
Polynomial Factorization 1982-1986*

R

Erich Kaltofen

ensselaer Polytechnic Institute
eDepartment of Computer Scienc

Troy, New York 12181

1. Introduction

In late 1981 I wrote the survey article [41] on the problem of factoring polynomials for
-

s
the Computer Algebra book edited by B. Buchberger, G. Collins, and R. Loos. In the conclu
ion of that survey, I raised six opens problems, all of which were related to finding

s
r
polynomial-time solutions to problems in polynomial factorization. During the tremendou
esearch effort of the last five years, all six problems have been satisfactorily solved. This

p
paper complements my previous survey and summarizes the major advances that now make
olynomial factoring a fine example of a classical computational question for which efficient

and polynomial time algorithms have been designed.

Before we describe the new results, however, I want to make a few additions to my dis-
r

f
cussion on the earlier developments [41]. Von Schubert’s finite step algorithm of 1793 fo
actoring univariate integral polynomial is merely a generalization of Newton’s method pub-

i
lished in the chapter ‘‘invention of divisors’’ in his Arithmetica Universalis in 1707. The idea
s simple. In order to find a factor of degree d , one evaluates the polynomial at d +1 integers

r
W
and interpolates all possible combinations of integer factors of the resulting values. Van de

aerden [88] points out that this method is valid over any unique factorization domain with
-

d
finitely many units, and that then the decidability of factoring in the domain implies the deci
ability of polynomial factoring. He suggests, however, that over infinite fields the factoring

-
i
problem may be undecidable given only effective procedures for the field arithmetic (includ
ng zero testing). This is indeed so, and Fr"ohlich and Shepherdson [26] show the existence of

-
d
such ‘‘explicit’’ fields over which irreducibility testing is undecidable. Of course this undeci
ability result stands in the shadow of the polynomial-time solution for most natural fields

such as the rational numbers.

From the work by Zassenhaus [93] and Lenstra [62] in 1981 it became clear that the
s

f
polynomial-time resolution of univariate integer polynomial factorization hinged on progres
or certain diophantine approximation questions, whereas the author’s early results on Hilbert

*
hhhhhhhhhhhhhhh

This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-
-

i
04391 and by an IBM Faculty Development Award. This article was written for a tutorial on polynomial factor
zation given at the conference ‘‘Computers and Mathematics,’’ at Stanford University on August 2, 1986.

I

- 2 -

rreducibility (cf [42]. and [47], §7) indicated that the question of multivariate factoring may
-

n
be polynomial-time reducible to univariate factoring. The missing link in the univariate poly
omial factoring algorithm was finally supplied by Lovász in late 1981, who constructed a

.
T
remarkable algorithm for finding relatively short vectors in multidimensional integer lattices

he resulting polynomial factoring algorithm by A. K. Lenstra, H. Lenstra, and Lovász [67]

B
could decompose an integer polynomial of degree n with coefficients absolutely bounded by

into irreducible non-constant integer polynomials in O (n + n (log B)) binary steps, this12 9 3

m
m
when using classical long integer arithmetic procedures. Polynomial-time reductions fro

ultivariate to univariate integer polynomial factorization were discovered at about the same
,

w
time. The algorithm by the author [47], is based on Zassenhaus’s root approximation scheme

hich in those circumstances happens in the power series domain and then leads to a linear

a
system rather than a diophantine approximation problem. This algorithm only requires field
rithmetic and a univariate factoring oracle, provided the field has sufficiently many elements.

t
Another algorithm by Christov and Grigoryev [18] uses the Hilbert irreducibility results men-
ioned earlier and a polynomial-time bivariate polynomial factoring algorithm over finite

e
n
coefficient fields, which is derived from the lattice approach. In the multivariate case, th
umber of possible monomial coefficients can grow exponentially with the number of vari-

l
c
ables. A densely represented, or shortly a dense multivariate polynomial is one where al
oefficients are counted towards the input size, even if a large proportion of them is zero.

p
The algorithms just described have polynomial running time in the dense size of the input
olynomial.

Other dense multivariate polynomial factoring algorithms over finite fields were found by
,

t
von zur Gathen and the author [31] and by A. K. Lenstra [65]. For large coefficient fields
he algorithms are randomized in the Las Vegas sense, ‘‘always correct and probably fast.’’

fi
Only recently has it been established that multivariate irreducibility testing over large finite

elds can be accomplished in polynomial time without probabilistic choices [51]. There are
r

t
also several generalizations of the integer lattice algorithm to dense multivariate factoring ove
he rational numbers [64] and [39].

Factoring polynomials over algebraic extensions is polynomial-time reducible to factoring
s

w
over the ground field by virtue of the classical Kronecker reduction, and the timing analysi

ith Trager’s improvement can be found in [59]. This approach is also described in [18]. An
e

r
alternate way to factor over algebraic number fields in polynomial-time, again based on lattic
eduction, is given by A. K. Lenstra [63], [66]. It turns out that the reduction from mul-

tivariate to univariate polynomial factorization also gives an absolute irreducibility test [44].

The high exponents in the running time bounds may indicate that the polynomial-time
,

b
solutions are quite impractical at present. This is probably true for the original algorithms
ut the short lattice vector algorithm, aside form many intriguing diophantine approximation

-
c
applications, also has its function in polynomial factorization. A. K. Lenstra’s lattice pro
edure to recover algebraic numbers from their modular images [62] seems an efficient way to

e

- 3 -

liminate the exponentially complex Chinese remaindering step in the Weinberger-Rothschild
o

f
[91] factoring algorithm over algebraic number fields [1]. There is also the possibility now t
actor univariate integer polynomials via complex root approximation and lattice reduction

[82], [55]. In particular, Sch"onhage’s algorithm has asymptotic running time O (n +8

n 5 3(log B)), n = input degree, B = coefficient bound. This approach may be superior in prac-

A
tice on hard-to-factor inputs [53]. M. Monagan’s experiments [74] also indicate that the

dleman-Odlyzko irreducibility test [6] combined with a probabilistic integer primality test is

a
quite practical. The new absolute irreducibility criteria [44], [86], Chapter 3, and [23] are
lso very useful in practice.

If the number of variables is allowed to grow with the input size, then the dense

i
representation often consumes too much space. The first less expensive representation studied
s the sparse one, in which only monomials with non-zero coefficients are stored. Zippel’s

-
z
sparse interpolation [94] and lifting algorithms [95] were the first methods based on randomi
ation rather than heuristics. However, a rigorous probability analysis of the sparse lifting

.
A
process required an effective probabilistic version of the Hilbert irreducibility theorem

lready in 1981, Heintz and Sieveking [37] provided such a theorem for algebraically closed
n

r
fields, and in 1983 von zur Gathen proved a suitable version for arbitrary coefficient fields. I
etrospect, the author’s effective Hilbert irreducibility theorem also lends itself to an even

s
i
simpler probabilistic version [45]. In [32] sparse polynomials are described that posses
rreducible factors with super-polynomially more terms. These examples imply that any sparse

o
Hensel Lifting scheme can have more than polynomial running time on certain inputs. In
rder to deal with this phenomenon it became clear that the sparse representation had to be

replaced by a more powerful one.

The usage of ‘‘straight-line programs’’ as a means to compute certain polynomials has

t
been developed in the framework of complexity theory in the past decade, refer for example
o [83] and [84]. In 1983 von zur Gathen [28] combined his probabilistic Hilbert irreducibil-

fi
ity theorem with the probabilistic method of straight-line program evaluation [80] and [40] to

nd the factor degree pattern of polynomials defined by straight-line computations. A previ-
t

o
ously known operation on polynomials in straight-line representation is that of taking firs
rder partial derivatives [9]. Although there is evidence that other operations such as higher

-
l
partial derivatives are inherently complex [87] (cf. also §5), the greatest common divisor prob
em of polynomials is straight-line program representation could shown by the author in late

t
s
1984 to be in probabilistic polynomial-time [52]. In 1985 the author could also show tha
traight-line programs for the irreducible factors of a polynomial given by a straight-line pro-

-
m
gram can be found in probabilistic polynomial-time [49]. With Zippel’s 1979 sparse polyno

ial interpolation algorithm [94] our factorization result resolves all problems left open in
f

u
[95], [32], and [46]. We note that, unlike the randomized solutions for factorization o
nivariate polynomials over large finite fields, the probabilistic solutions are of the Monte-

m
Carlo kind, ‘‘probably correct and always fast.’’ The failure probability can, of course, be

ade arbitrarily small.

