficients alone, as his example

(Z + 1)1001
1001

demonstrates. Fromlgebraic compbdty theory (Strassen 1973a [166], b [167]; Valiant 1982)
[174] one can adopt straight-line programs as a concise representation of polynéigiais.2
exhibits the straight-line representation for a very dense vatitite polynomial. Moses$ exam-
ple (Expression 3) can be recast in these terms agerf@idraight-line program of lengthfor a

J’ (z+1)10%z = 3.



Figure 2: Straight-line program example for the expression

18U

1
& gxa2+ Xb? + x&% — xw? — Xy? — XZ — xa— 2xb + 3xc — 4xw + 5xy — 6xz+ 10x* - 5x)° — x o

Following is the program produced for the aboe)ypression by the cemlrsion procedure of
Freeman et al (1986) [57].

v1:=0 v1l6:=a v31:=v28*v28  v46:=v43*v43 v61:=v36+Vv60
v2:=1 v17:=v16*v3 v32:=v31*v3 v47:=v3*v46 v62:=v32+v61l
v3:=X v18:=v8*v17 v33:=—4 v48:=v8*v47 v63:=v30+v62
v4:=v3*v3 v19:=v16*vli6 v34:=w v49:=-6 v64:=v26+v63
v5:=v3*v4 v20:=v19*v3 v35:=v34*v3 v50:=2z v65:=v24+v64
v6:=v5*v5 v21:=-2 v36:=v33*v35 v51:=v3*v50 Vv66:=v20+Vv65
V7:=v2/v6 v22:=b v37:=v34*v34  v52:=v49*v51 Vv67:=v18+v66
v8:=-1 v23:=v22*v3 v38:=v37*v3 v53:=v50*v60 Vv68.=v15+Vv67
v9:=v4*v4 v24:=v21*v23 v39:=v8*v38 v54:=v3*v53 v69:=v68*v68
v10:=v9*v9 v25:=v22*v22 v40:=10 vb5:=v8*v54  v70:=v68*v69
v11:=v3*v10 v26:=v25*v3 v41:=v40*v4 v56:=v52+v55 v71:=v70*v70
vl2:=v11*vll v27:=3 v42:=5 v57:=v48+v56 Vv72:=v13+v71l
v13:=v8*v12 v28:=c v43:=y v58:=v45+v57 V73:=v7*v72
v14:=-5 v29:=v28*v3  v44:=v3*v43 v59:=v41+v58

v15:=v14*v3 v30:=v27*v29 v45:=v42*v44  v60:=v39+Vv59

polynomial functionf (z) O C[Z], find another straight-line program of lendth” that computes
f(2)dz” Howeva, it is not even dear that such programsways exist (Strassen 1986 [168],

Problem X). Again, the high dgree may be held responsible for the difficulty of thisgragon
problem. Thigs not the case in Valiast(1982) [174] multvariate example:

D Xp1 O Xin O

" s )D Q. :
— X = PERMANENT - 0. 4.

dy, 0O0dy, 0i=1 j=1 WY 5 L0

DXn1 (oo Xn,n 0

Clearly, the argument to the iterated partial datives in Expression 4 has a straight-line compu-
tation of lengthO(n?), whereas the general permanent on the right-hand side constitutes a #P
complete problem (Valiant 1979) [173]. Therefore partial vdéities of functions gven by
straight-line programs are fidult to compute.| like to look upon Expression 4 as a central
infeasible computer algebra problem, and Masp®sblem may fall into this category as well.



Despite \liant's permanent example, the polynomial factoring problem of wauitite
polynomials in straight-line representation such as the one in Figure 2 could be shown feasible in
even the sense of efficient straight-line answer generation (discussed inxtheeaton). Aside
from this, there are seral other basic operations kmp to be feasible on mwhriate polynomi-
als of polynomially bounded degreeven by draight-line programs, such as automatic paral-
lelization (Valiant et al 1983 [175], Miller et al 1986) [118], GCD, separation of numerator and
denominator of a rational function, and multiple partial\dgnes in a sngle variable (Kaltofen
1987b) [84].

