Factoring Polynomials over Finite Fields
by Modular Polynomial Composition

ERricHa KALTOFEN

North Carolina State University
Departments of Mathematics and Computer Science
Raleigh, North Carolina, USA
Email: kaltofen@eos.ncsu.edu
URL: http://www4.ncsu.edu/ "kaltofen

Joint work with Victor Shoup

Factorization of an integer N
(quadratic sieves, number field sieves)

Compute a solution to the congruence equation
X?=Y? (mod N)
via r relations on b basis primes

X7 X5 X2 =(1)% (ps2)? - (pg?)? (mod N)

Then N divides (X +Y)(X —Y), hence

GCD(X + Y, N) divides N

Factorization of polynomial f over finite field [,
(Berlekamp 1967 algorithm)

Note that since a? = a (mod p) for all a € F, we have

P —x=z-(r—1)-(r—-2)---(z—p+1) (mod p)

Compute a polynomial solution to the congruence equation

w(z)? = w(z) (mod f(z))

Then f divides w- (w—1)-(w—2)---(w —p -+ 1), hence

GCD(w(z) — a, f(x)) divides f(x) for some a € F,

Solving w? = w (mod f) by linear algebra

For w(z) = wo + w1z + -+ + wy_12" 1 € B, [z], n = deg(f):

w(x)? = w(x?) =

w(z) (mod f(z))

(Note: (a + b)P = aP + bP

because <p) =0 (mod p)
i

for 0 < i < p)

- . >tr r
'Y mod f(x) ="

- : “0<1<n

(Petr’s 1937 matrix)

Run-time comparisons (field arithmetic operations)

g=0() logg=06(n)

Berlekamp ’70 O (n*?%) O(n*2%)
O(nw 4+ nl—l—o(l) lOg q>

Cantor & Zassenhaus 81 O(n?te)) O(n3tol)
O(n?t°M log q)

von zur Gathen & Shoup 91 O(n?te) O(n2tol))

O(n2—|—o(1) 4+ nl—l—o(l) log C_I)

Kaltofen & Shoup ’94 O(n'8%) O(n*?)
O(n(w+1)/2+(1_7)(w_1)/2 + n1+7+0(1) log q)

for any 0 <~y <1

w = matrix multiplication exponent

The high algebraic extension case (May 9, 1996)

Let ¢ = 2[”1'5], and consider factorization over [, in terms of bit
complexity.

von zur Gathen & Shoup '91: O(n(log q)?).

Kaltofen & Shoup ’96: O(n(log q)*-%?).

Generalizes to ¢ = p* where k grows superlinearly with n.

Distinct degree factorization (Arwin 1918)

Fact: 29 — 1 = H f(x)
f irreducible over [,
deg(f) divides i

Write f i — H g
g irred. factor of f
deg(g) =

f* <« f; /* squarefree */
fori<1,...,[n/2] do

{/1(z) - GCD(~z + 27 mod f*(z), f*(x));
f* e g) 1
+
f[deg(f*)] < f*; /* factor with degree > [n/2|*/

Suppose f(z) € I, |z] has degree n, g(z), h(x) are modular residues.
All counts are in terms of arithmetic operations in F,.

Problem Complexity Inventors of algorithm

1. g-h (mod f) O(n(logn)loglogn) Schonhage&Strassen 1969
Schonhage 1977 (p = 2)

2. GCD(f,9) O(n(log n)?loglogn) Knuth 1971/Moenck 1973
3. g (mod f) O((log g)nttoM) Pingala 200 b.c.
4. g(h(z)) (mod f(z)) O(n'®) Brent&Kung 1978

Coppersmith&Winograd 1987

n

5. 27 (mod f(x)) O(n*%?) von zur Gathen&Shoup 1991
given ¢ (mod f(x))

6. g(h1),...,g(hn) (mod f) O(n*°M) Moenck&Borodin 1972

7.20 .., 30 (mod f(z)) O(n*°W) von zur Gathen&Shoup 1991
given ¢ (mod f(x))

Fast computation of ¢ mod f(z)

= hi—1(hi(z))

= hyi2)(hij2)(Ri mod 2(z))) (mod f(z))

(modular polynomial composition)

Fast modular polynomial composition

Compute g(h(z)) (mod f(x)) with O(n!-®?) field operations.

