Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems

ERICH KALTOFEN

Rensselaer Polytechnic Institute Department of Computer Science Troy, New York, USA

Outline

• object representation

• black box representations for sparse matrices

• Wiedemann's algorithm

• homogeneous linear systems

• Coppersmith's blocking

- my probabilistic analysis
- fast solution of singular block-Toeplitz systems

• our implementation efforts in DSC

- timings for test cases (with A. Lobo [DISCO '93])
- the large sparse linear system challenge

What is a sparse matrix?

• matrices with "few" non-zero entries

- $\circ\,$ a band matrix from a finite element method
- a matrix over GF(2) from integer factoring by the NFS: 52250×50001 with 1095 532 entries ≠ 0 (≈ 21/row)
- matrices with special structure
 - the Sylvester matrix corresponding to a polynomial resultant

$$R = \begin{bmatrix} a_{N} & a_{N-1} & \dots & a_{0} & 0 \\ a_{N} & \dots & a_{1} & a_{0} & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots \\ a_{N} & \dots & a_{0} \\ b_{N} & b_{N-1} & \dots & b_{0} \\ b_{N} & \dots & b_{1} & b_{0} & 0 \\ 0 & \ddots & \ddots & \ddots \\ 0 & & b_{N} & \dots & b_{0} \end{bmatrix}$$

• a "black box" matrix

an efficient program with the specifications

e.g., for the Sylvester matrix $R, R \cdot b$ costs

 $O(N \log N \log \log N)$

arithmetic operations using fast polynomial multiplication

Symbolic objects given by black box representation are known for many problems:

- symbolic determinants using Gaussian elimination
- the polynomial remainder sequence of $f_0(x)$ and $f_1(x)$ using continued fraction approximations

$$\{q_i(x)\}_{i\geq 2}$$
 such that $f_i(x) = f_{i-2}(x) - q_i(x)f_{i-1}(x)$

•
$$B^{-1} = P^{-1}U^{-1}L^{-1}$$
, the LUP factorization of $B \in \mathsf{K}^{N \times N}$

• streams for infinite objects, such as a program for the i-th order coefficient of a power series

Linear system solution with a black box matrix

Given a black box

compute $w \neq \mathbf{0}$ such that $Bw = \mathbf{0}$ "efficiently."

D. Wiedemann (1986) constructs a Las-Vegas-randomized algorithm that computes w in at most

$$3N$$
 " $B \cdot b$ steps"

and

 $O(N^2)$ additional arithmetic operations in K.

The algorithm needs O(N) space.

Idea for WIEDEMANN'S algorithm

 $B \in \mathsf{K}^{N \times N}, \, \mathsf{K}$ a finite field $f^B(\lambda) = c'_0 + c'_1 \lambda + \dots + c_{M'} \lambda^{M'} \in \mathsf{K}[\lambda]$ minimum polynomial of *B*: $\forall u, v \in \mathsf{K}^N \colon \forall j \ge 0 \colon u^{\mathrm{tr}} B^j f^B(B) v = 0$ $c'_{0} \underbrace{u^{\mathrm{tr}} B^{j} v}_{a_{j}} + c'_{1} \underbrace{u^{\mathrm{tr}} B^{j+1} v}_{a_{j+1}} + \dots + c'_{M'} \underbrace{u^{\mathrm{tr}} B^{j+M'} v}_{a_{j+M'}} = 0$ $\{a_0, a_1, a_2, \ldots\}$ is generated by a linear recursion

Theorem [Wiedemann 1986]: For random $u, v \in \mathsf{K}^N$, a linear generator for $\{a_1, a_1, a_2, \ldots\}$ is one for $\{I, B, B^2, \ldots\}$.

that is, $f^B(\lambda)$ divides $c_0 + c_1\lambda + \cdots + c_M\lambda^M$

One may compute the c_j from the a_j by the BERLEKAMP/MASSEY algorithm, or by solving a homogenous linear Toeplitz system:

$$\begin{bmatrix} a_M & \dots & a_1 & a_0 \\ a_{M+1} & a_M & a_2 & a_1 \\ \vdots & \ddots & \vdots \\ a_{2M-1} & \dots & & a_{M-1} \end{bmatrix} \underbrace{\begin{bmatrix} c_M \\ c_{M-1} \\ \vdots \\ c_0 \end{bmatrix}}_{\neq 0} = \mathbf{0}$$

for any $M \ge \deg(f^B)$, in particular for M = N.