SEMINAL PROBLEMS

Five problems hge led to a substance ofork in computer algebra not found foryamther of its
problem areas, if we exclude the arithmetic discussed before. Each of these has also initiated a
major implementation effort.

Factorization

The two domains basic to factorization are the geesZ, and multivariate polynomials wer a

field F[x, ,..., %,]. Inthe lattey F is typically an algebraic extension of the rationals or the inte-
gers modulo a prime numbeinteger factorization is, strictly speaking, a problem in computa-
tional number theoryand mary algorithms utilize number theoretic propertigRefer to the sur

vey by Pomerance (1984) [137] for the work until 198Recently the use of elliptic andylper-

elliptic curves has led to aweapproach in integeraictoring and primality testing (Lenstra 1986

[109]; Goldwasser & Kilian 1986 [63]; Adleman & Huang 1987) [J]his approach leads to

both a randomized primality test that certifies its inputl to be prime and has (Idg)°®
expected running time, and to a factorization procedure that has constant space requirement and
works well on numbers with fairly marfactors (Montgomery 1987) [122Previously knavn

primality testing procedures establish the primality of their inputs either wetwbelming
probability of being right [that probability being independent of the input numbervgyoko
Strassen 1977 [163]; Rabin 1980a)] [138], or with correctness that is subject to aveminpro
extension of the Riemannypothesis (Miller 1976 [117]; Bach 1985) [9]. It is fair to say that
today prime numbers can be recognized and generated feasibly in both a strong theoretical and
practical sense. These vépments are definitely useful in computer algebra tasks - for
instance, for probabilistically erifying polynomial identities (Schwartz 1980) [157]. On the
other hand, the fact remains that factoring an arbitrargente N by ary of the fastest knen
probabilistic methods requires at least

exp(TOGINT TOGIGGN) )=o)

steps. Thizomputational difficulty of intger factoring has led to the belief that integer multipli-
cation is an irreersible process with respect to the resources required to uniMwdern cryp-
tograply is based on this hypothesis, and with it encoding schemes could Yen maxure
(Goldwasser & Micali 1984) [64].



We row come to the problem of factoring polynomials. Isaagvdd&’s dassical approach
(see van der Waerden 1953) [176] reduces the problem to integer factorization, but the problem
of factoring the arising integers remains computationallifcdit. For evidence, see Monan
(1986) [121], who provides an irreducibility test based owtlde’s method. Itis a fine @ample
of computer algebra work to rem®this exponential complexity from the polynomiakttoring
problem and today multariate polynomial &ctorization is theoretically and practically feasible.
Consider the following far reaching theorem.

Theorem (Kaltofen 1987a) [80]Let F be an algbraic extension of a prime field - that is, either

F = Q[#] modulo nfg), where m(8) [ Q[¥] is the defining minimal polynomial of the elyaic
numberd, or F = F,, q aprime power Assume we & gven a straight-line pggram P of kength

| that computes a polynomiall@ F[Xxq,..., X,], a failure probability £ << 1, and a maximum
number of terms bound t. Then we can find in polynomially many binary steps as a function of

I; t; log(1k);

element-size®), the binary size of the scalm P,

deg(f), the total degree of f;

coeff-size(f ), the number of bits needed to represent the coefficients of f in F;

spaise polynomials that with probability $ — ¢ constitute all irreducible factar of f with no
mote than t monomials.

In fact, the algorithm first finds straight-line programs for all irreducible factofsasfd
then cowerts those programs to sparse representation, with abortion if the polynomials ha
more thant terms. Aconsequence is, for example, that the factorization of the polynomial in
Figure 2 can be found automaticallyee though the polynomial has 14,379 termisconsider
the abeoe theorem to be the culmination to date of work begun in the mid-1950s on the polyno-
mial factoring problem.Instead of referring to thextensve literature sailable nav, | note
below what | consider the stepping stonesadal the abwe theorem. Br more detailed informa-
tion, consult the ter survey aticles (Kaltofen 1982c [74], 1986c¢) [82].