- 4 -

2. The Lattice Reduction Algorithm

In this section we present a key algorithm in diophantine optimization, which enabled A.

m
K. Lenstra, H. Lenstra, and L. Lovász [67] to prove that polynomial factoring is in polyno-

ial time. Given a set of n linearly independent m -dimensional integer vectors, the algo-

f
rithm finds a vector in the Z-span of these vectors, the Euclidean length of which is within a
actor of 2 of the length of the shortest vector in this lattice. Aside from polynomial

f

(n −1)/2

actorization, where the algorithm has at least two applications, one for factoring primitive
s

s
integer polynomials and one for recovering algebraic numbers from their modular images, thi
hort vector algorithm has found many other applications. The algorithm can be used to find

o
b
simultaneous rational approximations to a set of reals [67], Proposition 1.39, and [57], t
reak some variants of the Merkle-Hellman knapsack based encryption scheme [3], [75], to

e
a
solve certain subset sum problems [58], to determine integer relations among reals [36] (se
lso §3), to find a lattice point close to a given point [8], to name but a few.

yWe now introduce the notion of reduced basis. Let b ,.. . ,b ∈ Z , m ≥ n , be linearl1 n
m

i 1 nndependent over Q. By b * , . . . ,b * we denote the orthogonalization of this basis, namely

)b * = b − µ b *, 1 ≤ i ≤ n , (2.1i i
j =1

i −1

i , j j

i

Σ

, j
j

2

i jµ =
||b *||

(b ,b *)hhhhhhh , 1 ≤ j < i ≤ n , (2.2)

where (,) denotes the scalar product and e e e e the square norm. The basis b ,.. . ,b is called1 n

reduced if

||b *|| ≥ ||b * || for 1 < k ≤ n. (2.3)hh
k −1

21
2k

2

1 n
m y

n
Lemma ([67], Proposition 1.11): Let b ,.. . ,b ∈ Z form a reduced basis. Then for an

on-zero vector x ∈ Zb +. . .+Zbn1

n −1 2
1

2.

H

2 ||x || ≥ ||b ||

ence ||b || is within a factor of 2 of the norm of the shortest vector in the lattice1
(n −1)/2

1 n .

P

spanned by b ,.. . ,b

roof: Let x = r b = r *b * with r ∈ Z, r *∈ Q and r ≠0, 1 ≤ l ≤ n . Since b * isΣ Σi =1
l

i i i =1
l

i i i i l l

lo i l l l l l l l l l lrthogonal to b for i = 1 , . . . , l −1, (x ,b *) = r (b ,b *) = r *(b *,b *). But (b ,b *) = (b *,b *)
≠ 0. Therefore, r * = r , which is an integer ≠ 0. It follows that ||x || = (r *) ||b *|| ≥l l

2
i =1
l

i
2

i
2Σ

1(l
2

l
2

l
2

1
2 l −1r *) ||b *|| ≥ ||b *|| ≥ ||b * || /2 , the last inequality by using (2.3) inductively. Since b * =

b the lemma is proven. `1

For reference we shall give the reduction algorithm, incorporating a slight improvement
of [43].

- 5 -

I
Algorithm Lattice Basis Reduction
nput:iiiii n linearly independent m dimensional integer vectors b ,.. . ,b .

O 1 n

1 n

utput:iiiiiii b ,.. . ,b forming a reduced basis for the integer lattice spanned by the input vectors.
By the above lemma, b must therefore be a short vector.1

i , j j
<
Step I (Gram-Schmidt Initialization): The arrays µ and β are initialized such that µ , 1 ≤

i ≤ n , and β = ||b *|| , 1 ≤ l ≤ n , satisfy (2.1) and (2.2):l l
2

OFOR i ← 1 TO n D

(The following loop is skipped for i = 1.)
FOR j ← 1 TO i −1 DO

µ ←
β
1hhh

I
J
L
(b ,b) − µ µ β

M
J
O
.

j −1

j ,l i ,l l
1

i , j
j

i j
l =
Σ

Σ l
2

l

i −1

i ,
1

βi i
2

l =
← ||b || − µ β .

)

S

k ← 2. (Used as counter in next step.

tep R (Reduction Loop): At this point µ and β correspond to the orthogonalization of
b ,.. . ,b . Moreover b ,.. . ,b is reduced, i.e.1 n 1 k −1

l
2

2
1hh

l −1
2

i , j 2
1hh)

I

||b *|| ≥ ||b * || , 1 < l ≤ k −1, and e µ e ≤ , 1 ≤ j < i ≤ k −1. (2.4

F k =n +1 THEN RETURN (b ,.. . ,b).1 n

.
I
IF k =1 THEN k ← 2; incremented ← true ; GOTO step R
F incremented THEN perform step A given below.

Now (2.4) is also valid for i = k , i.e.

e µ e ≤ for 1 ≤ j < k. (2.5)hh1
2

hh
k −1

k , j

1
2

I kF β ≥ β THEN k ← k +1; incremented ← true ; GOTO step R.

At this point

||b *|| < ||b * || ≤ I
L − µ M

O ||b * || , (2.6)2
k −1

2
1

hh
k ,k −

3
4

hh
k −1

21
2k

2

.

I

the last inequality because of (2.4) for j = k −1

nterchange b and b and update the arrays µ and β such that (2.1) and (2.2) is satisfied fork −1 k

k −1 k i , j =
k
the new order of basis vectors. The only entries which change are β , β and µ , i

−1, k , 1 ≤ j < i , as well as µ , µ , k < i ≤ n . Let γ and ν denote the updated contentsi ,k −1 i ,k

,of β and µ, then, according to [67], 1.22 and Figure 1

γ = β + µ β , ν =
γ

µ βhhhhhhhhhh , γ =
γ

β βhhhhhhh ,
k −1 k

1

k ,k −1 k −1
k

k −1

2
k −1 k ,k −1

k −
1k −1 k k ,k −

- 6 -

,
ν = µ ν + µ β /γ M

N
O

for k <i ≤nµν = µ − µi ,k i ,k −1 i ,k k ,k −1

i ,k −1 i ,k −1 k ,k −1 i ,k k k −1

νk −1, j k , j k , j k −1, j= µ , ν = µ for 1≤ j <k −1.

S

k ← k −1; incremented ← false; GOTO step R.

tep A (Adjust µ): This step replaces b by b − λ b , λ ∈ Z, such that the newk −1
l l l1k , j k k l =Σ

kµk , j satisfy (2.4). The replacements of the entries in b are carried out modulo M , where M
is chosen so large that the final b agrees with its modular image.k

:

M

Substep AM (Initialize the modulus)

← R
J (k +3) max{β , . . . ,β } H

J . (For efficiency in modular operations, M can also be√dddddddddddddddd1 k

)

F

chosen the least power of the radix larger than that.

OR l ← k −1 DOWNTO 1 DO substep AL.

:Substep AL (Make µ absolutely smaller than 1/2)k ,l

hh1
2

I k ,lF e µ e ≥ THEN

r ← ROUNDED(µ). ROUNDED(x) denotes the largest integer z s.t. e z −x e ≤ 1/2.k ,l

lR k keplace b by (b −r b) modulo M .
)(Notice that in this case λ = r , otherwise λ = 0.l l

jk , j k , j l , .

µ

FOR j ← 1 TO l −1 DO µ ← µ − r µ

← µ − r .k ,l k ,l

k 2
1hh s

r

Substep AB: Balance the residual entries of b mod M such that each modulus > M i

eplaced by its negative equivalent ≤ M . `hh1
2

We will not prove the basis reduction algorithm correct or analyze its complexity, but

r
refer to [67]. However, for later reference we shall state its binary running time in a more
efined way. Let us assume that we carry out the arithmetic on the rationals in β and µ by

l

k i , j

e
v
representing their integer numerators and denominators. Let d denote the Gramian of th
ectors {b ,.. . ,b }, that is1 l

l i j 1≤i , j ≤l
i =1

l

i
2Π .

T

d = det IL (b ,b) M
O = ||b *|| for 1 ≤ l ≤ n

hen ||b *|| = d /d , 2 ≤ l ≤ n . Moreover,l
2

l l −1

j i , j i , j
2

j −1 i
2 .

T

d µ ∈ Z and µ ≤ d ||b || for 1 ≤ j < i ≤ n

hese relationships is always true at the top of step R. Throughout the algorithm ||b || < nB ,i
2

.where B is the the square of the length of the longest vector in the original basis

- 7 -

eFurthermore, the Gramians only change when b is exchanged with b , in which case thk k −1

n k −1ew value of d is at least 3/4 times smaller than the old value. Therefore we have the fol-

T

lowing theorem.

heorem: Let B be as above, and let d be the Gramian of the first l input vectors. Thenl

sthe Lattice Basis Reduction Algorithm require

O (n m + nm log(d))
n

l
1

2

l =
Π

e
b
integer arithmetic operations. The integers on which these operations are performed hav
inary length

O (log(max{n , B , d ,.. . , d })).1 n

y
O
In general, the number of arithmetic operations and the integer lengths can be bounded b

(n m log(B)), O (n log(B)), respectively.3

In practice, the β’s and µ’s should be computed in big floating point arithmetic.

m
Roundoff errors can be corrected by checking whether the final lattice is reduced, but at the

oment we have no well-tested recommendations what mantissa length should be used
t(perhaps 2n +log (B) bits). Schnorr [77] has theoretically justified the use of floating poin2

arithmetic and cut the integer lengths in the algorithm to O (n +log(B)). For particular lattices,
Sch"onhage’s improvements [82] speed up the short vector construction further.

