Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems

Erich Kaltofen

Rensselaer Polytechnic Institute
Department of Computer Science
Troy, New York, USA

Outline

- object representation
- black box representations for sparse matrices
- Wiedemann's algorithm
- homogeneous linear systems
- Coppersmith's blocking
- my probabilistic analysis
- fast solution of singular block-Toeplitz systems
- our implementation efforts in DSC
- timings for test cases (with A. Lobo [DISCO '93])
- the large sparse linear system challenge

What is a sparse matrix?

- matrices with "few" non-zero entries
- a band matrix from a finite element method
- a matrix over GF(2) from integer factoring by the NFS: 52250×50001 with 1095532 entries $\neq 0(\approx 21 /$ row $)$
- matrices with special structure
- the Sylvester matrix corresponding to a polynomial resultant

$$
\left.R=\left[\begin{array}{ccccccc}
a_{N} & a_{N-1} & \ldots & \ldots & a_{0} & & \\
& a_{N} & \ldots & \ldots & a_{1} & a_{0} & 0 \\
& & \ddots & & & \ddots & \ddots \\
& & & & a_{N} & \ldots & \ldots
\end{array}\right] . a_{0}\right]
$$

- a "black box" matrix
an efficient program with the specifications

e.g., for the Sylvester matrix $R, R \cdot b$ costs

$$
O(N \log N \log \log N)
$$

arithmetic operations using fast polynomial multiplication

Symbolic objects given by black box representation are known for many problems:

- symbolic determinants using Gaussian elimination
- the polynomial remainder sequence of $f_{0}(x)$ and $f_{1}(x)$ using continued fraction approximations

$$
\left\{q_{i}(x)\right\}_{i \geq 2} \text { such that } f_{i}(x)=f_{i-2}(x)-q_{i}(x) f_{i-1}(x)
$$

- $B^{-1}=P^{-1} U^{-1} L^{-1}$, the $L U P$ factorization of $B \in \mathrm{~K}^{N \times N}$.
- streams for infinite objects, such as a program for the i-th order coefficient of a power series

Linear system solution with a black box matrix
Given a black box

$B \in \mathrm{~K}^{N \times N}$ singular
K an arbitrary field
compute $w \neq \mathbf{0}$ such that $B w=\mathbf{0}$ "efficiently."
D. Wiedemann (1986) constructs a Las-Vegas-randomized algorithm that computes w in at most

$$
3 N " B \cdot b \text { steps" }
$$

and

$$
O\left(N^{2}\right) \text { additional arithmetic operations in } \mathrm{K} \text {. }
$$

The algorithm needs $O(N)$ space.

Idea for Wiedemann's algorithm
$B \in \mathrm{~K}^{N \times N}, \mathrm{~K}$ a finite field
$f^{B}(\lambda)=c_{0}^{\prime}+c_{1}^{\prime} \lambda+\cdots+c_{M^{\prime}} \lambda^{M^{\prime}} \in \mathrm{K}[\lambda]$ minimum polynomial of $B:$
$\forall u, v \in \mathrm{~K}^{N}: \forall j \geq 0: u^{\operatorname{tr}} B^{j} f^{B}(B) v=0$

$$
\begin{aligned}
& \quad \mathbb{\Downarrow} \\
& c_{0}^{\prime} \underbrace{u^{\mathrm{tr}} B^{j} v}_{a_{j}}+c_{1}^{\prime} \underbrace{u^{\mathrm{tr}} B^{j+1} v}_{a_{j+1}}+\cdots+c_{M^{\prime}}^{\prime} \underbrace{}_{a_{j+M^{\prime}}^{u^{\mathrm{tr}}} B^{j+M^{\prime}} v}=0 \\
& \mathbb{\Downarrow} \\
& \left\{a_{0}, a_{1}, a_{2}, \ldots\right\} \text { is generated by a linear recursion }
\end{aligned}
$$

Theorem [Wiedemann 1986]: For random $u, v \in \mathrm{~K}^{N}$, a linear generator for $\left\{a_{1}, a_{1}, a_{2}, \ldots\right\}$ is one for $\left\{I, B, B^{2}, \ldots\right\}$.

