
Analysis of Coppersmith's Block

WiedemannAlgorithm for the

Parallel Solution of

Sparse Linear Systems

Erich Kaltofen

Rensselaer Polytechnic Institute

Department of Computer Science

Troy, New York, USA



Outline

� object representation

� black box representations for sparse matrices

� Wiedemann's algorithm

� homogeneous linear systems

� Coppersmith's blocking

� my probabilistic analysis

� fast solution of singular block-Toeplitz systems

� our implementation e�orts in DSC

� timings for test cases (with A. Lobo [DISCO '93])

� the large sparse linear system challenge



What is a sparse matrix?

� matrices with \few" non-zero entries

� a band matrix from a �nite element method

� a matrix over GF(2) from integer factoring by the NFS:

52 250� 50 001 with 1 095 532 entries 6= 0 (� 21/row)

� matrices with special structure

� the Sylvester matrix corresponding to a polynomial

resultant
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� a \black box" matrix

an e�cient program with the speci�cations

b 2 K

N

�����������!

B 2 K

N�N

K an arbitrary �eld

B � b 2 K

N

�����������!

e.g., for the Sylvester matrix R, R � b costs

O(N logN loglogN)

arithmetic operations using fast polynomial multiplication



Symbolic objects given by black box representation are known for

many problems:

� symbolic determinants using Gaussian elimination

� the polynomial remainder sequence of f

0

(x) and f

1

(x) using

continued fraction approximations

fq

i

(x)g

i�2

such that f

i

(x) = f

i�2

(x)� q

i

(x)f

i�1

(x)

� B

�1

= P

�1

U

�1

L

�1

, the LUP factorization of B 2 K

N�N

.

� streams for in�nite objects, such as a program for the i-th

order coe�cient of a power series



Linear system solution with a black box matrix

Given a black box

b 2 K

N

�����������!

B 2 K

N�N

singular

K an arbitrary �eld

B � b 2 K

N

�����������!

compute w 6= 0 such that Bw = 0 \e�ciently."

D. Wiedemann (1986) constructs a Las-Vegas-randomized algo-

rithm that computes w in at most

3N \B � b steps"

and

O(N

2

) additional arithmetic operations in K.

The algorithm needs O(N) space.



Idea for Wiedemann's algorithm

B 2 K

N�N

, K a �nite �eld
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Theorem [Wiedemann 1986]: For random u; v 2 K

N

,

a linear generator for fa

1
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One may compute the c

j

from the a

j

by the Berlekamp/Massey

algorithm, or by solving a homogenous linear Toeplitz system:
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for any M � deg(f
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), in particular for M = N .



Algorithm Homogeneous Wiedemann

Input: B 2 K

N�N

singular

Output: w 6= 0 such that Bw = 0

Step W1: Pick random u; v 2 K

N

; b Bv;

for i 0 to 2N � 1 do a

i

 u

tr

B

i

b.

2N \B � y" steps

O(N

2

) arithm. op's

Step W2: Compute a linear recurrence generator for fa
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�
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D
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L
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2

loglogN) arithm. op's
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D
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l

bw = 0; return w  B

l�1

bw.

�N + 1 \B � y" steps

O(N

2

) arithm. op's



Other applications of \coordinate recurrences"

� solution of sparse singular inhomogeneous linear systems

[K & Saunders 1991]

� processor-e�cient parallel poly-log-time algorithms for dense lin-

ear systems [K & Pan 1991, 1992]

� Frobenius form computation of an N � N matrix in O(N

2:375

)

�eld operations [Giesbrecht 1991]

� processor-e�cient parallel poly-log-time algorithms for the char-

acteristic polynomial [Eberly 1991, Giesbrecht 1992]

� space-complexity improvement of the Berlekamp polynomial fac-

toring algorithm [K 1991]



Coppersmith's (1992) parallelization (modi�ed)

Use of the block vectors x 2 K

N�m

in place of u

z 2 K

N�n
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Questions

� how many a

i

are needed?

� how can the c

i

be computed from the a

i

?

� probability of success? does method work on \pathological" B's?



� iteration length: i �

N
m

+

N

n

+

2n

m

+ 1

� computation of c

i

:

� Coppersmith has generalized the Berlekamp/Massey algorithm

� Block-Toeplitz solver by Kailath et al. (1979)

Also yields the rank of B.

Both methods require O((m+ n)N

2

) arithmetic operations in K

or with m+ n processors O(N

2

) parallel time.

� Divide-and-conquer Toeplitz-like solver [Bitmead & Ander-

son 1980, Morf 1980, K. 1993]:

Requires O((m+ n)

2

N(logN)

2

loglogN) arithmetic ops. in K.



