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Brief History

The ages of symbolic computation

60s: pioneering years: polynomial arithmetic, integration
70s: Macsyma; abstract domains: Scratchpad/II, Axiom

80s: polynomial-time methods; user interfaces: Mathematica
90s: teaching of calculus (Maple), math on the web

00s: merging of symbolic, numeric, and geometric paradigm (?)



1. Numeric/Symbolic

Factorization of nearby polynomials over the complex numbers
81x* + 16y* — 648z* 4+ 72x°y* — 648x* — 288y* + 1296 = 0
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(9x% +4y> +18V272 —36) (9x° + 4y* — 18v272 —36) =0

81x* + 16y* — 648.003z" + 72x%y* 4+ .002x%z* + .001y*z°
— 648x* —288y* — .007z + 1296 = 0



Open Problem 1
Given is a polynomial f(x,y) € Qlx,y| and € € Q.

Decide in polynomial time in the degree and coefficient size if there
is a factorizable f(x,y) € Clx,y| with || f — f|| <&,

for a reasonable coefficient vector norm || - ||.



Sensitivity analysis: approximate consistent linear system

Suppose the linear system Ax = b 1s unsolvable.
Find b “nearest to” b that makes it solvable.

Minimizing Euclidean distance: min ||AX — b||, (least squares)
b

X
Introduce new variable y and solve the linear program

n
Minimizing component-wise distance: min ( max ‘b,-— Z a; iX; )
1 S l S m j=1

minimize: y
linear constraints: y > b;—Y'_ a; ;%; (1<i<m)
y 2= —=bi+ 314k (1<i<m)



Sensitivity analysis: nearest singular matrix

Given are 2n° rational numbers a.

_17]7 al7j.
Let 4 be the interval matrix

|_z,] > di < di,j for all 1 < l,] SI/Z}

Does A contain a singular matrix?
This problem 1s NP-complete [Poljak&Rohn 1990].

When the distance 1s measured by a matrix norm, the problem can
be solved efficiently [Eckart& Young 1936].



Sensitivity analysis: approximate greatest common divisor

Suppose f =x"+ay,_ 1 X"+ +ayg, g=x"+b,_1x" 4+ by
have no common divisor.
Find £, ¢ “nearest to” f, ¢ that have a common root.

Karmarkar&ILakshman [1996] minimize

V1 = @24+ + o — ol + |bw — Bul2 4+« + 1o — bo]2



Equivalent formulation:
Compute the nearest singular Sylvester matrix to the
Sylvester matrix

~dAm Am—-1 .- .. ap ]
Adm ... a; do
Am v e vee.. ap
b, by—1 ..... Dy
b,  ..... b1 by
i by ......... by |




Sensitivity analysis: Kharitonov [1978] theorem

Given are 2n rational numbers a.

Uiy

Let P be the interval polynomial

a;.

P= {x”+an_1x”_1—|—---—|—a0|Qi§ai§d,- for all 0 <i < n}.

Then every polynomial in P 1s Hurwitz (all roots have negative
real parts), 1f and only if the four “corner” polynomials

gr(x)+h(x) P, wherek=1,2andl=1,2,

with
gl(x) :Q0+d2x2‘|‘ﬁ4x4—|—“° : hl(x) :Q1—|—d3x3—|—gsx5_|_... 7
e(x) =ay+ax’ +ax'+---, hx)=a +ax +asx+--

are Hurwitz.



Sensitivity analysis: constraint root problem

Given 1s a real or complex polynomial
f(z) = an "+ an12" '+ Faiz+ag
and a root a € C.

Compute f “nearest to” f such that f(a) = 0.

Hitz and K [1998] solve this problem efficiently for
e parametric O (root stability) and Euclidean distance
e cxplicit roots 01,05, ... and coefficient-wise distance

e with linear coefficient constraints, e.g., a, = 1.



Symbolic and numeric computation: a marriage made in heaven?



2. Quantifier elimination (QE)

A simple QE problem over the real numbers

fora > 0: Irgn(axz—l—bx—l—c) & Vy:a>0and ay*+by+c

> ax” +bx+c

b
Sa>0andx = ——
2a

The quantified variables can be eliminated; the values of the un-
quantified variables that satisfy the expression form a semi-algebraic
set.