$$
\begin{gathered}
\forall j \geq 0: c_{0} a_{j}+c_{1} a_{j+1}+\cdots+c_{M} a_{j+M}=0 \\
\Downarrow(\text { with high probability }) \\
c_{0} B^{j} v+c_{1} B^{j+1} v+\cdots+c_{M} B^{j+M} v=\mathbf{0} \\
\Downarrow(\text { with high probability }) \\
c_{0} B^{j}+c_{1} B^{j+1}+\cdots+c_{M} B^{j+M}=\mathbf{0}
\end{gathered}
$$

that is, $f^{B}(\lambda)$ divides $c_{0}+c_{1} \lambda+\cdots+c_{M} \lambda^{M}$

One may compute the c_{j} from the a_{j} by the Berlekamp/Massey algorithm, or by solving a homogenous linear Toeplitz system:

$$
\left[\begin{array}{ccccc}
a_{M} & \ldots & & a_{1} & a_{0} \\
a_{M+1} & a_{M} & & a_{2} & a_{1} \\
\vdots & & \ddots & & \vdots \\
a_{2 M-1} & \ldots & & & a_{M-1}
\end{array}\right] \underbrace{\left[\begin{array}{c}
c_{M} \\
c_{M-1} \\
\vdots \\
c_{0}
\end{array}\right]}_{\neq 0}=\mathbf{0}
$$

for any $M \geq \operatorname{deg}\left(f^{B}\right)$, in particular for $M=N$.

Algorithm Homogeneous Wiedemann

Input: $B \in \mathrm{~K}^{N \times N}$ singular
Output: $w \neq \mathbf{0}$ such that $B w=\mathbf{0}$

Step W1: Pick random $u, v \in \mathrm{~K}^{N} ; \quad b \leftarrow B v$;
for $i \leftarrow 0$ to $2 N-1$ do $a_{i} \leftarrow u^{\text {tr }} B^{i} b$.

$$
\begin{aligned}
& 2 N " B \cdot y " \text { steps } \\
& O\left(N^{2}\right) \text { arithm. op's }
\end{aligned}
$$

Step W2: Compute a linear recurrence generator for $\left\{a_{i}\right\}$,

$$
\begin{aligned}
c_{L} \lambda^{L}+c_{L+1} \lambda^{L+1}+ & \cdots+c_{D} \lambda^{D}, \quad L \geq 0, c_{L} \neq 0 \\
& O\left(N(\log N)^{2} \log \log N\right) \text { arithm. op's }
\end{aligned}
$$

Step W3: $\widehat{w} \leftarrow c_{L} v+c_{L+1} B v+\cdots+c_{D} B^{D-L} v$;
(With high probability $\widehat{w} \neq 0$ and $B^{L+1} \widehat{w}=0$)
Compute first l with $B^{l} \widehat{w}=0$; return $w \leftarrow B^{l-1} \widehat{w}$.

$$
\begin{aligned}
& \leq N+1 " B \cdot y " \text { steps } \\
& O\left(N^{2}\right) \text { arithm. op's }
\end{aligned}
$$

Other applications of "coordinate recurrences"

- solution of sparse singular inhomogeneous linear systems [K \& Saunders 1991]
- processor-efficient parallel poly-log-time algorithms for dense linear systems [K \& Pan 1991, 1992]
- Frobenius form computation of an $N \times N$ matrix in $O\left(N^{2.375}\right)$ field operations [Giesbrecht 1991]
- processor-efficient parallel poly-log-time algorithms for the characteristic polynomial [Eberly 1991, Giesbrecht 1992]
- space-complexity improvement of the Berlekamp polynomial factoring algorithm [K 1991]

Coppersmith's (1992) parallelization (modified)
Use of the block vectors $x \in \mathrm{~K}^{N \times m}$ in place of u $z \in \mathrm{~K}^{N \times n}$ in place of v

$$
\boldsymbol{a}_{i}=\boldsymbol{x}^{\operatorname{tr}} B^{i+1} \boldsymbol{z} \in \mathrm{~K}^{m \times n}
$$