1.  Areduction from factoring iQ(8)[ x] to factoring inQ[x] is given (Kroneclker 1882 [97];
Trager 1976 [170]; Landau 1985) [100]. This is the only classical algorithm of polynomial
running time, although the lattice method (Lenstra 1982 [106]; Abbot et al 1986) [1] may
be more efficient.

2. Thefactoring problem inFy[x] is resohed in polynomial time, using randomization for
large characteristic (Butler 1954 [24]; Berlekamp 1967 [11]; 1970 [12]; Rabin 1980b
[139]; Cantor & Zassenhaus 1981) [28].

3.  TheHensel lemma is applied to reconstructing rational factors from mquislctors and
multivariate factors from uneriate ones (Zassenhaus 1969 [186]; Musser 1975 [128]; Y
1980) [183].



4.  Aninterpolation and lifting scheme for sparse polynomials is introduced using randomiza-
tion (Zippel 1979 [188], 1981 [189];0m zur Gathen & Kaltofen 1985 [61]; Kaltofen
1985b) [77]

5. Effective vasions of the Hilbert irreducibility theorem are employed to guarantee the cor
rectness of the factors reconstructed by Hensel lifting (Heintz &elSrey 1981 [69];
Kaltofen 1982a [75], 1985a [79], 1985c [78]; von zur Gathen 1985) [59].

6. Thelattice algorithm (see Kannan, this volume) is employed to obtain a polynomial-time
factorization algorithm irQ[ x] (Lenstra et al 1982 [108]; Sehhage 1984) [152].

7. Factoring multvariate polynomials wer the intgers is reduced to wmriate algorithms.
The algorithms are exponential in the number of variables (Kaltofen 1982b [76], 1985c
[78]; Chistor & Grigoryev 1982 [38]; Lenstra 1984) [107].

8. Straight-lineprograms are used to represent dense polynomials as inputs, intermediate
results, and final answers (Kaltofen 1986a [81], 1987a) [80].

| havenot given the asymptotic complexity associated with the theorebelieve that ary
crude upper bound would be quite useless in judging the practical feasibility of toe algo-
rithms. Fortunately fine-tuned implementations of most methods amlable (Wang 1978
[177]; Moore & Norman 1981 [123]; Freeman et al 1986) [57] and perform remarkablylfvell.
the reader has a polynomial needing todmtdred, | estimate that with 98% chance the appropri-
ate procedure will be able to do the.jdBor instance, the factors of the polynomial in Figure 2
were found by our system in 100 secontlbelieve that no other of our seminal problems, with
the exception perhaps of some of the group problems discussed nexgriadghced t@ards
its computational solution.

Computing with Groups

The discoery of the interconnection between finite group theory and solving a single equation
by radicals, known as Galois thepry dready 150 years old (van deraétden 1953, Ch. 7)

[176]. Theactvity on the polynomial factorization problem led to a polynomial-time solution

for deciding whether the Galois group of a rational polynomial is solvable (Landau & Miller
1984) [101]. | hope this result will open a computational approach to classical Galois.theory
However, the fundamental question of finding the Galois group of a polynom@Jxhin poly-
nomial-time remains unsad. Sincethe group can h& exponentially mag elements in the

degree of the equation, we must ask for a concise representation, say a set of permutations gener
ating the group. Notice that theraval/s exists a generating set whose cardinality is tha-log

rithm of the order of the group. @n a generating set of a permutation group, problems like

Cardinality Membership, Sohbility,

are all solvable in polynomial-time. Such results are precisely the theme of the vebdd
computational group theory (see Nésbr 1982 [129] and the references ther€pmputer



systems such as QAEY (Cannon 1976) [26] and CAM®& (Leon & Pless 1979) [110] pvade
sophisticated procedures to actually compute such answers.