Although computational solutions for finding short lattice vectors have been carried out

i
earlier, e.g. by Dieter [22] and by Ferguson and Forcade [24], the Basis Reduction algorithm
s the first guaranteed polynomial-time solution. Aside from improving the running time, one

)
w
can ask to improve the ratio (length of computed short vector)/(length of shortest vector

hile retaining polynomial running time. The Basis Reduction algorithm can be improved to
produce a ratio ≤ γ , where γ > 4/3. All one has to change is the comparison in step R(n −1)/2

k k −1to β ≥ β /γ. Schnorr [78] constructs for every ε > 0 a polynomial-time basis reduction
aalgorithm such that the ratio is (1+ε) . The running time of these algorithm are in fact onlyn

constant times slower the than Basis Reduction algorithm, where the constant depends on ε.

3. Root Approximation Algorithms

In this section, we will describe two algorithms with which we can establish that dense

s
multivariate rational polynomials can be factored in polynomial time. The first algorithm
plits univariate integer polynomials, and the second reduces the problem of multivariate fac-

F
toring to univariate factoring. Both algorithms make use the following idea. Let f (x) ∈

[x] be the polynomial to be factored. First, we find an approximation ζ̂ to a root f (ζ)=0.

s
Then we try to find another polynomial ĝ (x) ∈ F [x], deg(ĝ) < deg(f), whose coefficients are
mall and for which ĝ (ζ̂) is approximately zero. Clearly, the minimal polynomial g of ζ is a

e
o
candidate for ĝ . The key argument will show that for sufficiently good approximation ζ̂ th

nly polynomial ĝ with small enough coefficients for which ĝ (ζ̂) remains bounded is ĝ = g .

T

- 8 -

he notions of ‘‘small’’ will be different for F = Q and F = Q(y ,. . . , y). For F = Q, we1 r

r1 e
o
use the distance in the complex plane as our valuation and for F = Q(y ,. . . , y) we use th

rder of the multivariate Taylor series approximation. We now present the details for the
algorithm in Q[x].

Let f (x) ∈ Z[x] be a primitive polynomial, n = deg(f). Let ζ ∈ C with f (ζ) = 0 and
-let g (x) = g + g x + . . . + g x ∈ Z[x] be the minimal polynomial of ζ, m ≤ n . Further0 1 m

m

m i iore, for k > 0, let α̂ , β̂ ∈ Z, 0≤i ≤m , satisfy

e 2 Re(ζ) − α̂ e ≤
2
1hh , e 2 Im(ζ) − β̂ e ≤

2
1hh .

N

k i
i

k i
i

ow consider the m +3 dimensionals lattice spanned by the m +1 columns of

0 H
J
J
J
J
J
J
P

.

..

.

α̂
1
0

ˆ

. . .

β

.. .

.. .

.

1
0
0

. .

..

.

α̂
0

ˆ

0
1
0

β

..

.

α̂
0

ˆ

0
0
1

β

..

.

0
)2 (=α̂
)

L =

R
J
J
J
J
J
J
Q 0 (=β̂

m

0

k
0

1

1

2

2

m

m

The vector

g g 0

g 0

0...
...... g gm m

m

c
c
c
cc

c
c
c

g g α̂ α̂m
i i0Σi =

Σ

m

i =0
m

i i
ˆ

L × =

g β̂

=

βc
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

is an element in this lattice. We first observe that

||g || ≤ I
L m
2m M

O ||f || =: B (m , ||f ||),
hh

1

1
2

√ddd1§4.6.2, Exercise 20. Now with i = −

α̂ + β̂ =
J
J
J

g (α̂ + iβ̂)
J
J
J

=
J
J
J

g (α̂ + iβ̂ − 2 ζ)
J
J
J

2m

i i i
k i

0

m

i i i

2

i =0

2 2

i =
Σ Σ

i
Σ
=0

m

i i
k i

i i
k i

2

≤

≤
I
J
L

J
J g (α̂ − 2 Re(ζ)) + ig (β̂ − 2 Im(ζ))

J
J

M
J
O

(e g e) ≤ (m +1) ||g || .
m

i
2 2

0i =
Σ

mThe last inequality follows fro

(w) ≤ m w for w ≥ 0. (3.1)
m

i
2

i
1

m

i
2

i =1i =
Σ Σ

- 9 -

Therefore,

α̂ + β̂ + g + . . . + g ≤ m +2 ||g || ≤ m +2 B =: B (m , ||f ||),2 2
0
2

m
2

1 2√ddddd √ddddd√dddddddddddddd

m h
≤
which means that no matter how large k is chosen, the lattice L contains a vector of lengt

B . Assume now that [αdd, βd, gd , . . . , gd] ∈ Z is a short vector in L , that is2 0 m
T m +3

m

2 2
0
2

m
2 m /2

2 3)αdd + βd + gd + . . . + gd ≤ 2 B =: B (m , ||f ||). (3.2√dddddddddddddd

i =0
m

i
iW Σe show that for sufficient large k , gd(x) = gd x is a scalar multiple of g . Let s (x),

t (x) ∈ Z[x] such that

ρ = resultant(g (x), gd(x)) = s (x)g (x) + t (x)gd(x).

m
H
Since the coefficients of s and t are minors of the Sylvester matrix [12], we get fro

adamard’s determinant inequality that

e t e ≤ ||g || ||gd|| ≤ (B B) =: B (m , ||f ||),

w

deg(gd) deg(g)
1 3

m
4

here e t e is the height (infinity norm) of the polynomial t . Therefore,

hhhhhhhh =: B (m , ||f ||, e ζ e).1e ζ e −
1

e t (ζ) e ≤ B
e ζ e −4

m

5

Moreover by (3.1) and (3.2)

2 e gd(ζ) e ≤
J
J
J

gd (2 ζ − α̂ − iβ̂)
J
J
J

+
J
J
J

gd α̂
J
J
J

+
J
J
J

gd β̂
J
J
J

m

i i
0

m

i i
i =0

m

i
k i

i i
i =0

k

i =
Σ Σ Σ

Σ √ddddd 3

m

i
0

≤
i =

e gd e + e αdd e + e βd e ≤ m +3 B .

Hence,

e ρ e = e t (ζ) gd(ζ) e ≤
2

m +3 B Bhhhhhhhhhhh =:
2

B (m , ||f ||, e ζ e)hhhhhhhhhhhhhh . (3.3)
6

k

√
k

3 5ddddd

If we choose k so large that the RHS of (3.3) is less than 1, then by the integrality of ρ we
get ρ = 0. Hence gd must divide g , and since g is irreducible, our claim is established.

From the lattice reduction algorithm and complex root approximation procedures, we can
tnow conclude that factoring f (x) can be done in polynomial-time. The powers ζ of the rooi

−k xma eζ are needed to precision 2 , wher

k = log (B (n −1, ||f ||, e ζ e)) = O (n + n log||f ||).

T

max 2 6
2

here are many simple ways of showing that this complex root approximation problem is in
e

c
polynomial-time. We refer to Sch"onhage’s monograph [81] for an exhaustive study on th
omputational complexity of the fundamental theorem of algebra. Once the α̂ and the β̂ are

k max 2 3 n −1

i i

nown with respect to k , we compute a short vector in L , L ,.. . , L until a factor g is
found. Notice that if we use the basic reduction algorithm, we will always get gd = ±g . Also

- 10 -

nthe reduction of L implicitly performs the reduction of L . Since g is irreducible, we cai +1 i

continue the process with another root of f /g .

The running time of this method is dominated by the lattice reductions. Let g be a fac-

r r m

r

r
y

c

tor of f with degree m = deg(g). It turns out that the Gramians of L can be explicitl

omputed. As in §2, we denote by d the Gramian spanned by the first i columns of L , 1 ≤i mr

i r≤ m . It can be shown [82], Lemma 6.1, that

d = A B − C where A = 1 + α̂ , B = 1 + β̂ , C = α̂ β̂ .
i −1

l l
0

i −1

l
2

i
l =0

i −1

l
2

i
l =0

i i i i
2

i
l =
Σ Σ Σ

N i maxot only does this formula show that log(d) = O (k), but it also provides a quick way to
lcompute the initial β = d / d , 1≤i ≤m +1. Incidentally, a similar formula yields the initiai i i −1

µi , j , which we give for the convenience to implementors:

,hhh(α̂ α̂ B + β̂ β̂ A − (α̂ β̂ + α̂ β̂)C)
1µ =
di , j

j
i −1 j −1 j −1 i −1 j −1 j −1 i −1 j −1 j −1 i −1 j −1

xm r
3

mar
-

m

1 ≤ j < i ≤ m +1. By the theorem in §2, the reduction of L now costs O (m k) arith

etic steps (including divisions with remainder) on integers of size O (k). Since m =max r rΣ
n 5 4 2, the total requirement is O (n + n log e f e) steps on integers of size O (n + n log e f e).

o
This root approximation algorithm is due to Sch"onhage [82], who also presents a modification
f the reduction algorithm itself to obtain the following theorem. An asymptotically slower

T

version is described in [55].

heorem (Sch"onhage): For any ε > 0, the irreducible factors of a primitive polynomial f ∈
Z[x], n = deg(f), can be found in

O (n + n (log e f e))

binary steps.