QE 1s computable [Tarski 1948; Collins 1976; Grigoriev 1986;
Hong 1990]



Open Problem 2 (Solotareff’s problem by Collins 1992)
Eliminate the quantifiers and solve for n > 6 on a computer:

forr > 0: min ( max |x"+ "' — B(x) |>

B=bgy+--+b,_»x"2 \ —1<x<1

Excerpt from Solotareft’s theorems:

Veo,c1VxTy: 0 < r < land (y° +ry* —c1y—co)’

3 ’,.2 2 3

2
> (43 2__[___f”_”)
—(x T £4+2 4),)“ £4+6 108),

b bo




3. Black Box Linear Algebra

The black box model of a matrix

y e K" A-yeK"

g

\
4

A € K" singular
K an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., A~'b [Wiedemann 86]
with

O(n) black box calls and

n*(logn)°")  arithmetic operations in K and
O(n) intermediate storage for field elements



Flurry of recent results

Lambert [1996], relationship of Wiedemann and
Eberly&K [1997] Lanczos approach
Villard [1997] analysis of block Wiedemann algorithm

Giesbrecht [1997] computation of integral solutions

Giesbrecht&l.obo  certificates for inconsistency
&Saunders [1997]

Open Problem 3

Within the resource limitations stated above, compute the charac-
teristic polynomial of a black box matrix. Randomization is al-
lowed (of course!), as is a “Monte Carlo” solution.



Classes of randomized algorithms

Monte Carlo

Las Vegas
BPP

always fast, probably correct
always correct, probably fast
probably correct, probably fast

Why Las Vegas algorithms may be bad for you
repeat

pick random numbers
compute candidate answer
until check if a solution succeeds

A programming bug leads to an infinite loop!



Diophantine solutions Ay =b, xMezr
by Giesbrecht: Ay =b, X ez
Find several rational solutions. ocd(2,3) =1=2-2—1-3

1
A(2xM —xPly =4p—3b=1b



4. Lattice Reduction

o L[ 4 2 1 1
_ZZOW 8i+1 8i+4 8i+5 8i+6

Derivation by lattice reduction [Bailey&Borwein&Plouffe 1995]

Loyt ' 1 (Y i N AT
d :/ =) dy= —/ N
/0 1 -+ " o iZoy <16> ’ iZoml 0” ’

3
6
1

B go 16/(8i+ k)

Maple takes over



vV V.V V VYV VV VYV VYV VYV YVV\VYV

latt := proc(digits)
local k, j, v, saved_Digits, 1ltt;
saved_Digits := Digits; Digits := digits;
for k from 1 to 8 do
vik] := [];
or j from 1 to 10 do v[k] := [op(v[k]), 0]; od;
(k] := 1;
[10] := trunc(10~digits *
evalf (Int(y~(k-1)/(1-y~8/16),
y=0..1, digits), digits));

f
v [ k]
v [ k]

od;
v[9] := [0,0,0,0,0,0,0,0,1,
trunc(evalf (Pi*10"digits,digits+1))];
1tt := [];
for k from 1 to 9 do 1tt:=[op(ltt),evalm(v[k])];od;
Digits := saved_Digits;
RETURN(1tt) ;
end.:
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0,0, 0, 10071844764146762286447600),
|0, 5064768766674304809559394],
|0, 3392302452451990725155853],
|0, 2554128118829953416027570],
|0, 2050025576364235339441503],
.0, 1713170706664974589667328],
|0, 1472019346726350271955981],
|0, 1290770422751423433458478],
.1, 31415926535897932384626434]]

0
0
0
0
0
0
1
0



> readlib(lattice):
> lattice(L);

[—4,0,0,2,1,1,0,0,1,5],]0, —8,—4,—4,0,0,1,0,2,5],
61,582,697, —1253,453, —1003, —347,—396, 10, 559],
333,966,324, — 1656, —56,784, 1131, —351, —27,255],