Vol [Lvn)-1 |
g(w) — Z Z Cj,lilﬁl . xL\/ﬁJ "J
7=0 [=0

[Vn] x [Vn] [vn] xn = O(Vn(vn)*™)

Baby step-giant step algorithm (K and Shoup 1994)

Fact: 29 — g4 = (a:qJ_i — a:)q = (H f(a:))q.

f irreducible over [
deg(f) divides J — i

Let | = [n°] with 0 < 3 < 1

-1 i
GCD(H}(qu — x?%) mod f(z), f(:z:))

=0 Il

Hj h;

has all those factors of f whose degree is in the interval [(j — 1)+ 1, 5I].

Step 1 (baby steps): Let [= [nP].
fori<1,...,l —1do hi(z) < 22 mod f(x).
Cost: O(n'tA+°M)]ogq)

Step 2 (giant steps): |
for j« 1,...,[n/(20)] do H;(z) < 27 mod f(z).
Cost: O(nt69+(1-0))

Step 3 (coarse distinct degree factom'zatz'on)
for j«1,...,[n/(20)] do I; <—H ;) mod f.

o 5
for j<«1,...,[n/(2l)] do

{Fj <= GCD(Iy, f*); f* « f*/Fj}

Step 4 (fine distinct degree factorization):

Lobo’s 94 implementation of black box Berlekamp
(based on block Wiedemann)

Degree Prime Task # Computers Factor
n D 8 32 degrees
15001 127 Step W1 8220/ 1,1,2, 2 4,12
Step W2 12753 21, 21, 33, 55
Step W3 4242 155, 158, 351
split /refine 3M19’ 809, 1793, 2665
total time 141714’ 2813, 2919, 3186
work 87577

Parallel CPU time (hours"minutes’) for factoring
(2™ + 24+ 1) (2™ + 2+ 1) (mod 127)
on 86.1 MIPS computers; work is measured in MIPS-hours™

Shoup’s baby step/giant step implementation

Can factor a 2048 degree pseudo-random polynomial modulo a 2048
bit prime number in about 12 days on a single Sparc-10 computer.

The algorithm requires 68 Mbytes of memory.

Note: Shoup implemented a variant based on the distinct-degree
factorization algorithm

von zur Gathen and Gerhard’s implementation over 5 (ISSAC ’96)

Can factor a 262143 degree pseudo-random polynomial modulo 2 in
about 48 CPU hours using 2 Ultrasparc 1 computers.

The algorithm requires 1 Gbytes of hard disk space.
Note: von zur Gathen and Gerhard implemented special purpose

polynomial arithmetic over 5 due to Cantor ’89 and used the
distinct-degree factorization approach.

Suppose f = f1--- f, where deg(f1) = deg(f2) = --- = deg(f;) = d.
Then

v(z) +o(@)? +v(z)d + -+ v(a;)qd_l mod f;(z) € E,

“trace of Frobenius’

Y

One can compute
o(@)? = v(@?)) = v(hilw)) (mod f(z)) in O(n"+°(M) K,-ops
hi(z) = hi_1(h1(z)) (mod f(z)) (given hy, hi—1)

More efficiently (von zur Gathen/Shoup ’92), one “doubles”

((

27 = () = hi(2)7 = hi(2?) = hi(hi(z)) (mod f(z))

q q° “\q" wi(x)qi = w;(h;)
vix vlx)* +---+vlx = it1 24
(0(2)7 + o(2) ()7 {vwﬁ+_kn+v@w — wni(a)

hence finds the entire trace of Frobenius in O(n'-%?) F,-ops (given hy).

— w; ()

Computing x? mod f(z) with f(x) € F,[z] where ¢ = p* even faster
Suppose F, = E,[2]/(¢(z)) and we already have
2" mod f(x)=hi(z) =co(z) +cr(2)z+ -+ cp_1(2)a" ' € F,[z].

and

which can be computed with n modular polynomial compositions over
F, and then one over F, (K. and Shoup 1995).