Find a vector polynomial $c_{L} \lambda^{L}+c_{L+1} \lambda^{L+1}+\cdots+c_{D} \lambda^{D} \in \mathrm{~K}^{n}[\lambda]$, such that

$$
\forall j \geq 0: \sum_{i=L}^{D} \boldsymbol{a}_{j+i} c_{i}=\sum_{i=L}^{D} x^{\operatorname{tr}} B^{i+j} B z c_{i}=\mathbf{0} \in \mathrm{K}^{m \times n}
$$

Then, analogously to before, with high probability

$$
\widehat{w}=\sum_{i=L}^{D} B^{i-L} \boldsymbol{z} c_{i} \neq \mathbf{0}, \quad B^{L+1} \widehat{w}=\sum_{i=L}^{D} B^{i} B z c_{i}=\mathbf{0} \quad \in \mathrm{K}^{N}
$$

Questions

- how many \boldsymbol{a}_{i} are needed?
- how can the c_{i} be computed from the \boldsymbol{a}_{i} ?
- probability of success? does method work on "pathological" B's?
- iteration length: $i \leq \frac{N}{m}+\frac{N}{n}+\frac{2 n}{m}+1$
- computation of c_{i} :
- Coppersmith has generalized the Berlekamp/Massey algorithm
- Block-Toeplitz solver by Kailath et al. (1979) Also yields the rank of B.

Both methods require $O\left((m+n) N^{2}\right)$ arithmetic operations in K or with $m+n$ processors $O\left(N^{2}\right)$ parallel time.

- Divide-and-conquer Toeplitz-like solver [Bitmead \& Anderson 1980, Morf 1980, K. 1993]:

Requires $O\left((m+n)^{2} N(\log N)^{2} \log \log N\right)$ arithmetic ops. in K.

Probabilistic analysis

Theorem: If B is singular with

$$
\begin{equation*}
\operatorname{deg} f^{B}=1+\operatorname{rank} B \tag{1}
\end{equation*}
$$

then we find $w \neq \mathbf{0}$ with $B w=\mathbf{0}$ for random $\boldsymbol{x}, \boldsymbol{z}$ with probability

$$
\geq 1-\frac{1+2 \operatorname{rank} B}{\operatorname{card} \mathrm{~K}} \geq 1-\frac{2 N-1}{\operatorname{card} \mathrm{~K}}
$$

Condition (1) can be enforced by "randomly mixing" B à la Beneš/ Wiedemann (1986), for instance
$\begin{aligned} \widetilde{B} \leftarrow V \cdot B \cdot W \cdot G \quad \text { where } & V \text { realizes random row permut. network } \\ & W \text { realizes random col. permut. network } \\ & G \text { is random diagonal }\end{aligned}$

Parallel coarse-grain realization

The $\nu^{\text {th }}$ processor computes the $\nu^{\text {th }}$ column of $\boldsymbol{a}_{i}, i \lesssim \frac{N}{m}+\frac{N}{n}$

Running-time comparisions

	Wiedemann		seq. blocked W. m, n fixed $\varepsilon=\frac{n}{m}+\frac{1}{n}<1$	par. blocked W. n processors $\frac{m}{n}$ fixed
\# of $B \cdot y$ products	$2 N$	$3 N$	$(1+\varepsilon) N+2$	$\frac{N}{m}+\frac{N}{n}+O(1)$
\# of arithm. operations	$O\left(N^{2}\right)$	$O\left(N^{2}\right)$	$O_{\varepsilon}\left(N^{2} \log N\right)$	$\begin{aligned} & O\left(\left(1+\frac{\log N}{n}\right) N^{2}\right) \\ & (\text { parallel } \mathrm{w} / \mathrm{o} \mathrm{FFT}) \end{aligned}$
				$\begin{gathered} O\left(n^{2} N(\log N)^{2}\right. \\ \quad \times \log \log N) \\ \text { (sequent. w. FFT) } \end{gathered}$
amount of storage	$O\left(N^{2}\right)$	$O(N)$	$O_{\varepsilon}(N)$	$O(n N)$

Proof idea for probabilistic analysis

$\sum_{i=0}^{N / n} B^{i+1} \boldsymbol{z} c_{i}=\mathbf{0}$ is a linear condition on $c_{i} \equiv$ block-Krylov system
If $\operatorname{rank}($ block-Toeplitz $)=\operatorname{rank}($ block-Krylov $)$ then every solution of block-Toeplitz system is one for block-Krylov system

The generic block-Toeplitz/Krylov systems can be specialized to the generic Toeplitz system of the Wiedemann algorithm

Thus the rank condition holds for the generic systems, hence for the ones obtained at random specializations by the Schwartz/Zippel lemma.

