Generic Programming with Black Boxes

Erich Kaltofen
North Carolina State University
Raleigh, USA
kaltofen@math.ncsu.edu

Joint work with Angel Díaz
IBM T. J. Watson Research Center
Yorktown Heights, New York USA
aldiaz@us.ibm.com
Black Box Model for Multivariate Polynomials

\[x_1, \ldots, x_n \in \mathbb{K} \quad \Rightarrow \quad f(x_1, \ldots, x_n) \in \mathbb{K} \]

\[f \in \mathbb{K}[x_1, \ldots, x_n] \]

\(\mathbb{K} \) an arbitrary field, e.g., rationals, reals, complexes

Perform polynomial algebra operations, e.g., factorization [K & Trager 90] with

\[n^{O(1)} \] black box calls,

\[n^{O(1)} \] arithmetic operations in \(\mathbb{K} \) and

\[n^{O(1)} \] randomly selected elements in \(\mathbb{K} \)
Cauchy matrix: factorization of numerator

\[
\det\left(\begin{array}{ccc}
\frac{1}{x_1+y_1} & \frac{1}{x_1+y_2} & \cdots & \frac{1}{x_1+y_n} \\
\frac{1}{x_2+y_1} & \frac{1}{x_2+y_2} & \cdots & \frac{1}{x_2+y_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{x_n+y_1} & \frac{1}{x_n+y_2} & \cdots & \frac{1}{x_n+y_n}
\end{array}\right) = \prod_{1 \leq i < j \leq n} (x_j - x_i)(y_j - y_i) \cdot \prod_{1 \leq i, j \leq n} (x_i + y_j).
\]

K and TRAGER (1988) efficiently construct the following efficient program:

Precomputed data including \(\text{deg}(f), \text{deg}(g)\).
Program makes “oracle calls”:

\[
\begin{align*}
p_1, \ldots, p_n &\in K \\
\phi(x_1, \ldots, x_n) &\rightarrow f(p_1, \ldots, p_n) \\
\phi(x_1, \ldots, x_n) &\rightarrow g(p_1, \ldots, p_n)
\end{align*}
\]

\[
\phi(x_1, \ldots, x_n) = \frac{f(x_1, \ldots, x_n)}{g(x_1, \ldots, x_n)}, \quad f, g \in K[x_1, \ldots, x_n], \quad \text{GCD}(f, g) = 1.
\]
Black Box Linear Algebra

The black box model of a matrix

\[\begin{array}{ccc}
\ y \in \mathbb{K}^n & \to & A \cdot y \in \mathbb{K}^n \\
A \in \mathbb{K}^{n \times n} & \text{singular} & \\
\mathbb{K} \text{ an arbitrary, e.g., finite field} & \\
\end{array} \]

Perform linear algebra operations, e.g., \(A^{-1}b \) [Wiedemann 86] with

\[O(n) \quad \text{black box calls and} \]
\[n^2(\log n)^{O(1)} \quad \text{arithmetic operations in } \mathbb{K} \text{ and} \]
\[O(n) \quad \text{intermediate storage for field elements} \]
RSA challenge systems over \mathbb{Z}_2

RSA-120: 245,881 rows and 252,222 columns with 10–217 non-zero entries/column and 11,037,745 non-zero entries total; the matrix occupies 48 Mbytes of memory space.

RSA-129: 569,466 rows and 524,339 columns with 13–23,214 non-zero entries/column (47 in the average) and 26,553,389 non-zero entries total; the matrix occupies 76 Mbytes of memory space.

RSA-130: 3,508,823 rows and 3,516,502 columns with an average of 39.4 entries/column and 138,690,745 non-zero entries total; the matrix occupies 700 Mbytes of memory space.
Timings for finding 32 row dependencies in RSA-129 matrix
Lobo’s WiLiSS (block Wiedemann Linear System Solver) system

<table>
<thead>
<tr>
<th>N</th>
<th>Task</th>
<th>1 \times 32</th>
<th>2 \times 32</th>
<th>3 \times 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>569466</td>
<td>Step W1</td>
<td></td>
<td>167$^{h}39'$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step W2</td>
<td></td>
<td>106$^{h}45'$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step W3</td>
<td></td>
<td>54$^{h}40'$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total time</td>
<td></td>
<td>332$^{h}04'$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>work</td>
<td></td>
<td>35630#</td>
<td></td>
</tr>
</tbody>
</table>

Each processor is rated at 107.3 MIPS. Combined work is measured in MIPS-hours#. Elapse time was approx. 384h (16 days). Total work is 4.07 MIPS-years.