429,714, —1591,778,—517, —1215,598,362, —87,398],

1046, —259, —295, —260, 1286,393,851,800,252, —1120],
494,906, —380, — 1389, 1120, 1845, — 1454, —926, —218, 400,
1001, —1099,422, 1766, 1405, —376,905, —1277, —394, —30],
—1144,491, —637,—736, —1261, —680, — 1062, —1257,637, —360)]

> g 1= (Bky + 4xy"2 + 4xy73 - y76)/(1-y"8/16);

8y+4y*+4y° —)°
8= 1
1— 8
16>
> int(g, y=0..1);




Goldreich&Goldwasser&Halevi [1997] public key crypto system

Public key: Lattice basis B (rows B; are basis vectors).
Private key: reduced basis C for lattice spanned by B.
Clear text 1s represented as a vector x with small integer entries.

Encoded message: y = x+ 5 ;r;B; where },;r;B; 1s a random vector
1n the lattice.

Decryption based on Babai algorithm [1985] for nearest lattice
point: Write y = 5 ;5,C; with s; € Q. Then J;nearest-integer(s;)C;
18 a near lattice point, probably 5 ;r;B;.



Open Problem 4
Devise a public key crypto-system that is based on diophantine
linear algebra but that is safe from lattice reduction.



5. Groebner Bases

f1:x2—|—xy—|—2x - y_lzo (X,y):(l,—l),(—3,1),

f2:X2 -|-3x—y2—|-2y_1:0 (071)
f3= ux +vy+w
B2y 2 ooy o x Yoy oy 1
xfi/ 112 0 1 -1 0 0 0 O
yil 0 1.0 1 2 0 0 1 -1 0
il O 01 0 1 2 0 0 1 -1
x| 1 0 3 -1 2 -1 0 O O O (u—v+w)
vhHL 01 0 0 3 0 —1 2 —1 0 = (Futviw)
Hl 00 1 0 0 3 0 —1 2 —1| 0w
x5 0 u 0 v w 0 0 0 0 0 (u—v)
x50 0w 0 v w 0 0 0 0
y f 3 0O O 0 0 1 0 0 v W 0 (u-resultant)
0 00O 0 u 0 O v w




Buchberger’s algorithm [1967]

S-polynomial construction and reduction correspond to row-reduction
in comparable matrices

Faugere’s [1997] method: use sparse “symbolic” LU matrix de-
composition for performing these row reductions.

Open Problem 5

Compute Grobner bases approximately by iterative methods for
solving systems, such as Gauss&Seidel, conjugate gradient, New-
ton,...

A solution plugs into numerical software and computes some bases
faster than the exact approach; the structure of the bases may be
determined, e.g., by modular arithmetic



6. Algorithm Synthesis

Let 0 € Kla,B]/(f,g) where f(a,) =0 and g(B) =0.
Eg,0=V14+v2—vV2=0-B, f=0>—B—1,and g = R>—2.

Task: Compute the minimum polynomial 2(0) =0 :

1

h(x) =x"—cp X" —---—co e Klx|, m<deg(f)- deg(g)

— .
The coefficient vectors 0' of ¢ mod (f(a,[3),g(PB)) satisfy

. — — —
Vi>0: 0"/ =c,10" " 4. 4+ cy0’

—
Any non-trivial linear projection L( ') preserves the linear recur-

sion because /1 1s 1rreducible.



Power Projections = Transposed Modular Polyn Composition

Linear projections of powers

2% 2(ah)e(?) .| =[ww .. w ][0

Modular polynomial composition

w(z) = wo+wiz+waz"+ -+ — w(0) mod (f(a,B),(B))

By Tellegen’s Theorem [1960] the problems can be solved equally
fast



Transposed Modular Polynomial Multiplication in NTL

1. T; < FFT ' (REDy(g))

2. <+ T-5

3.V ¢ _CRT()n_Q(FFT(Tz))

4. T, < FFT ' (REDy (x* ' -v))

5. T, 15 S3

6. Ty 1T;- S4

7.Replace T, by the 2" !-point residue table whose j-th column
(0 < j <251 is 0if j is odd, and is column number j/2 of T
if j 1s even.