6+ε 4 2+ε

Once the α̂ and β̂ are known, the dependency on f is only in the bound B . Assume
k

i i 1

6 m 3 f
d
2 > B and the length of the short vector found in L is > B . Then no polynomial o

egree ≤ m and Euclidean norm ≤ B can have α as its root. The method therefore can be
u

1

sed to provide evidence that certain numbers are transcendental in the spirit of Ferguson and
n

fi
Forcade [24]. One can employ the algorithm also to find the defining equations for certai

elds. Yui and the author, for instance, use it to find equations for Hilbert class fields [54].
,

A
Those polynomials possess exactly one real root, which is easily computed. Finally, Kannan

. K. Lenstra, and Lovász [55] show that the bits of certain transcendental numbers are not
computationally unpredictable as defined by Micali and Blum [11].

Our algorithm essentially finds an integer relation among α , . . . , α or proves that nonem

-
p
below a given norm bound exists. It lies at hand to generalize this problem to a set of com
lex numbers γ , . . . , γ . The difficulty is to establish the non-existence of a norm-bounded

r
1 m

elationship, which is resolved in [36].

- 11 -

We now come to the multivariate case. We shall restrict ourselves to bivariate polyno-
.

T
mials. The full multivariate case is dealt with in [47]. Let fd(y , x) ∈ F [y , x], F a field

hen by transforming and squarefree decomposing the polynomial we can reduce the problem
.to factoring f (y , x) = x + f (y)x + . . . + f (y) ∈ F [y , x] with f (0, x) squarefreen

n −1
n −1

0
id

i , j
j

0
n

j =0i = ΣΣ -

t

We shall be more specific about that. Let f̃ (y , x) = f y x be a squarefree fac

or of fd(y , x), which can be found by multivariate GCD computations or Hensel lifting as
)described in [41]. We now choose a , b ∈ F such that f (y , x) = f̃ (y +bx +a , x) has deg (fx

f= deg(f̃) and f (0, x) is squarefree. The first condition implies that the leading coefficient o
f in x is a field element, by which we can divide the polynomial f . Notice that b has to
satisfy

f b ≠ 0,
i

Σ
+j =deg(f̃)

i , j
j

w
a
and a must not be the zero of a certain discriminant (cf [47],. Lemma 1). If g (y , x) is no
n irreducible factor of f , then g̃ (y , x) = g (y −bx −a , x) is one for f̃ . If the field F has at

F
least 2(n +d)d elements, suitable a and b can always be found. The only problem occurs if

= F , the field with q elements, with q being too small. Then we perform our transforma-q

q q pt pions in F , p a prime > max(n , d). The irreducible factors of f̃ (y , x) in F [y , x] actually

lie in F [y , x], due to the following useful lemma.q

1 r q 1 r ,
p
Lemma (von zur Gathen [28], Theorem 7.1): Let f (x ,. . . , x) ∈ F [x ,. . . , x] be irreducible

a prime > deg (f) for all 1≤i ≤r . Then f is irreducible in F [x ,. . . , x].x q 1 ri
p

.

A

We now describe our factorization algorithm [47], which works for arbitrary fields

lgorithm Bivariate Factoring

Input:iiiii f (y , x) ∈ F [y , x] monic in x such that f (0, x) is squarefree.

iiiiiii g (y , x) ∈ F [y , x] irreducible that divides f (y , x).:

S

Output

tep N (Newton iteration): We compute the approximation to a root of f in Fdd[[y]].

,Find an irreducible factor h (x) of f (0, x). Now there exists a root α = a y ∈ G [[y]]Σ j∞
j0j =

yw 0 xhere G = F [z]/(h (z)) and a = z mod h (z). Let n = deg (f), d = deg (f), l = deg(h).
.

L
The maximum needed precision for the root is k = R (2n −1)d /l H . By Newton iteration (cf

ipson [68], §IX.3.3) we find a = z , a ,.. . , a such that0 1 k

0 1 k
k k +1.

S

f (y , a +a y +. . .+a y) ≡ 0 mod y

tep M (Minimal polynomial determination): Compute powers α (y) ∈ G [y] of the root

k
(0)

k
(i)

.

F

approximation. α (y) ← 1

OR i ← 1 , . . . , l −1 DO α (y) ← (a +. . .+a y) α (y) mody .k
(i)

0 k
k

k
(i −1) k +1

.
A
FOR m ← l , . . . , n −1 DO Step L

t this point, the polynomial f is known to be irreducible.

- 12 -

.Step L: First compute the next power of the root approximation

α (y) ← (a +. . .+a y)α (y) mod y .

T

k
(m)

0 k
k

k
(m −1) k +1

he precision needed to find a minimal polynomial of degree m is κ ← R (n +m)d /l H . Try
to solve the equation

α (y) + g (y)α (y) ≡ 0 mod y (3.4)
m −1

i κ
(i) κ+1

0
κ
(m)

i =
Σ

Σ jf i i i 0≤ j ≤d i , jor polynomials g (y) ∈ F [y], deg(g) ≤ d . Let g (y) = g y and let

α (y) =:
I
J
L

a z
M
J
O
y ∈ F [z , y], a = 0 for j <0.κ

(i)

j =0

κ

λ=0

l −1

j ,λ
λ j

j ,λΣ Σ

FThen (3.4) leads to the linear system over

a + a g = 0 (3.5)
d

j −µ,λ i ,µ
0

m −1

µ=0

(m)

i =
λj , Σ Σ

i , j r
s
for j =0 , . . . , κ, λ=0 , . . . , l −1 in the variables g , i =0 , . . . , m −1, j =0 , . . . , d . If this linea
ystem has a solution, which then must be unique, we return the irreducible polynomial

g (x) ← x + g (y)x . `m

i =0

m −1

i
i

T

Σ
he proof that a solution to the system (3.4) corresponds to the minimal polynomial of α is

a
similar to the univariate case and can be found in [47], Theorem 1. In order to prove that the
lgorithm works in polynomial-time for F = Q, the size of the numerators and denominators

,
§
needs to be bounded. We will not present the fairly intricate analysis here but refer to [47]
6. For f (x , y) ∈ Z[y , x] the intermediate integers can be shown to be no more than

,O (n d log e f e) bits in length. Since we know that e g e ≤ 6 e f e =: B (n , d , e f e) [34]4 3 n +d
7√dd

.
F
Chapter III, §4, Lemma II, a randomized approach becomes asymptotically significantly faster

or we can choose a random prime p with 2B < p ≤ 4B . Then for sufficiently large n and7 7

p

o
d with high probability Steps N, M, and L, when carried out in the homomorphic image F

f Z, result in the polynomial g mod p , from which g is readily recovered. Although the
-

m
justification of the following theorem needs to be pieced together from the above, the transfor

ation to monicity [56], §4.6.2, Exercise 18, and probability estimates derived according to

T

[44], Theorem 4, we nonetheless have:

heorem: Let T (deg(f), log e f e) be a function dominating the binary running time for fac-

m
toring f ∈ Z[x], and let ω be the exponent for matrix multiplication (classically ω=3, at the

oment the best is ω=2.376 + o (1) [21]). Then for any ε>0 the irreducible factors of a
coefficient primitive polynomial f ∈ Z[y , x], δ = deg(f), can be found by randomization in

T (δ, δ +log e f e) + O (δ + δ (log e f e))

expected binary steps.

1+ε 2ω+2+ε 2ω+1 1+ε

- 13 -

Algorithm Bivariate Factoring generalizes to an arbitrary number of variables [47]. The
s

t
main advantage of this algorithm over other polynomial-time solutions [18], [64], and [39] i
hat it is field independent. Nonetheless, it is of little practical significance since combina-

f
H
tional explosion in the multivariate Hensel algorithm is unlikely to occur because of theory o

ilbert irreducibility as described in the survey [41] (see also §5). In conclusion to this sec-
tion, we can state that dense multivariate polynomials over the prime fields F and Q can bep

4

factored in polynomial-time.

. Factoring over Finite Fields

Historically, it should be added to our survey [41] and Knuth’s book [56], §4.6.2, that
t

d
the ‘‘Q -matrix’’ construction, which is the basis of Berlekamp’s algorithm, was firs
iscovered by Butler in 1954 [14]. A nice generalization of that construction can be found in

,
a
[35]. Using asymptotically fast polynomial arithmetic procedures, linear algebra algorithms
nd multipoint polynomial evaluation with Zassenhaus’s improvement [56], §4.6.2, Exercise

14, the running time of Berlekamp’s algorithm in F [x] isp

εO ω 1+ε 2+(n + log(p)n + max(p , n)(log n))

-deterministic arithmetic steps in F . The first two of the three terms correspond to the comp

plexity of Butler’s irreducibility test, but for that particular problem the distinct degree factori-
-

n
zation is asymptotically faster. The usage of randomization in order to get the expected run
ing time polynomial in log(p) is already considered a classic in the theory of randomized

-
j
algorithms. A beautifully simple approach is due to Cantor and Zassenhaus [17], §3, in con
unction with Rabin’s [76] analysis, or Ben-Or’s refinement [10]. Its expected arithmetic run-

ning time is O (log(p)n), but more importantly it requires only to store O (n) field elements2+ε

at a time.