Timings for finding 18 row dependencies in RSA-130 matrix
(Montgomery’s implementation of block Lanczos)

67.5 CPU-hours on a Cray-C90.
Classes of randomized algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte Carlo</td>
<td>always fast, probably correct</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>always correct, probably fast</td>
</tr>
<tr>
<td>BPP</td>
<td>probably correct, probably fast</td>
</tr>
</tbody>
</table>

Why Las Vegas algorithms may be bad for you

```
repeat
  pick random numbers
  compute candidate answer
until check if a solution succeeds
```

A programming bug leads to an infinite loop!
The FoxBox System [Díaz & Kaltofen 1998

– Base arithmetics
– Black box objects
– Common black box objects
– Black box algorithms
– Extended domain black box objects
– Homomorphic maps
– Parallel black boxes
Parallel black boxes

Once constructed, a black box algorithm utilizes a small amount of precomputed static information for evaluation.

– The parallel black box interface adds three member functions for administering remote evaluation

– An initialization phase transmits static information to each processor allowing for subsequent probes

— FoxBox provides an MPI compliant implementation of the parallel black boxes interface
Running example: determinant of symmetric Toeplitz matrix

$$\begin{vmatrix}
 a_0 & a_1 & \ldots & a_{n-2} & a_{n-1} \\
 a_1 & a_0 & \ldots & a_{n-3} & a_{n-2} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{n-2} & a_{n-3} & \ldots & a_0 & a_1 \\
 a_{n-1} & a_{n-2} & \ldots & a_1 & a_0 \\
\end{vmatrix}$$

$$= F_1(a_0, \ldots, a_{n-1}) \cdot F_2(a_0, \ldots, a_{n-1}).$$

over the integers.
> readlib(showtime):
> showtime():
01 := T := linalg[toeplitz]([a,b,c,d,e,f]):
time 0.03 words 7701
02 := factor(linalg[det](T));

\[-(2dca - 2bce + 2c^2a - a^3 - da^2 + 2d^2c + d^2a + b^3 + 2abc - 2c^2b
+ d^3 + 2ab^2 - 2dcb - 2cb^2 - 2ec^2 + 2eb^2 + 2fcb + 2bae
+ b^2f + c^2f + be^2 - ba^2 - fdb - fda - fa^2 - fba + e^2a - 2db^2
+ dcb^2 - 2deb - 2dec - dba)(2dca - 2bce - 2c^2a + a^3
- da^2 - 2d^2c - d^2a + b^3 + 2abc - 2c^2b + d^3 - 2ab^2 + 2dcb
+ 2cb^2 + 2ec^2 - 2eb^2 - 2fcb + 2bae + b^2f + c^2f + be^2 - ba^2
- fdb + fda - fa^2 + fba - e^2a - 2db^2 + dc^2 + 2deb - 2dec
+ dba)\]
time 27.30 words 857700
Example: a FoxBox common object and factor box

// initialize our SACLIB and NTL wrapper/adaptors
Word Stack; int i;
SaclibInitEnv(1000000, Stack); ShoupInitEnv(&MPCard);

// construct a symmetric Toeplitz determinant
// from which we create a factor box
typedef BlackBoxSymToeDet< SaclibQ, SaclibQX > BBSymToeDetQ;
typedef BlackBoxFactors< SaclibQ, SaclibQX, BBSymToeDetQ > BBFactorsQ;

BBSymToeDetQ SymToeDetQ(N, DegDet);
BBFactorsQ FactorsQ(SymToeDetQ, Prob, Seed, &MPCard);
Example: a FoxBox homomorphic image

```c++
// map the factors black box to NTL's modular arithmetic
typedef BlackBoxSymToeDet< ShoupZP, ShoupZPX > BBSymToeDetZP;

typedef BlackBoxFactorsHMap< SaclibQ, SaclibQX,
                          ShoupZP, ShoupZPX,
                          BBSymToeDetQ, BBSymToeDetZP,
                          SaclibQShoupZP > BBFactorsQMapZP;

SaclibQShoupZP      h;
BBSymToeDetZP      SymToeDetZP( N, DegDet );
BBFactorsQMapZP     FactorsZP( SymToeDetZP, FactorsQ, h );

SaclibCleanUpEnv(); // we no longer need rational arithmetic
```
Example: FoxBox sparse interpolation