Computational group theory does not lack of challenging problems such as finding a gen-
erating set for the intersection ofdvpermutation groups géen by generating setsAlthough
some applications of this theory ai@rly combinatorial, as the relation to the graph isemor
phism problem may indicate (Luks 1982) [114], the link to equation solvingsgagen sronger
if we include matrix groups. The theory by Picard & Vessiot relates the question of finding Liou-
villian solutions of linear ordinary differential equations to the solvability question of (infinite)
matrix groups.Recently this theory has beerxgloited to construct the remarkable decision pro-
cedures by HKvacic (1986) [95] and Singer (1981) [158]. The computational complexity of
problems relating to groups multiplicatly generated by matriceve even finite fields must be
expected to be quite high (Babai & Szektkrl984) [8], and the same may be true for the gen-
eral case in the Singer algorithm. Nonetheless, the group theopvatik's dgorithm is simple
enough to mad it worthwhile to implement it (Saunders 1981 [147]; Smith 1984) [16df.the

special ODE g/dz= f, or y = I fdz, we reed no group theoryub the methods are not less
beautiful, as we see next.

Integration in Closed Form

The calculation of a “closed form expression” whosewvdBvie equals a gien expression, such
as

zexp(2)
exp(z) +1

is the subject ofx@ensve gudy in computer algebra. As the student of ordinary calculus learns,
there are seral heuristics to aid the solution of such a probleng $ikbstitution or intgration

by parts. These heuristics entered into the artificial intelligence approach of the pioneers in com-
puterizing intgration (Slagle 1961 [160]; Moses 1967) [124], but it is Rs@B69) [140] inge-

nious recursie descent argument that replaces the heuristics by a full-fledged algorithm. As is
known in the folklore of calculus, certain functionsdikn(z)/z do not allev closed form inte-
gration in some sense, which we can engiecise. LetC [J C and let

I log(exp@) +1) + dz - zlog(exp@) +1), 5.

Fo=C(z9a0OF, OF, 000 F,
be a tower of compiefunction fields such that
Ug =10 1), A, OF;, or
D l g 17 71 Kl

Fi+1 = Fi(6;) where6; = exp(n;), n; UF;, or
Ug, is algebraic ver F;.
O

ThenF, is called arelementary Liouvillianx@ensionof C(z). If no extensions are by algebraics
then we callF,, purely transcendental. We all the constant fieldC computableif we have



effective procedures for carrying out arithmetic and testing elements for zero and for being inte-
gral. Inour Expression 5,

C=Q0UQ(2) U Q(z, exp(2)) U Q(z, exp(2), log(exp(2) + 1)).
Here is the theorem.

Theorem (Risch 1969 [140]; Rothstein 1976) [144iven f [0 K, K a purely transcendental
elementary Liouville extension 6{z), and given the constant field of K as a computable sub-
field of C, we can decide in finitely many steps whetherethegists an elementary Liouville
exension L0 K and ay 0L such thatdy/dz = f. In that case we call f elementary igtable

and the algorithm will also produce sua y.

All trigonometric, lyperbolic, and imerse tangent functions lie in such fields and this
theorem therefore wers a wide range of functionsSurprisingly the approach is purely alge-
braic and in &ct uses mublariate polynomial domainsClearly, K is isomorphic as a field to
C(z, X4,..., %) on which we can define a formal deative

2 =1 %' = B Ai'lA; if Xi is the image ofog(4,),

0 xjni' If x; is the image o&xp(r;).

With this dewative C(z, X4,..., X,) becomes a so-called differential fieldn 1834 theorem by
Liouville now alows us to restricL and the structure of. An entirely algebraic proof as
devised by Rosenlicht (1968) [143]. Expanding on these ideas (see also Ostrowski 1946) [133],
Risch could reduce the slightly more general ODE prohfemf y =g, f, g, and the solutiory
0 C(z, Xq,.--, %), to integration and corresponding ODE problem€(m, X4,..., %,-1). Roth-
stein (1976) [144] significantly impved Risch’s dgorithm by showing hw to find the minimal
algebraic extension df necessary toxpressy [in the caseK = C(z) see also Trager (1976)]
[170]. Oncethe algorithm is in place, and has been implemented (Moses 1971a [126]; Norman
& Moore 1977) [131], it quickly solves Expression 5 or determineg)&iné (€ — 7%)/(2zi), i
= V-1, nonelementaryAttempts hae dso been made to replace the reamskescent by com-
puting an a priori degree bound (Fitch 1981 [55]y@wort & Trager 1985) [50], but unérsally
valid such bounds appear excessi high.