DSC features

- uses low level UNIX IP/TCP/UDP process communication
- can distribute C and Lisp source code
- network can be interactively monitored for progress and faults
- computers are auto-selected w.r.t. local resources and work load implemented by A. Diaz and M. Hitz [DISCO '93]
- supports co-routine calling mechanism implemented by A. Diaz [DISCO '93]
- messages are digitally signed for secure communication

Test 1: sparse random matrices over GF (32 749)

N	Task			Blocking Factor		
			2	4	8	
	(1)	$\left\langle\boldsymbol{a}_{i}\right\rangle$	$7: 29$	$3: 54$	$2: 09$	
	(2)	b-massey	$2: 25$	$4: 08$	$8: 00$	
	(3) evaluation	$3: 47$	$1: 59$	$1: 05$		
	total	$13: 41$	$10: 06$	$11: 14$		
20000^{\dagger}	(1)	$\left\langle\boldsymbol{a}_{i}\right\rangle$	$57: 17$	$28: 43$	$15: 21$	
	(2)	b-massey	$9: 48$	$16: 36$	$33: 39$	
	(3) evaluation	$29: 42$	$14: 44$	$7: 53$		
		total	$96: 47$	$60: 02$	$56: 53$	

CPU Time for different blocking factors in hours:minutes each processor rated at 28.5 MIPS
$\dagger \approx 350000$ non-zero entries
$\ddagger \approx 1300000$ non-zero entries

Test 2: sparse matrices over $\operatorname{GF}(2)$

N	Task		Blocking Factor		
	(1)	$\left\langle\boldsymbol{a}_{i}\right\rangle$	$1: 12$	$0: 40$	$0: 30$
	(2)	b-massey	$0: 25$	$0: 31$	$0: 39$
	(3)	evaluation	$0: 29$	$0: 28^{\diamond}$	$0: 10$
		total	$2: 06$	$1: 39$	$1: 19$
52250^{*}	(1)	$\left\langle a_{i}\right\rangle$	$3: 53$	$2: 11$	$1: 37$
	(2)	b-massey	$2: 30$	$3: 09$	$3: 54$
	(3) evaluation	$1: 15$	$0: 33$	$0: 22$	
	total	$7: 38$	$5: 53$	$5: 53$	

CPU Time for different blocking factors in hours:minutes
32 bit operations performed simultan. as one computer word op.
$\ddagger \approx 1300000$ non-zero entries picked at random

* from NFS integer factoring; ≈ 1100000 non-zero entries note: unblocked Wiedemann algorithm takes ≈ 111 hours
\diamond first $\widehat{w}=\mathbf{0}$.

Test 3: very large sparse matrix over GF(2)

	Task		Blocking Factor		
N			1×32	2×32	3×32
$100,000^{\star}$	(1)	$\left\langle a^{(i)}\right\rangle$	$77: 37$	$44: 05$	$27: 28$
	(2)	b-massey	$10: 03$	$12: 28$	$15: 42$
	(3)	evaluation	$74: 37$	$27: 48$	$11: 09$
		total	$162: 17$	$84: 31$	$54: 19$

CPU Time for different blocking factors in hours:minutes each processor rated at 28.5 MIPS
32 bit operations performed simultan. as one computer word op.

* 10304243 non-zero entries picked at random

The large sparse linear system challenge
Solve a sparse 100000×100000 linear system over $\operatorname{GF}\left(2^{32}-5\right)$ with 10000000 non-zero entries.

Note Amdahl's law:

$$
\begin{array}{rll}
\frac{T_{\mathrm{par}}}{T_{\mathrm{seq}}}=\alpha+\frac{1-\alpha}{p(1-c)} & \text { where } & p \\
& \# \text { of processors } \\
& \alpha & \text { ratio spent in seq. part } \\
& c & \text { ratio of par. part spent in commun. }
\end{array}
$$