// interpolate the first factor
typedef BlackBoxSelector< ShoupZP, BBFactorsQMapZP > BBFactorZP;

BBFactorZP FirstFactorZP(FactorsZP, 0);

SparseInterp(FirstFactorZP, Vars, Degs,
 DegDet, &MPCard,
 AnsDegs, AnsMons,
 ShoupZPXElm,
 ProbName, IsRestart, NumProc);

ShoupCleanUpEnv();
Factorization challenge: construction

<table>
<thead>
<tr>
<th>N</th>
<th>CPU Time</th>
<th>N</th>
<th>CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0h02’</td>
<td>16</td>
<td>0h43’</td>
</tr>
<tr>
<td>12</td>
<td>0h05’</td>
<td>17</td>
<td>1h05’</td>
</tr>
<tr>
<td>13</td>
<td>0h09’</td>
<td>18</td>
<td>1h42’</td>
</tr>
<tr>
<td>14</td>
<td>0h16’</td>
<td>19</td>
<td>2h30’</td>
</tr>
<tr>
<td>15</td>
<td>0h26’</td>
<td>20</td>
<td>3h42’</td>
</tr>
</tbody>
</table>

Total CPU times (hoursh minutes’) required to construct a factors black box (over \mathbb{Q}) that can evaluate both irreducible factors of the determinant of a symmetric Toeplitz matrix. The processor is a Sun Ultra 1/170 (128MB), Solaris 2.5.
Factorization challenge: sparse conversion

<table>
<thead>
<tr>
<th>N</th>
<th>CPU Time</th>
<th>Degree</th>
<th># Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$1^h20'$</td>
<td>5</td>
<td>931</td>
</tr>
<tr>
<td>11</td>
<td>$1^h34'$</td>
<td>5</td>
<td>847</td>
</tr>
<tr>
<td>12</td>
<td>$10^h14'$</td>
<td>6</td>
<td>5577</td>
</tr>
<tr>
<td>13</td>
<td>$15^h24'$</td>
<td>6</td>
<td>4982</td>
</tr>
</tbody>
</table>

CPU times (hoursh minutes$'$) to retrieve the distributed representation of a factor from the factors black box of a symmetric Toeplitz determinant black box. Construction is over \mathbb{Q} evaluation is in $\text{GF}(10^8 + 7)$ for $N = 10, 11,$ and 12 (Pentium 133, Linux 2.0) and $\text{GF}(2^{30} - 35)$ for $N = 13$ (Sun Ultra 2 168MHz, Solaris 2.4).
Plug-And-Play Components

Maple → Mathematica → Application Program

“plug-and-play” software

“middle-ware” implementation of new algorithms

NTL → SAC Lib → Linpack

“generic” programming

Problem solving environ’s: end-user can easily custom-make symbolic software
Example: Maple black box factorization

> SymToeQ := BlackBoxSymToe(BBNET_Q, 4, -1, 1.0):

> SymToeZP := BlackBoxSymToe(BBNET_ZP, 4, -1, 1.0):

> FactorsQ := BlackBoxFactors(BBNET_Q, SymToeQ, Mod, 1.0, Seed):

> FactorsZP := BlackBoxHomomorphicMap(BBNET_FACS, FactorsQ, SymToeZP):

> FactorZP := BlackBoxSelectValue(BBNET_ZP, FactorsZP, 0):

> FB1 := SparseConversion(BBNET_ZP, FactorZP, [x1, x2, x3, x4], [4, 4, 4, 4], 4, Mod);
Software Design Issues

Plug-and-play
- Standard representation for transfer: MP, OpenMath, MathML
- Byte code for constructing objects vs. parse trees
- Visual programming environments for composition

Generic Programming
- Common object interface (wrapper classes),
 \[\text{e.g., } K::\text{random}_\text{generator}(500) \]
- Storage management vs. garbage collection
- Algorithmic shortcuts into the basic modules