Algorithm Homogeneous Wiedemann

Input: $B \in \mathsf{K}^{N \times N}$ singular Output: $w \neq \mathbf{0}$ such that $Bw = \mathbf{0}$

Step W1: Pick random
$$u, v \in \mathsf{K}^N$$
; $b \leftarrow Bv$;
for $i \leftarrow 0$ to $2N - 1$ do $a_i \leftarrow u^{\operatorname{tr}}B^ib$. $2N \ "B \cdot y"$ steps
 $O(N^2)$ arithm. op's

Step W2: Compute a linear recurrence generator for $\{a_i\}$, $c_L \lambda^L + c_{L+1} \lambda^{L+1} + \dots + c_D \lambda^D$, $L \ge 0, c_L \ne 0$. $O(N (\log N)^2 \log \log N)$ arithm. op's

Step W3: $\widehat{w} \leftarrow c_L v + c_{L+1} B v + \dots + c_D B^{D-L} v;$ (With high probability $\widehat{w} \neq 0$ and $B^{L+1} \widehat{w} = 0$) Compute first l with $B^l \widehat{w} = 0$; return $w \leftarrow B^{l-1} \widehat{w}$. $\leq N+1 \ "B \cdot y"$ steps $O(N^2)$ arithm. op's Other applications of "coordinate recurrences"

- solution of sparse singular inhomogeneous linear systems [K & Saunders 1991]
- processor-efficient parallel poly-log-time algorithms for dense linear systems [K & Pan 1991, 1992]
- Frobenius form computation of an $N \times N$ matrix in $O(N^{2.375})$ field operations [Giesbrecht 1991]
- processor-efficient parallel poly-log-time algorithms for the characteristic polynomial [Eberly 1991, Giesbrecht 1992]
- space-complexity improvement of the Berlekamp polynomial factoring algorithm [K 1991]

Coppersmith's (1992) parallelization (modified)

Use of the block vectors $\boldsymbol{x} \in \mathsf{K}^{N \times m}$ in place of u $\boldsymbol{z} \in \mathsf{K}^{N \times n}$ in place of v

$$oldsymbol{a}_i = oldsymbol{x}^{ ext{tr}} B^{i+1} oldsymbol{z} \in \mathsf{K}^{m imes n}$$

Find a vector polynomial $c_L \lambda^L + c_{L+1} \lambda^{L+1} + \dots + c_D \lambda^D \in \mathsf{K}^n[\lambda]$, such that

$$\forall j \ge 0: \sum_{i=L}^{D} \boldsymbol{a}_{j+i} c_i = \sum_{i=L}^{D} \boldsymbol{x}^{\mathrm{tr}} B^{i+j} B \boldsymbol{z} c_i = \boldsymbol{0} \in \mathsf{K}^{m \times n}$$

Then, analogously to before, with high probability

$$\widehat{w} = \sum_{i=L}^{D} B^{i-L} \mathbf{z} c_i \neq \mathbf{0}, \quad B^{L+1} \widehat{w} = \sum_{i=L}^{D} B^i B \mathbf{z} c_i = \mathbf{0} \quad \in \mathsf{K}^N$$

Questions

- how many a_i are needed?
- how can the c_i be computed from the a_i ?
- probability of success? does method work on "pathological" B's?

• iteration length:
$$i \le \frac{N}{m} + \frac{N}{n} + \frac{2n}{m} + 1$$

- computation of c_i :
 - Coppersmith has generalized the Berlekamp/Massey algorithm
 - $\circ\,$ Block-Toeplitz solver by Kailath et al. (1979) Also yields the rank of B.

Both methods require $O((m+n)N^2)$ arithmetic operations in K or with m + n processors $O(N^2)$ parallel time.

• Divide-and-conquer Toeplitz-like solver [Bitmead & Anderson 1980, Morf 1980, K. 1993]:

Requires $O((m+n)^2 N(\log N)^2 \log \log N)$ arithmetic ops. in K.

Probabilistic analysis

Theorem: If B is singular with

$$\deg f^B = 1 + \operatorname{rank} B \tag{1}$$

then we find $w \neq 0$ with Bw = 0 for random x, z with probability

$$\geq 1 - \frac{1 + 2 \operatorname{rank} B}{\operatorname{card} \mathsf{K}} \geq 1 - \frac{2N - 1}{\operatorname{card} \mathsf{K}}$$

Condition (1) can be enforced by "randomly mixing" B à la Beneš/Wiedemann (1986), for instance

$$\widetilde{B} \leftarrow V \cdot B \cdot W \cdot G$$
 where V realizes random row permut. network
W realizes random col. permut. network
G is random diagonal

Parallel coarse-grain realization

The ν^{th} processor computes the ν^{th} column of $a_i, i \lesssim \frac{N}{m} + \frac{N}{n}$