8.1, + T, + T

“we offer no other proof of correctness other than the validity of
this transformation technique (and the fact that it does indeed work
in practice)” [Shoup 1994]



Open Problem 6

With inputs A € K" and y € K" you are given an algorithm for
A -y that uses T (m,n) arithmetic field operations and S(m,n) aux-
iliary space.

Show how to construct an algorithm for A" - 7 where z € K" that
uses O(T (m,n)) time and O(S(m,n)) space.

Your construction must be applicable to practical problems.



7. Knuth’s Critique of Asymptotically Fast Methods

End of §4.6.2 Factorization of Polynomials (page 455)

“The asymptotically best algorithms frequently turn out
to be worst on all problems for which they are used.

— D. G. CANTOR and H. ZASSENHAUS (1981)"

Answer to Exercise 70 of §4.6.4 (page 718)

“E. Kaltofen has in fact constructed a determinant evaluation algo-
rithm that requires only O(n'®*%/2+¢) additions, subtractions, and
multiplications [ISSAC 92]. Of course such asymptotically ‘fast’
matrix multiplication is strictly of theoretical interest.”



Open Problem 7

Convince Donald Knuth that these asymptotically fast methods are
of practical value. If he pays you $2.56 for this technical error, you
have solved this problem.



8. Plug-And-Play Components

Mathe- Application
Maple matica Program
“plug—am l /
play’” soft- | ‘‘middle-ware”’
ware implementation
of new algorithms

7T S programming

NTL SAC Lib Linpack

Problem solving environ’s: end-user can easily custom-make sym-
bolic software



Example: FOXBOX [Diaz and K 1998]

# Call FoxBox server from Maple

>
>
>

>

SymToel(
SymToeZP
FactorsQ :

FactorsZP

BlackBoxSymToe( BBNET_Q, 4, -1, 1.0 ):

BlackBoxSymToe( BBNET_ZP, 4, -1, 1.0 ):

BlackBoxFactors( BBNET_Q, SymToeQ, Mod, 1.0,
Seed ):

:= BlackBoxHomomorphicMap( BBNET_FACS, FactorsQ,

SymToeZP ):

// construct factors of a symmetric Toeplitz determinant in C++
typedef BlackBoxSymToeDet< SaclibQ, SaclibQX > BBSymToeDetQ;
typedef BlackBoxFactors< SaclibQ, Saclib(QX,

BBSymToeDetQ > BBFactorsQ;

BBSymToeDetQ SymToeDetQ( N );
BBFactorsQ

FactorsQ( SymToeDetQ, Probab, Seed, &MPCard );



Software Design Issues

Plug-and-play
e Standard representation for transfer: MP, OpenMath, MathML

e Byte code for constructing objects vs. parse trees

e Visual programming environments for composition

Generic Programming
e Common object interface (wrapper classes),

e.g.,K: :random generator (500)

e Storage management vs. garbage collection

e Algorithmic shortcuts into the basic modules



Open Problem 8

Devise a plug-and-play and generic programming methodology
for symbolic mathematical computation that is widely adopted by
the experts in algorithm design, the commercial symbolic software
producers, and the outsider users.

“Designing a system that plugs in someone else’s 1s difficult”
[K 1997]

“Designing a system that someone else can plug-in 1s difficult”
[Hong 1997]



9. Another “Killer” Application (KA)

KA for the Macintosh: Document preparation

KA for the PC: Spreadsheets

KA application for supercomputers: Weather forecasting
KA for mainframes: Social security system

KA for symbolic software: Calculus teaching

Open Problem 9
Besides math education, find another so-called “killer” applica-
tion for symbolic computation.

The problem is solved when the new application makes the soft-
ware written for it a commercial success.



Summary

1. Nearby multivariate polynomials that factor over C
2. Solotareff’s problem on a computer

3. Characteristic polynomial of a black box matrix

4. Lattice reduction-satfe GGH crypto-system

5. Grobner bases via iterative methods

6. Space&time efficient transposition principle

7. Knuth’s opinion on asymptotically fast algorithms

8. Plug-and-play and generic programming methodology for sym-
bolic computation

9. Another “killer” application besides education