For large p , the probabilistic algorithms are of course the only practical choice, although
,

i
it might not be clear which of several randomization schemes [76], [17], [61], [16], or [92]
s preferable.

As a consequence of our Bivariate Factoring algorithm, dense multivariate factoring over
,

d
finite fields also becomes a polynomial-time problem. The analysis can be found in [31]
ifferent algorithms are discussed in [18] and [65]. For large p , the algorithms are probabilis-

)
w
tic in the Las Vegas sense, but again irreducibility testing can be done polynomially in log(p

ithout random choices [51].

New progress towards the removal of random choices in the univariate case can be
reported. If one allows preprocessing depending on the field F only and with unlimitedp

2 h
t
computational resources, a so-called splitting set of cardinality ≤ 2 log p can be found, suc
hat the random choices in certain probabilistic algorithms can be restricted to this set [2],

,
§
[16]. A special problem is that of taking squareroots. Then the Tonelli-Shanks method [56]
4.6.2, Exercise 15, requires as its splitting set a single quadratic non-residue. This algorithm

h

- 14 -

as been generalized to k -th roots, the splitting set being d -th non-residues, d all primes
s

a
dividing both p −1 and k [5]. Assuming an extended Riemann hypothesis such splitting set
re deterministically constructible, in fact under such an assumption any polynomial f ∈ Z[x]

with Abelian Galois group can be factored mod p in (deg(f)log(p)) deterministic stepsO (1)

)O (1 ,
M
[38]. If p −1 is a ‘‘smooth’’ integer, i.e. p −1 only has prime factors of order (logp)

oenck’s algorithm [73] requires a primitive root and this requirement can even be shown to
be necessary to polynomial-time factoring [30].

Finally, the theory of elliptic curves also has made its entry into factoring in F [x].p

-
c
Schoof [79] uses this theory to show that squareroots of a mod p can be taken deterministi
ally in O (e a e (log p)) steps.√dddd 8

A somewhat different question is the generation of irreducible polynomials of degree n
ein F [x]. The probability that a randomly picked monic n -degree polynomial is irreduciblp

pin F [x] is asymptotically 1/n and Rabin’s probabilistic generation uses such an estimate
-

t
[76], Lemma 2. An improvement to this probability is reported in [15]. Recently, determinis
ic algorithms have been invented under hypothesis by von zur Gathen [29] and by Adleman

and H. Lenstra [4].

- 15 -

5. Multivariate Factoring

As we have discussed already in §3, factoring of dense multivariate polynomials over the
f

i
usual coefficient fields can be accomplished in polynomial-time. However, if the number o
ndeterminates is high, the dense representation causes exponential expression swell compared

sn +d M
O monomiald

o

to more compact representations such as sparse ones. Note that there are
I
L

f total degree ≤ d in n indeterminates, although in the sparse representation only a few may
.

A
be non-zero. Sparse lifting procedures strive to preserve the sparseness of input and output

dditional insight has been gained towards the well-known complication [41] arising during

a

this process.

) The leading coefficients problem: There are two new techniques for dealing with it. One is
to use Viry’s translation

f̃ (x , x ,. . . , x) = f (x , x +b x ,. . . , x +b x),

i

1 2 n 1 2 2 1 n n 1

1 f
t
where the b are random elements such that f̃ becomes monic in x [71]. The drawback o
his method is that deg (f̃) might be substantially larger than deg (f) making the univariatex x1 1

-
i
factoring step costly. Another method by the author [48] finds the leading coefficients by lift
ng from a single univariate factorization and appears to be the algorithm of choice within a

r
p
sparse lifting procedure. In the univariate case Wang’s [89] idea appears quite useful fo
redicting integer leading coefficients.

b) The extraneous factors problem: Controlling this problem by randomization and Hilbert

T

irreducibility has been theoretically justified. An effective theorem reads like that.

heorem (cf [45]. and [50]): Let f ∈ F [x ,. . . , x], F a perfect field, d = deg(f), R ⊂ F .1 n

i i i =1, . . . , r t

f

The factor degree pattern of f is a lexicographically ordered vector ((d , e)) such tha

or f = h , h ∈ F [x ,. . . , x],r
i
e

i 1 n1Π i =
i

i i i i j .

L

h irreducible, d = deg(h) ≥ 1, h /h ∈/ F , for 1 ≤ i ≠ j ≤ r

et a , a ,.. . , a , b ,.. . , b ∈ R be randomly selected elements,1 3 n 3 n

2 1 1 2 3 1 3 n 1 n .

Then

f = f (x + a , x , b x + a ,.. . , b x + a)

Prob(f and f have the same factor degree pattern) ≥ 1 −
card(R)

4d 2 + dhhhhhhhhhh .

A

2

d 3

lthough this and all other known effective theorems [37], [28] only reduce to bivariate
efactoring, in practice one maps directly to the univariate case by letting x = b x +a . Th2 2 1 2

-
l
similarity of the used evaluations with those of Viry’s can be taken advantage of for control
ing the leading coefficients problem as well. Again, the classical mapping

f (x , x ,. . . , x) → f (x , a ,.. . , a), a ∈ F ,1 2 n 1 2 n i

l

- 16 -

eads to a more efficient lifting procedure [48], although effective bounds for the probabilities

c

for getting extraneous factors are not known.

) The bad zeros problem: During the lifting process, the coefficients of monomials x .. .x
e

1
e

i
i1

.
c
need to be computed. In order to combat inefficiency, one should lift variable by variable, i.e
ompute the factorization of f (x ,. . . , x , a ,.. . , a) explicitly. Even then, in the presence

o
1 i i +1 n

f many factors, the problem of collecting like terms has exponential complexity [32]. We
l

t
refer to Lugiez’s lifting scheme [71] and to Luck’s heuristics [70] for suggestions to contro
his problem in practice. We note that the reference as ‘‘bad zeros problem’’ is somewhat a

misnomer chosen here for historial reasons.

Another newly discovered issue is that sparse polynomials can have dense factors [32].
For instance, the first factor in

(d + (1+x +. . .+x)) (x −1), d prime (5.1)
n

i
1

n

i i
d −1

i =1
Π
i =

Π
ni ns irreducible over Q and contains d non-zero monomials, whereas the product has t < 4

snon-zero monomials. Since d > t , the number of monomials in the first factor grown 1/2 log d

O

2

(1)by more than t . Therefore, any sparse lifting procedure will need more than polynomial
running time with respect to the input size.

Furthermore, consider the Vandermonde determinant

.

. . .

x

...

x

x
H
J
J
J
J
J
P

) = (x − x)

.. .

.

det(

R
J
J
J
J
J
Q 1

...

1

1

x

...

x

x

x

...

x

x

..
n

2

1

n
2

2
2

1
2

n
n −1

n
2

−1

n
1

−1

i > j
i jΠ

e
d
If the corresponding Vandermonde matrix were multiplied with a unimodular matrix, th
eterminant of the resulting matrix would be inaccessible to a sparse factorization procedure

s
(
by virtue of its n ! non-zero monomials. In general, symbolic objects represented by formula
cf. (5.1)) or determinants cannot be dealt with by sparse techniques alone.

a
s

A computational model for evaluating polynomials and rational functions is that by
traight-line program. In order to deal with the issue of denseness we have adopted straight-

r
line programs as a representation for polynomials. Let us give a small example for this
epresentation, as it would appear in our system [25].

;(c 1) ma t r i x ([1 , x12 , x13] , [x21 , 2 , x23] , [0 , x32 , 3])

- 17 -

[1 x12 x13]

][

](d1) [x21 2 x23

[]

][0 x32 3

t

a

The next instruction converts the determinant of d1 to straight-line forma

nd then optimizes the resulting program

;

7

(c 2) s t r a i gh t op t 3 (po l y t o s t r a i gh t (’ d e t e rmi n a n t (%)))

(26%) i n s t r u c t i on s s a v e d .

v

v1 : = 0

2 : = 1

2

v

v3 : = x1

4 : = x13

1

v

v5 : = x2

6 : = 2

3

v

v7 : = x2

8 : = x32

v

v9 : = 3

10 : = v3 * v5

0

v

v11 : = v6 – v1

12 : = v4 * v5

2

v

v13 : = v7 – v1

14 : = v13 / v11

v

v15 : = v14 * v3

16 : = v4 – v15

8

v

v17 : = v14 * v

18 : = v9 – v17

1

T

v19 : = v18 * v1

he above 19 instruction program computes the determinant of d1 in the variable v19. It

c
should be pointed out that in the internal representation the variables are pointers to the
orresponding instructions as in a directed acyclic graph.