Running-time comparisions

	Wiede	mann	seq. blocked W. m, n fixed $\varepsilon = \frac{n}{m} + \frac{1}{n} < 1$	par. blocked W. n processors $\frac{m}{n} \text{ fixed}$
# of $B \cdot y$ products	2N	3N	$(1+\varepsilon)N+2$	$\frac{N}{m} + \frac{N}{n} + O(1)$
# of arithm. operations	$O(N^2)$	$O(N^2)$	$O_{\varepsilon}(N^2 \log N)$	$O((1 + \frac{\log N}{n})N^2)$ (parallel w/o FFT) $O(n^2 N (\log N)^2 \times \log\log N)$ (sequent. w. FFT)
amount of storage	$O(N^2)$	O(N)	$O_{\varepsilon}(N)$	O(nN)

Proof idea for probabilistic analysis

 $\sum_{i=0}^{N/n} B^{i+1} \boldsymbol{z} c_i = \boldsymbol{0} \text{ is a linear condition on } c_i \equiv \text{block-Krylov system}$

If rank(block-Toeplitz) = rank(block-Krylov)

then every solution of block-Toeplitz system is one for block-Krylov system

The *generic* block-Toeplitz/Krylov systems can be specialized to the *generic* Toeplitz system of the Wiedemann algorithm

Thus the rank condition holds for the generic systems, hence for the ones obtained at random specializations by the Schwartz/Zippel lemma.

DSC features

- uses low level UNIX IP/TCP/UDP process communication
- can distribute C and Lisp source code
- network can be interactively monitored for progress and faults
- computers are auto-selected w.r.t. local resources and work load implemented by A. Diaz and M. Hitz [DISCO '93]
- supports co-routine calling mechanism implemented by A. Diaz [DISCO '93]
- messages are digitally signed for secure communication

	Task	Blocking Factor		
N		2	4	8
10000^\dagger	(1) $\langle a_i \rangle$	7:29	3:54	2:09
	(2) b-massey	2:25	$4{:}08$	8:00
	(3) evaluation	$3{:}47$	1:59	$1{:}05$
	total	13:41	10:06	11:14
20000^\ddagger	(1) $\langle a_i \rangle$	57:17	28:43	15:21
	(2) b-massey	$9{:}48$	16:36	33:39
	(3) evaluation	$29{:}42$	14:44	7:53
	total	$96{:}47$	60:02	56:53

Test 1: sparse random matrices over GF(32749)

CPU Time for different blocking factors in *hours:minutes*

each processor rated at $28.5\ \mathrm{MIPS}$

- $\dagger \approx 350\,000$ non-zero entries
- $\ddagger \approx 1\,300\,000$ non-zero entries

	Task	Blocking Factor		
N		1×32	2×32	3×32
20000^{\ddagger}	(1) $\langle \boldsymbol{a}_i \rangle$	1:12	0:40	0:30
	(2) b-massey	0:25	0:31	0:39
	(3) evaluation	0:29	$0:28^{\diamond}$	0:10
	total	2:06	1:39	1:19
52250^{*}	(1) $\langle a_i \rangle$	3:53	2:11	1:37
	(2) b-massey	2:30	3:09	3:54
	(3) evaluation	$1{:}15$	0:33	0:22
	total	7:38	5:53	5:53

Test 2: sparse matrices over GF(2)

CPU Time for different blocking factors in *hours:minutes* 32 bit operations performed simultan. as one computer word op. $\ddagger \approx 1\,300\,000$ non-zero entries picked at random

* from NFS integer factoring; $\approx 1\,100\,000$ non-zero entries note: unblocked Wiedemann algorithm takes ≈ 111 hours \diamond first $\hat{w} = \mathbf{0}$.

Test 3: very large sparse matrix over GF(2)

	Task Blocking Factor			tor
N		1×32	2×32	3×32
100,000*	$(1) \langle a^{(i)} \rangle$ $(2) \text{b-massey}$ $(2) \text{ovaluation}$	77:37 10:03 74:27	44:05 12:28 27:48	27:28 15:42 11:00
	total	162:17	27.48 84:31	54:19

CPU Time for different blocking factors in *hours:minutes*each processor rated at 28.5 MIPS
32 bit operations performed simultan. as one computer word op.
* 10304 243 non-zero entries picked at random

The large sparse linear system challenge

Solve a sparse $100\,000 \times 100\,000$ linear system over $GF(2^{32}-5)$ with $10\,000\,000$ non-zero entries.

Note Amdahl's law:

$$\frac{T_{\text{par}}}{T_{\text{seq}}} = \alpha + \frac{1 - \alpha}{p(1 - c)} \quad \text{where} \quad p \quad \# \text{ of} \quad \alpha \quad \text{ratio}$$

p # of processors

- α ratio spent in seq. part
- c ratio of par. part spent in commun.