If K in the abwe theorem is allwed also to contain algebraic functions, the theory
becomes substantially morevaived and algebraic geometric invite. Howeve, Risch (1970)
[141] announced a finite decision method in this case as @allenport (1981) [49] and rager
(1984) [171] hae snce then rtensvely studied this case, and a procedure for integrands b
by purely quadratic extensions@Q{z) by Davenport exists for the system REDUCE.

AIthoughIexp(zz)dz is not elementary we can express itg«ierf(iz)/2. Itis natural to
ask which other nonelementary integrals caw be epressed with the additional help of error
function tensions. Generallyve may allov special functions as extensions frdfnto L that
satisfy certain differential equationtn case ofy = erf(g) this isy' = g’ exp(—g?), ignoring the



scaling fctor Decision procedures based on Liouville type theorems and the Risch approach
have keen devised in this setting, but here we can only refer to Singer et al (1985) [159], Cherry
(1985 [36], 1986) [35], and Knowles (1986) [92].

In modeling elementary functions bypessions, the tower of transcendentdérsions
has to be bilt before the Risch algorithm can be applied. That means in particular that we must
have a tanscendence test for exponentials andritigms. Knevn algorithms for these are based
on so called structure theorems for elementary functions (Epstein & Caviness 1979 [53]; Roth-
stein & Cainess 1979 [146]; Risch 1979) [142]. The computability of arithmetic in the arising
constant fields can become a probldmote that gen in Q(exp(1), 7) zero-testing hinges on the
hypothesis of algebraic independence of exp(1) andThe interpretation of expressions as
meromorphic functions must also account for suitable branch selection ofanelti functions
(such as a log), and an appropriate representation for this mathematwédge remains a
challenge. Hwever, once the embedding into a tower of fields is found, the integration algo-
rithms are independent of the particular meromorphic model of these differential fields (Risch
1969 [140], Proposition 2.3).

There is a remarkable similarity between the problem of integration in closed form and the
problem of summation in closed form, which we only mention in passing (Gosper 1978 [66];
Karr 1985) [91].

Solving Systems of Polynomial Equations

In the later half of the last centutye theory of imariants constituted a main subject of mathe-
matical research. The fundamental insight to solving systems of polynomial equason w
obtained in this setting, the Hilbert Nullstellensatzt us first establish a bit of modern termi-
nology The algebraic ariety of a system of polynomial equatiofis..., § 0O C[Xy,..., %] IS

the set of their common zeros,

V(fq,..., §):={(@@,...,a) OC"| fi(ay,..., &) = L f,(a,..., &) =0}.
The ideal generated bl ,..., f over C[Xq,..., %] is the set of all linear combinations
(fiyeeey §):={h f + G O f, | hq,..., b OC[Xq,..., %]}
Now a version of the Nullstellensatz states that

V(ay,..., &) OV(f,..., §):9(a,..., &) =0
[l:l] 1 D(fl,..., fr, Xn+1g_1) Q/erC[Xl,..., X—H_l].

In particular,
V(fq,..., £)=000 1 0O(fq,..., ) over C[Xq,..., %] 6.

By Expression 6 solvability of polynomial systems is related to polynomial ideal membership,
the “Hauptproblem:”



Given fq,..., §, 9 OF[Xq,..., %], F afield, isg ﬁ(fl,..., )
- r
00 DPhy,..., b OF[Xg,..., X,]: g:_zlhi fi.
1=

The decidability of the ideal membership is long known (Hermann 1926) [70], becaugéesthe e
tence ofh, with deg(h,) < deg@) + (rd)?', whered = max{deg(f;)}, in case of membership can

be guaranteed and reduces the problem to solvingge)lanear system in the unknown term
coeficients of theh;. The degree bound has been invatb by Lazard (1977) [104] to

O((r max{d, deg(g)})snlz). In 1965 Buchberger irented an important me approach to polyno-

mial ideal manipulationFirst the generating sdt ,..., f is rewritten into a ne basis fl*

fs for the same ideal, which has strong completeness properties. In parigtiaiespect to

this so-called Gibner or standard basis and with a generalized polynomial remainder process we
have

g O(fy,..., £))0 REMAINDER(g; f, ..., £)=0.