Probabilistic analysis

Theorem: If B is singular with

deg f

B

= 1 + rankB (1)

then we �nd w 6= 0 with Bw = 0 for random x , z with probability

� 1�

1 + 2 rankB

cardK

� 1�

2N � 1

cardK

Condition (1) can be enforced by \randomly mixing" B �a la Bene�s/

Wiedemann (1986), for instance

e

B  V �B �W �G where V realizes random row permut. network

W realizes random col. permut. network

G is random diagonal



Parallel coarse-grain realization

The �

th

processor computes the �

th

column of a

i

, i /

N
m

+

N

n



Running-time comparisions

Wiedemann seq. blocked W. par. blocked W.

m;n �xed n processors

" =

n

m

+

1

n

< 1

m

n

�xed

# of B � y 2N 3N (1 + ")N + 2

N
m

+

N

n

+O(1)

products

# of arithm. O(N

2

) O(N

2

) O

"

(N

2

logN) O((1 +

logN

n

)N

2

)

operations (parallel w/o FFT)

O(n

2

N(logN)

2

� loglogN)

(sequent. w. FFT)

amount of O(N

2

) O(N) O

"

(N) O(nN)

storage



Proof idea for probabilistic analysis

N=n

X

i=0

B

i+1

z c

i

= 0 is a linear condition on c

i

� block-Krylov system

If rank(block-Toeplitz) = rank(block-Krylov)

then every solution of block-Toeplitz system is one for block-Krylov

system

The generic block-Toeplitz/Krylov systems can be specialized to the

generic Toeplitz system of the Wiedemann algorithm

Thus the rank condition holds for the generic systems, hence for the

ones obtained at random specializations by the Schwartz/Zippel lemma.



DSC features

� uses low level UNIX IP/TCP/UDP process communication

� can distribute C and Lisp source code

� network can be interactively monitored for progress and faults

� computers are auto-selected w.r.t. local resources and work load

implemented by A. Diaz and M. Hitz [DISCO '93]

� supports co-routine calling mechanism

implemented by A. Diaz [DISCO '93]

� messages are digitally signed for secure communication



Test 1: sparse random matrices over GF(32 749)

Task Blocking Factor

N 2 4 8

10 000

y

(1) ha

i

i 7:29 3:54 2:09

(2) b-massey 2:25 4:08 8:00

(3) evaluation 3:47 1:59 1:05

total 13:41 10:06 11:14

20 000

z

(1) ha

i

i 57:17 28:43 15:21

(2) b-massey 9:48 16:36 33:39

(3) evaluation 29:42 14:44 7:53

total 96:47 60:02 56:53

CPU Time for di�erent blocking factors in hours:minutes

each processor rated at 28.5 MIPS

y � 350 000 non-zero entries

z � 1 300 000 non-zero entries



Test 2: sparse matrices over GF(2)

Task Blocking Factor

N 1� 32 2� 32 3� 32

20 000

z

(1) ha

i

i 1:12 0:40 0:30

(2) b-massey 0:25 0:31 0:39

(3) evaluation 0:29 0:28

�

0:10

total 2:06 1:39 1:19

52 250

�

(1) ha

i

i 3:53 2:11 1:37

(2) b-massey 2:30 3:09 3:54

(3) evaluation 1:15 0:33 0:22

total 7:38 5:53 5:53

CPU Time for di�erent blocking factors in hours:minutes

32 bit operations performed simultan. as one computer word op.

z � 1 300 000 non-zero entries picked at random

� from NFS integer factoring; � 1 100 000 non-zero entries

note: unblocked Wiedemann algorithm takes � 111 hours

� �rst bw = 0.



Test 3: very large sparse matrix over GF(2)

Task Blocking Factor

N 1� 32 2� 32 3� 32

100; 000

?

(1) ha

(i)

i 77:37 44:05 27:28

(2) b-massey 10:03 12:28 15:42

(3) evaluation 74:37 27:48 11:09

total 162:17 84:31 54:19

CPU Time for di�erent blocking factors in hours:minutes

each processor rated at 28.5 MIPS

32 bit operations performed simultan. as one computer word op.

? 10 304 243 non-zero entries picked at random



The large sparse linear system challenge

Solve a sparse 100 000�100 000 linear system over GF(2

32

�5) with

10 000 000 non-zero entries.

Note Amdahl's law:

T

par

T

seq

= �+

1� �

p(1� c)

where p # of processors

� ratio spent in seq. part

c ratio of par. part spent in commun.