-
m

It is not obvious at all that the GCD and factorization problems are feasible for polyno
ials in straight-line representation. To prove our point, consider a seemingly easier opera-

tion, that of computing partial derivatives. Letting

f (x ,. . . , x , y ,. . . , y) = (x y)
n

i , j j
1

n

j =1
1,1 n ,n 1 n

i =
Π Σ

Valiant [87] observes that

∂y .. .∂y
∂ fhhhhhhhhh = permanent(

R
J
J
J
Q x

...

x

. . .

. . .

x

...

x H
J
J
J
P

).

1,n

n

1,1

n ,1

n

n ,
n1

- 18 -

-Clearly, f can be computed by a straight-line program of length O (n), whereas the computa2

o
s
tion of the permanent is by Valiant’s results #P-hard. Therefore it is believed that n
traight-line program of length n exists that computes the permanent, and hence the inter-

m

O (1)

ediate expression swell for iterated partial derivatives is inherent even for the straight-line
representation.

Aside from the just mentioned negative result, several efficient straight-line program
.

M
transformations have been developed in the context of computational algebraic complexity

ost notably are the method by Strassen [83] for eliminating divisions from computations for
,

a
polynomials, the method by Baur and Strassen [9] for computing all first partial derivatives
nd the probabilistic equivalence test of straight-line programs [40]. One of the first results

-
t
for polynomials represented by straight-line programs is the efficient computation of their fac
or degree pattern by von zur Gathen [28].

We now give the I/O specifications for the two main algorithms connected to straight-

A

line factorization [50].

lgorithm Factorization

Input:iiiii f ∈ F [x ,. . . , x], F a field, given by a straight-line program P of length l , a bound
d

1 n

≥ deg(f), and an allowed failure probability ε << 1.

,iiiiiii Either ‘‘failure’’, that with probability < ε, or e ≥ 1 and irreducible h ∈ F [x ,. . .:Output i i 1

xn], 1 ≤ i ≤ r , given by a straight-line program Q of length

len(Q) = O (d l + d)2 6

i
r

i
e

1i =
is Πuch that with probability > 1 – ε, f = h . In case p = char(F) divides any e , that is

e = p ed with ed not divisible by p , we return ed in place of e and Q will compute h .i
ê

i i i i i
p i

A

i
ê

lgorithm Sparse Conversion

Input:iiiii f ∈ F [x ,. . . , x] given by a straight-line program P of length l . Furthermore, a

0

1 n

1≤i ≤n xi
bound d ≥ max {deg (f)}, the allowed failure probability ε << 1, and an upper bound t

≤ (d +1) for the number of monomials permitted in the answer.0
n

Output:iiiiiii Either ‘‘failure’’ (that with probability < ε), or the representation of a sparse polyno-
-

m
mial with no more than t monomials, or the message ‘‘ f has (probably) more than t mono

ials.’’ The latter two outputs are correct with probability > 1 – ε.

s
a

Both algorithms work over an abstract field and are randomized. Probabilistic choice
re interpreted as picking random elements from a sufficiently large subset of the field. A

l
a
major theoretical fact is that both algorithms have polynomial complexity in a certain natura
nd precise sense [50]. In particular, for F = Q and F = F the algorithms have polynomialq

lrunning time in bit steps. We therefore get the following theorem, which resolves al

- 19 -

T

problems with sparse lifting mentioned above.

heorem: If in addition to the input parameters of the Factorization algorithm we are given t
t> 0, for F = Q or F = F we can find in polynomially many binary steps and random biq

choices in

l , d , log(
ε
h1h), el−size(P), cc−size(f), and t

o
m
sparse polynomials that with probability > 1 – ε constitute all irreducible factors of f with n

ore than t monomials. Here el−size(P) is the binary size of the scalars in P , and
e

c
cc−size(f) is the binary size of the coefficients of f , which in the case of the rationals ar
onsidered with a common denominator.

We mention that the degree bound d can be probabilistically determined [52], §5, and
f

t
that d can be exponential in the length of the input programs. As it turns out, the length o
he shortest straight-line program for a factor can then become exponential in the input length

e
f
(or the input degree in binary) [69]. We conclude this section with a non-trivial straight-lin
actoring example, executed on our system.

,(c 1) p : ’ d e t e rmi n a n t (ma t r i x ([w+x+y+z , a+b+c , u+v , 0]

[(a –x–y– z) ˆ 2 , (u–b– c) ˆ 2 , (d–w) ˆ 2 , 0] ,

,

[

[(a+b+c+d) ˆ 3 , (x+y+z) ˆ 3 , (u+v) ˆ 3 , 0]

(u+z) ˆ 5 , (x+d) ˆ 5 , (a+w) ˆ 5 , x ˆ 2+y ˆ 2+z ˆ 2])) ;

T ime = 250 . 0 ms e c s .

[z + y + x + w c + b + a v + u 0]

]

[

[

2 2 2]

]

(

[(– z – y – x + a) (u – c – b) (d – w) 0

d1) d e t e rmi n a n t ([])

[

[3 3 3]

(d + c + b + a) (z + y + x) (v + u) 0]

]

[

[

5 5 5 2 2 2]

]

(

[(z + u) (x + d) (w + a) z + y + x

c 2) s f : s t r a i gh t f a c t o r (po l y t o s t r a i gh t (p) , 1000) $

D

T ime = 37100 . 0 ms e c s .

etermine length of straight-line program for first factor

T

(c 3) s t r a i gh t l e ng t h (s f [1] [1]) ;

ime = 100 . 0 ms e c s .

(d3) 11565

- 20 -

rOptimize the straight-line program for first facto

(c 4) s f o : s t r a i gh t op t 3 (s f [1] [1]) $

T

1811 (15%) i n s t r u c t i on s s a v e d .

ime = 110000 . 0 ms e c s .

Convert first factor to sparse

(c 5) s t r a i gh t t o s p a r s e (s f o , 10 , t e rms =3) ;

T ime = 111000 . 0 ms e c s .

2 2 2

C

(d5) z + y + x

onvert second factor to sparse unless it has more than 3 terms

T

(c 6) s t r a i gh t t o s p a r s e (s f [2] [1] , 10 , t e rms =3) ;

e rm bound e x c e e d e d .

.T ime = 28900 . 0 ms e c s

(d6) f a l s e

)Use sparse lifting algorithm to obtain factorization (takes 1.7 hours

(c 7) f a c t o r (d1) $

.

6

T ime = 6120000 . 0 ms e c

. Conclusion

Uni- and multivariate polynomial factorization is not only a classical problem, but

m
efficient procedures also have important applications. An also classical one is that for deter-

ining the Galois group of a polynomial [60], [72], [13], etc. Multivariate polynomial fac-

l
torization can help speed up the ubiquitous Gr"obner basis construction [33], and some of the
argest test cases have been successfully factored in this setting. Factorization over algebraic

t
extensions is a key subroutine in the Cylindrical Algebraic Decomposition algorithm [7], and
he references there, in integration in closed form [86], and takes part in Chou’s method for

geometrical theorem proving [19].

The question arises what major unresolved problems in the subject of polynomial factori-

a
zation remain. One theoretical question is to remove the necessity of random choices from
ny of the problems known to lie within probabilistic polynomial-time, say factorization of

l
c
univariate polynomials over large finite fields. Another problem is to investigate the paralle
omplexity of polynomial factorization, say for the NC model [20]. Kronecker’s reduction

l
fi
from algebraic number coefficients [85], [59], Berlekamp’s factorization algorithm over smal

nite fields [27], Kaltofen’s deterministic Hilbert irreducibility theorem [47], §7, and
g

k
Weinberger’s irreducibility test for Q[x] [90] all lead to NC solutions by simply applyin
nown NC methods for linear algebra problems. It is open whether factoring in Q[x] or

irreducibility testing in F [x], p large, or in Q[x , y] can be accomplished in NC. We remarkp

that testing a rational dense multivariate polynomial for absolute irreducibility can be shown
to be in NC [44].

- 21 -

In connection with the Factorization algorithm presented in §5, we mention an open
s

e
question. Assume that a straight-line program computes a polynomial whose degree i
xponential in the length of the program. Do then at least the factors of polynomially

n
w
bounded degree have feasible straight-line computations? A positive answer to this questio

ould show that testing a polynomial for zero in a suitable decision-tree model is

m
polynomial-time related to computing that polynomial. In general the theory of straight-line

anipulation of polynomials may be extendable in part to unbounded input degrees, but even

R

for the elimination of divisions problem [83] the answer is not known.

eferences

1. Abbott, J. A., Bradford, R. J., and Davenport, J. H., ‘‘The Bath algebraic number package,’’ Proc. 1986

2

ACM Symp. Symbolic Algebraic Comp., pp. 250-253, 1986.

. Adleman, L. M., ‘‘Two theorems on random polynomial time,’’ Proc. 19th IEEE Symp. Foundations

3

Comp. Sci., pp. 75-83, 1978.

. Adleman, L. M., ‘‘On breaking generalized knapsack public key crypto systems,’’ Proc. 15th Annual ACM

4

Symp. Theory Comp., pp. 402-412, 1983.

. Adleman, L. M. and Lenstra, H. W., ‘‘Finding irreducible polynomials over finite fields,’’ Proc. 18th ACM

5

Symp. Theory Comp., pp. 350-355, 1986.