Another property of Gibner bases is best demonstrated by an example (Trinks 1978Fr2 .
the input basis, for instance,

fi, = 45p+ 35s-165b - 36,

f, = 35p+40z+ 25t - 27s,

f; = 15w+ 251 + 3 - 18t — 16507,
f, = -9w+ 15pt+ 20z5

fs = wp+2zt- 11b?

fe = 99w - 11sb+ 3b?,

f, = b?-33/50b+ 2673/10000,

one obtains under lexicographical ordering witl» p >z >t > s> b a Grdbner basis in which
the variables are “diagonalized” such that the finitely yremtutions can be computed by back-
substitution:

f, = w+19/120b + 1323/20000,
f, = p-31/18b - 153/200,

f; =  z+49/36b+ 1143/2000,

f, = t-37/15b+ 27/250,

fo = s-52b- 9200,

fo = fo.

Grbbner bases can be used as a tool foryrpatynomial ideal theoretic operations, which fortu-
nately has recently been sayed in the article (Buchberger 1985a) [20].

The polynomial ideal membership problem is extremely difficult from a complexity theory
point of viev. It can be shan that ideal membership is exponentially space hard as a function of



n, the number of variables (Cardoza et al 1976 [29], Mayr &énd.982) [115]. Therefore, the
Grébner basis construction and generalized remaindering is for general inputs axquogse
dure. Inlight of the popularity of the @bner basis algorithm, surprisingly little is known on
classifying ideals according to their computational cowifyiea measure that has yet to be made
precise. Baye#& Stillman (1985) [10] hee nade an attempt to measure ideal coxiplein
terms of m-rgularity, but compared to the notion of straight-line complexity for individual poly-
nomials, we hae dmost no insight wi certain polynomial ideals are @idult and others are
easy to manipulate, both of which phenomensehepeatedly been demonstrated by the
Grobner basis method.

The special and from a geometric point ofwieore important question whether a poly-
nomial system is solvable - that is, membership of 1 (see Expression 6), can be shoven to ha
much smaller complexityThe recently announced degree bounds by Brownawell (1986) [19]

1=3 hif;, degh) < 3min(n,r) n d™ ™", d = max{deg(f;)},

M=

lead to an algorithm of sukgonential time with respect to the dense term count of;th&his
result already followed from the work announced earlier by Grigarge Chistov (1984) [67].
For sparse polynomials, it is relatly easy to she co-NP hardness of the solvability problem
(Agnarsson et al 1984) [4], and exponential dependencengihtherefore remain.

Even though solability of polynomial systems is from the complexity point ofwian
easier problem than ideal membership, the best computerized attacksactaproblem to-date
appears the @bner basis construction. Indeed, well-tuned implementations \italde
(Bogge et al 1986) [13], and further speed-ups mayxpeaed from an increased understanding
of its relationship to classical elimination by resultants (van degrién 1953) [176] and linear
system solving.

Grobner bases ka recently been used in W (1978) [182] algebraic approach of geo-
metrical theorem proving (Kapur 1986 [89]; Kutzler & Stifter 1986) [99]; Wwhen using this
method, statements in geometry cannot easily be refuted, since a counterexample has the added
restriction that its parameters be real numbétewever, an even larger theory encompassing
inequalities and first order quantification still remains decidable, which is our last problem.

Decision Methods for Elementary Algakand Geometry

Sentences in the elementary theory of real numbers are constructed from polynomials
fi(X1,.., %) O Q[X4,..., %] by the predicate symbols =@0, > 0, the Boolean operatoaad,
andor, and the first order quantifiersxy, and="x;. For example, the sentence

VX, y: (@2 (x—x)? +b%(y-yo)? —a?b?z0o0r x> +y>< 1) 7.

expresses the geometrical statement that the ellipsegd gy the real quantitieg,, yo, @, andb
lies entirely within the unit circlelt is Tarski’s accomplishment (published in 1948) to shihat



the truth or &lsehood of a sentence in the theory of real closed fields can be decided by an algo-
rithm in a finite number of steps. One important principle is that of elimination of quantifiers -
e.g., that for the alve £ntence one can find a quantifier free sentengg, iy, a, and b, whose

real solutions, which form a so-called semi-algebraic set,xaetlg the quadruples for which

the sentence is true.

Tarski’s ariginal algorithm has a horrendous conxitig but much better algorithms va
been found since therThe sophisticated 1975 approach by Collins is based on decomposing a
semi-algebraic set into cylindrical cells. Projections by resultants and exact real root isolations
(discussed in the arithmetic section ad)aare a major tool in this cell decomposition algorithm.
| recommended the article by Arnon et al (1984) [7], whislesgan ntroductory account of this
method, and the one by Collins (1982) [43] which contains a full set of references to the classical
and modern literatureUnfortunately the general problem again requires at leagbeential
time in the number ofariables (Fischer & Rabin 1974) [54]. Nonetheless, Arnon (1985) [6] has
managed to sobvlected nontrivial problems by his implementation of the cylindrical algebraic
decomposition methodA quantifierfree formula to Expression 7 can be found in Lauer (1977)
[102]. Perhap®ntire subtheories, l&kWuU’s theory of geometrycan be computerized success-
fully with these nes algorithms.

LINKAGES

Computer algebra has connections to various areas inside and outside computer $tience.
major ones, which could themsess/be considered as sub-disciplines within computer algebra,
are nov discussed.

Parallel Algorithms

As parallel computers becomevadable, computer algebra systems will benefit from their
increased performance. Some algorithms are obviousdgugable in parallel - the Chinese
remainder imaging scheme, or the probabilistic elliptic edactoring algorithm, to nameub

two. Inthese applications of parallel computing the task gets distributedaémlsprocessors,

each of which is required to possess redfiti large computing pwer. The arithmetic is
speeded-up by a finer grain of parallelisvailable, for example on aector computerand this

will require the redesigning of some of the basic algorithF@tunately computer algebra can
borrowv from a significant amount of research done already on this sulbjacexample, carry

save integer addition and multiplication, the systolic algorithms for integer and polynomial GCD
(Brent & Kung 1983 [16]; ¥n & Zhang 1986) [185], for linear system solving Leisersovork

(1983) [105], or the FFT algorithm performed on a butterfly network care sena trting

point. Itis the challenge of the immediate future to adapt such concepts to the needs of computer
algebra and to incorporate them into our systems. On the theoretical side, the theory of problem
solving by circuits of polylogarithmic depth has reedimuch attention, refer to the seys by

Cook (1985) [45] andan zur Gathen (1986) [60]. That work may yeowseful to computer
algebra in the more distant future.



Logic Piogramming and Simplification

One main task in computer algebra is to transform mathematical expressions into simpler ones.
The notion of simplicity itself is subjeus, and different approaches are compared by Moses
(1971) [125] and Buchbeger & Loos (1982) [23]. One such concept prescribes simplification to
canonical forms (as in Caviness 1970) [30], which means that the simpéfi@dns of difierent
expressions with the same meaning must be identical. The generalized remaindersvafimulti
ate polynomials computed with respect tdl@rer bases discussed earlier turn out to be such
canonical normal forms. Loos observed that théb@er basis construction igny similar to the
so-called Knuth-Bendix completion procedure for equational theories, and much redehag
been directed to formalizing this relationship (e.g. by Kandri-Rody & Kapur 1983 [8idklet/
1984) [181]. A sound foundation for algebraic simplification is therefore the theory of term
rewriting, which is discussed in the seyvaticle by Buchberger (1985b) [21]

The logic programming approach to simplification deals with expressions purely syntacti-
cally, which is both its strength [the algorithms are well suited for computer implementations
(Kapur & Svakumar 1984)] [90], and its weakness [the approach is oblivious to additional math-
ematical knowledge about the problem]. As an example we offer the problem of simplification
of expressions with radicals (Caviness & Fateman 1976 [32]; Borodin et al 1985 [14]; Zippel
1985) [190], which is strongly connected to Galois thed¥pnetheless, term rewriting is the
most powerful general tool for algebraic simplification to date.