. Adleman, L. M., Manders, K., and Miller, G. L., ‘‘On taking roots in finite fields,’’ Proc. 18th IEEE

6

Symp. Foundations Comp. Sci., pp. 175-178, 1977.

. Adleman, L. M. and Odlyzko, A. M., ‘‘Irreducibility testing and factorization of polynomials,’’ Math.

7

Comp., vol. 41, pp. 699-709, 1983.

. Arnon, D. S., Collins, G. E., and McCallum, S., ‘‘Cylindrical algebraic decomposition I: The basic algo-

8

rithm,’’ SIAM J. Comp., vol. 13, pp. 865-877, 1984.

. Babai, L., ‘‘On Lovász’ lattice reduction and the nearest lattice point problem,’’ Combinatorica, vol. 6,

9

pp. 1-13, 1986.

. Baur, W. and Strassen, V., ‘‘The complexity of partial derivatives,’’ Theoretical Comp. Sci., vol. 22, pp.

1

317-330, 1983.

0. Ben-Or, M., ‘‘Probabilistic algorithms in finite fields,’’ Proc. 22nd IEEE Symp. Foundations Comp. Sci.,

1

pp. 394-398, 1981.

1. Blum, M. and Micali, S., ‘‘How to generate cryptographically strong sequences of pseudo-random bits,’’

1

SIAM J. Comp., vol. 13, pp. 850-864, 1984.

2. Brown, W. S. and Traub, J. F., ‘‘On Euclid’s algorithm and the theory of subresultants,’’ J. ACM, vol. 18,

1

pp. 505-514, 1971.

3. Bruen, A. A., Jensen, C. U., and Yui, N., ‘‘Polynomials with Frobenius groups of prime degree as Galois

1

groups II,’’ J. Number Theory, vol. 24, pp. 305-359, 1986.

4. Butler, M. C. R., ‘‘On the reducibility of polynomials over a finite field,’’ Quart. J. Math., Oxford Ser.
(2), vol. 5, pp. 102-107, 1954.

- 22 -

e15. Calmet, J. and Loos, R., ‘‘An improvement of Rabin’s probabilistic algorithm for generating irreducibl
polynomials over GF(p),’’ Inf. Proc. Lett., vol. 11, pp. 94-95, 1980.

.16. Camion, P., ‘‘A deterministic algorithm for factorizing polynomials of ,’’ Ann. Discrete Math., volF]

1

17, pp. 149-157, 1983.
p [x

7. Cantor, D. G. and Zassenhaus, H., ‘‘A new algorithm for factoring polynomials over finite fields,’’ Math.

1

Comp., vol. 36, pp. 587-592, 1981.

8. Chistov, A. L. and Grigoryev, D. Yu., ‘‘Polynomial-time factoring of multivariable polynomials over a

1

global field,’’ LOMI preprint E-5-82, Steklov Institute, Leningrad, 1982.

9. Chou, S.-C., ‘‘Proving elementary geometry theorems using Wu’s algorithm,’’ in Theorem Proving: After
,

P
25 Years, ed. Bledsoe, W. W. Loveland, D. W., Contemporary Mathematics, vol. 29, pp. 243-286, AMS

rovidence, RI, 1984.

20. Cook, S. A., ‘‘A taxonomy of problems with fast parallel algorithms,’’ Inf. Control, vol. 64, pp. 2-22,

2

1985.

1. Coppersmith, D. and Winograd, S., ‘‘Matrix multiplication via arithmetic progressions,’’ Proc. 19th

2

Annual ACM Symp. Theory Comp., pp. 1-6, 1987.

2. Dieter, U., ‘‘How to calculate the shortest vector in a lattice,’’ Math. Comp., vol. 29, pp. 827-833, 1975.

.23. Duval, D., ‘‘Une méthode géométrique de factorisation des polynomes en deux indéterminées,’’ Tech
Report, Institut Fourier, Université de Grenoble I, 1983.

,24. Ferguson, R. P. and Forcade, R. W., ‘‘Multidimensional Euclidean algorithms,’’ J. reine angew. Math.
vol. 334, pp. 171-181, 1982.

25. Freeman, T. S., Imirzian, G., Kaltofen, E., and Yagati, Lakshman, ‘‘DAGWOOD: A system for manipulat-
-

i
ing polynomials given by straight-line programs,’’ Tech. Report 86-15, Dept. Comput. Sci., RPI. Prelim
nary version in Proc. 1986 ACM Symp. Symbolic Algebraic Comp., pp. 169-175, 1986.

,26. Fr"ohlich, A. and Shepherdson, J. C., ‘‘Effective procedures in field theory,’’ Phil. Trans. Roy. Soc., Ser. A
vol. 248, pp. 407-432, 1955/56.

27. Gathen, J. von zur, ‘‘Parallel algorithms for algebraic problems,’’ SIAM J. Comp., vol. 13, pp. 802-824,

2

1984.

8. Gathen, J. von zur, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-

2

264, 1985.

9. Gathen, J. von zur, ‘‘Irreducible polynomials over finite fields,’’ Manuscript, 1986.

-30. Gathen, J. von zur, ‘‘Factoring polynomials and primitive elements for special primes,’’ Theoretical Com
put. Sci., vol. 52, pp. 77-89, 1987.

31. Gathen, J. von zur and Kaltofen, E., ‘‘Factoring multivariate polynomials over finite fields,’’ Math. Comp.,

3

vol. 45, pp. 251-261, 1985.

2. Gathen, J. von zur and Kaltofen, E., ‘‘Factoring sparse multivariate polynomials,’’ J. Comp. System Sci.,

3

vol. 31, pp. 265-287, 1985.

3. Gebauer, R., Private communication, April 1986.

.34. Gelfond, A. O., Transcendental and Algebraic Numbers, Dover Publ., New York, 1960

- 23 -

-35. Gunji, H. and Arnon, D., ‘‘On polynomial factorization over finite fields,’’ Math. Comp., vol. 36, pp. 281
287, 1981.

36. Hastad, J., Just, B., Lagarias, J. C., and Schnorr, C. P., ‘‘Polynomial time algorithms for finding integer

3

relations among reals,’’ Proc. STACS ’86, Springer Lec. Notes Comp. Sci., vol. 210, pp. 105-118, 1986.

7. Heintz, J. and Sieveking, M., ‘‘Absolute primality of polynomials is decidable in random polynomial-time

3

in the number of variables,’’ Proc. ICALP ’81, Springer Lec. Notes Comp. Sci., vol. 115, pp. 16-28, 1981.

8. Huang, M.-D. A., ‘‘Riemann hypothesis and finding roots over finite fields,’’ Proc. 17th ACM Symp.

3

Theory Comp., pp. 121-130, 1985.

9. Hulst, M.-P. van der and Lenstra, A. K., ‘‘Factorization of polynomials by transcendental evaluation,’’

4

Proc. EUROCAL ’85, Vol. 2, Springer Lec. Notes Comp. Sci., vol. 204, pp. 138-145, 1985.

0. Ibarra, O. H. and Moran, S., ‘‘Probabilistic algorithms for deciding equivalence of straight-line programs,’’

4

J. ACM, vol. 30, pp. 217-228, 1983.

1. Kaltofen, E., ‘‘Polynomial factorization,’’ in Computer Algebra, 2nd ed., ed. B. Buchberger et al, pp. 95-

4

113, Springer Verlag, Vienna, 1982.

2. Kaltofen, E., ‘‘A polynomial reduction from multivariate to bivariate integral polynomial factorization,’’

4

Proc. 14th Annual ACM Symp. Theory Comp., pp. 261-266, 1982.

3. Kaltofen, E., ‘‘On the complexity of finding short vectors in integer lattices,’’ Proc. EUROCAL ’83,

4

Springer Lec. Notes Comp. Sci., vol. 162, pp. 236-244, 1983.

4. Kaltofen, E., ‘‘Fast parallel absolute irreducibility testing,’’ J. Symbolic Computation, vol. 1, pp. 57-67,

4

1985.

5. Kaltofen, E., ‘‘Effective Hilbert irreducibility,’’ Information and Control, vol. 66, pp. 123-137, 1985.

’46. Kaltofen, E., ‘‘Computing with polynomials given by straight-line programs II; Sparse factorization,’
Proc. 26th IEEE Symp. Foundations Comp. Sci., pp. 451-458, 1985.

-47. Kaltofen, E., ‘‘Polynomial-time reductions from multivariate to bi- and univariate integral polynomial fac
torization,’’ SIAM J. Comp., vol. 14, pp. 469-489, 1985.

.48. Kaltofen, E., ‘‘Sparse Hensel lifting,’’ Proc. EUROCAL ’85, Vol. 2, Springer Lec. Notes Comp. Sci., vol
204, pp. 4-17, 1985.

49. Kaltofen, E., ‘‘Uniform closure properties of p-computable functions,’’ Proc. 18th ACM Symp. Theory

5

Comp., pp. 330-337, 1986.