Canonical simplifiers can be used to test the equality ofekpressions. Orthe other
hand, if we represent expressions by straight-line programs, canonical normal formBcaie dif
to obtain. However, equality testing can be accommodated by a modern randomized algorithm,
which evaluates the programs at random points modulogelaandom prime number (Schriz
1980 [157]; Ibarra & Moran 1983 [72]; Gonnet 1984) [65]. Therefore, with respect to the iden-
tity problem canonical forms are generally not as importantarger.

Algebraic simplification is perhaps the trickiest problem in computer algebra, and fully
satisfactory solutions can only be expected from future research.

Languaye and System Design

One of the biggest successes in computer algebra isathehfat the algorithms are not just
designed by pencil and paper but aralable within systems of substantial dimension. The sys-
tems MACSYMA, muMAH, and REDUCE are second-generation general-purpose Computer
Algebra systems based on LISP; the system SAC/2 is based on FORTRAN; and the systems
MAPLE and SMP are based on C; but all of them are programmable in their own langaage.
example, the problem in Expression 1 (see the introduction) could be carried out@®§$\YWHAA

on a SYMBOLICS 3670 in 38 secondis1 my viev, SCRATCHFAD/II (Jenks 1984) [73] bgns

a rew generation of computer algebra systems because of its abstract data types (at last, a pro-
gram for Gaussian elimination can be written, in which the entries lie in an abstractly denoted
field) and because of its domain building capabilities. Other such systems are NEWSPEAK



(Foderaro 1983) [56] and VIEWS (Abdali et al 1986) [2]t sompared to SCRACHPAD/II
these other efforts are still in their experimental stagdsstraction mechanisms will find their
way into most computer algebra implementaticiorg$, if not on the user Vel then at least for
library package programming.

Aside from general purpose system design, selected specialized efforts averthgte
such as generation of optimized FORTRAN code from symbolic solutions (Gates 1986 [58];
Wang 1986) [179], or the design of user friendly interfaces custom tailored for formula entry
(Smith & Soiffer 1986) [162].

Activities Outside Computer Science

It is not unreasonable to conjecture that most users of computer algebra systems are not com-
puter scientistsl am ot in a position to suey the application and assess the impact of com-
puter algebra in the mathematical and natural sciences, in engineering, and in mathematical
economy but instead refer the reader to the article by Calmea& Mulzen (1982) [25] and to

the application letters in thdournal of Symbolic ComputationAs computer algebra systems
become wailable on personal computers (Stoutemyer 1985a) [165], | expect that teaching the
universal arithmetic will be influenced by its automation, perhaps as strongly as calculators ha
changed education in basic arithmetier an experimental studysee Char et al (1986) [34].

CONCLUSION

Any intellectual activity that enlists mathematics as one of its tools ultimately needs to manipu-
late mathematicalxpressions. Computalgebra puts the burden of “formula crunching” on
computing machines. The design of efficient algorithms and systems that carsusbl\sym-

bolic computation tasks successfully requires great ingerngbause the classical approach is
likely to fail, as modern computation complexity theory caengrove. Here | hae listed
seminumerical arithmetic and &@vwajor problem areas as the hallmarks of toslapmputer
algebra. Inorder to see these accomplishments atkwthe reader is encouraged to test the
locally available computer algebra system with hasdrite symbolic problem Eventually some
shortcomings of the algorithms and systems will lveaied to the userAt times, these difcul-

ties are caused by a lack of manpower to refine and implement the best known algdithms.
there are situations for which wevegust begun a computerized attack, be it to use parallel com-
puting power or to classify problems according to their intrinsic computational complexity and
identify and sole the easy onesClearly, mary problems are temptingly open, but the state of
the art in computer algebra might already impress the ghost of Isaac Newton.
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