0. Kaltofen, E., ‘‘Factorization of polynomials given by straight-line programs,’’ Math. Sci. Research Inst.

C
Preprint, vol. 02018-86, Berkeley, CA, 1986. To appear in: ‘‘Randomness in Computation,’’ Advances in

omputing Research, S. Micali ed., JAI Press Inc., Greenwich, CT, January 1987.

c51. Kaltofen, E., ‘‘Deterministic irreducibility testing of polynomials over large finite fields,’’ J. Symboli
Comp., vol. 3, pp. 77-82, 1987.

52. Kaltofen, E., ‘‘Greatest common divisors of polynomials given by straight-line programs,’’ J. ACM, vol.

5

35, no. 1, pp. 231-264, 1988.

3. Kaltofen, E., Musser, D. R., and Saunders, B. D., ‘‘A generalized class of polynomials that are hard to

5

factor,’’ SIAM J. Comp., vol. 12, pp. 473-485, 1983.

4. Kaltofen, E. and Yui, N., ‘‘Explicit construction of the Hilbert class field of imaginary quadratic fields
-with class number 7 and 11,’’ Proc. EUROSAM ’84, Springer Lec. Notes Comp. Sci., vol. 174, pp. 310

- 24 -

5

320, 1984.

5. Kannan, R., Lenstra, A. K., and Lovász, L., ‘‘Polynomial factorization and nonrandomness of bits of alge-

5

braic and some transcendental numbers,’’ Proc. 16th Annual Symp. Theory Comp., pp. 191-200, 1984.

6. Knuth, D. E., The Art of Programming, vol. 2, Semi-Numerical Algorithms, ed. 2, Addison Wesley, Read-

5

ing, MA, 1981.

7. Lagarias, J. C., ‘‘The computational complexity of simultaneous Diophantine approximation problems,’’

5

SIAM J. Comp., vol. 14, pp. 196-209, 1985.

8. Lagarias, J. C. and Odlyzko, A. M., ‘‘Solving low-density subset sum problems,’’ J. ACM, vol. 32, pp.

5

229-246, 1985.

9. Landau, S., ‘‘Factoring polynomials over algebraic number fields,’’ SIAM J. Comp., vol. 14, pp. 184-195,

6

1985.

0. Landau, S. and Miller, G. L., ‘‘Sovability by radicals,’’ J. Comp. System Sci., vol. 30, pp. 179-208, 1985.

.61. Lazard, D., ‘‘On polynomial factorization,’’ Proc. EUROCAM ’82, Springer Lec. Notes Comp. Sci., vol
144, pp. 126-134, 1982.

62. Lenstra, A. K., ‘‘Lattices and factorization of polynomials over algebraic number fields,’’ Proc. EURO-

6

CAM ’82, Springer Lec. Notes Comp. Sci., vol. 144, pp. 32-39, 1982.

3. Lenstra, A. K., ‘‘Factoring polynomials over algebraic number fields,’’ Proc. EUROCAL ’83, Springer

6

Lec. Notes Comp. Sci., vol. 162, pp. 245-254, 1983.

4. Lenstra, A. K., ‘‘Factoring multivariate integral polynomials,’’ Theoretical Comp. Sci., vol. 34, pp. 207-

6

213, 1984.

5. Lenstra, A. K., ‘‘Factoring multivariate polynomials over finite fields,’’ J. Comput. System Sci., vol. 30,

6

pp. 235-248, 1985.

6. Lenstra, A. K., ‘‘Factoring multivariate polynomials over algebraic number fields,’’ SIAM J. Comp., vol.

6

16, pp. 591-598, 1987.

7. Lenstra, A. K., Jr., H. W. Lenstra, and Lovász, L., ‘‘Factoring polynomials with rational coefficients,’’

6

Math. Ann., vol. 261, pp. 515-534, 1982.

8. Lipson, J., Elements of Algebra and Algebraic Computing, Addison-Wesley Publ., Reading, Mass., 1981.

M69. Lipton, R. and Stockmeyer, L., ‘‘Evaluations of polynomials with superpreconditioning,’’ Proc. 8th AC
Symp. Theory Comp., pp. 174-180, 1976.

70. Lucks, M., ‘‘A fast implementation of polynomial factorization,’’ Proc. 1986 ACM Symp. Symbolic Alge-

7

braic Comp., pp. 228-232, 1986.

1. Lugiez, D., ‘‘A new lifting process for multivariate polynomial factorization,’’ Proc. EUROSAM ’84,

7

Springer Lec. Notes Comp. Sci., vol. 174, pp. 297-309, 1984.

2. McKay, J., ‘‘Some remarks on computing Galois groups,’’ SIAM J. Comp., vol. 8, pp. 344-347, 1979.

.73. Moenck, R. T., ‘‘On the efficiency of algorithms for polynomial factoring,’’ Math. Comp., vol. 31, pp
235-250, 1977.

74. Monagan, M. B., ‘‘A heuristic irreducibility test for univariate polynomials,’’ J. Symbolic Comp., vol. sub-
mitted, 1986.

- 25 -

t75. Odlyzko, A. M., ‘‘Cryptoanalytic attacks on the multiplicative knapsack cryptosystem and on Shamir’s fas
signature scheme,’’ IEEE Trans. Inf Theory, vol. IT-30/4, pp. 584-601, 1984.

.

7

76. Rabin, M. O., ‘‘Probabilistic algorithms in finite fields,’’ SIAM J. Comp., vol. 9, pp. 273-280, 1980

7. Schnorr, C. P., ‘‘A more efficient approach for lattice basis reduction,’’ Proc. ICALP ’86, Springer Lec.

7

Notes Comp. Sci., vol. 226, pp. 359-369, 1986.

8. Schnorr, C. P., ‘‘A hierarchy of polynomial time basis reduction algorithms,’’ in Theory of Algebra, ed. L.
,

A
Lovász and E. Semerédi, Coll. Math. Soc. Janos Bolyai, vol. 44, pp. 375-386, North Holland Publ.

msterdam, 1986.

79. Schoof, R. J., ‘‘Elliptic curves over finite fields and the computation of square roots mod p,’’ Math.

8

Comp., vol. 44, pp. 483-494, 1985.

0. Schwartz, J. T., ‘‘Fast probabilistic algorithms for verification of polynomial identities,’’ J. ACM, vol. 27,

8

pp. 701-717, 1980.

1. Sch"onhage, A., ‘‘The fundamental theorem of algebra in terms of computational complexity,’’ Tech.

8

Report, Univ. T"ubingen, 1982.

2. Sch"onhage, A., ‘‘Factorization of univariate integer polynomials by diophantine approximation and an
.

4
improved basis reduction algorithm,’’ Proc. ICALP ’84, Springer Lec. Notes Comp. Sci., vol. 172, pp
36-447, 1984.

83. Strassen, V., ‘‘Vermeidung von Divisionen,’’ J. reine u. angew. Math., vol. 264, pp. 182-202, 1973. (In

8

German).

4. Strassen, V., ‘‘Die Berechnungskomplexit"at von elementarsymmetrischen Funktionen und von

8

Interpolationskoeffizienten,’’ Numer. Math., vol. 20, pp. 238-251, 1973. (In German).

5. Trager, B. M., ‘‘Algebraic factoring and rational function integration,’’ Proc. 1976 ACM Symp. Symbolic

8

Algebraic Comp., pp. 219-228, 1976.

6. Trager, B. M., ‘‘Integration of algebraic functions,’’ Ph.D. Thesis, MIT, 1984.

,87. Valiant, L., ‘‘Reducibility by algebraic projections,’’ L’Enseignement mathématique, vol. 28, pp. 253-268
1982.

88. Waerden, B. L. van der, Modern Algebra, F. Ungar Publ. Co., New York, 1953.

L89. Wang, P. S., ‘‘Early detection of true factors in univariate polynomial factorization,’’ Proc. EUROCA
’83, Springer Lec. Notes Comp. Sci., vol. 162, pp. 225-235, 1983.

,90. Weinberger, P. J., ‘‘Finding the number of factors of a polynomial,’’ J. Algorithms, vol. 5, pp. 180-186
1984.

91. Weinberger, P. J. and Rothschild, L. P., ‘‘Factoring polynomials over algebraic number fields,’’ ACM

9

Trans. Math. Software, vol. 2, pp. 335-350, 1976.

2. Yokoyama, K. and Takeshima, T., ‘‘Factorization of univariate polynomials over finite fields,’’

9

Manuscript, 1986.

3. Zassenhaus, H., ‘‘Polynomial time factoring of integral polynomials,’’ SIGSAM Bulletin, vol. 15, no. 2, pp.

9

6-7, 1981.

4. Zippel, R. E., ‘‘Probabilistic algorithms for sparse polynomials,’’ Proc. EUROSAM ’79, Springer Lec.
Notes Comp. Sci., vol. 72, pp. 216-226, 1979.

- 26 -

c95. Zippel, R. E., ‘‘Newton’s iteration and the sparse Hensel algorithm,’’ Proc. ’81 ACM Symp. Symboli
Algebraic Comp., pp. 68-72, 1981.

