Efficient Algorithms for Computing the Nearest Polynomial With A Real Root and Related Problems

Erich Kaltofen North Carolina State University www.math.ncsu.edu/~kaltofen

Joint work with: Markus Hitz (North Georgia College) Lakshman Y. N. (Bell Labs)

ISSAC 1996 – Karmarkar and Lakshman Nearest approximate GCD in the l^2 -norm:

Let $f, g \in \mathbb{C}[z]$, both monic, deg(f) = m and deg(g) = n. Assuming that GCD(f,g) = 1, find $\tilde{f}, \tilde{g} \in \mathbb{C}[z]$ monic of the same degrees, such that

GCD
$$(\tilde{f}, \tilde{g})$$
 is non-trvial and
 $\mathcal{N} = \|f - \tilde{f}\|^2 + \|g - \tilde{g}\|^2$ is minimized.

||f|| denotes a norm of the coefficient vector of f.

The *symbolic* minimum of \mathcal{N} with respect to a common root $\alpha \in \mathbb{C}$ can be obtained in closed-form:

$$\mathcal{N}_{min} = \frac{\overline{f(\alpha)}f(\alpha)}{\sum_{k=0}^{m-1}(\overline{\alpha}\alpha)^k} + \frac{\overline{g(\alpha)}g(\alpha)}{\sum_{k=0}^{n-1}(\overline{\alpha}\alpha)^k}$$

The individual perturbations of the coefficients of f and g are

$$f_i - \tilde{f}_i = \frac{(\overline{\alpha})^i f(\alpha)}{\sum_{k=0}^{m-1} (\overline{\alpha} \alpha)^k}$$
 and $g_j - \tilde{g}_j = \frac{(\overline{\alpha})^j g(\alpha)}{\sum_{k=0}^{n-1} (\overline{\alpha} \alpha)^k}$

($\overline{\alpha}$ is the complex conjugate).

Reduced Problem: Given $f \in \mathbb{C}[z]$ and $\alpha \in \mathbb{C}$. Find $\tilde{f} \in \mathbb{C}[z]$, s.t. $\tilde{f}(\alpha) = 0$, and $||f - \tilde{f}|| = \min$.

Let

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

$$\tilde{f}(z) = (z - \alpha) \sum_{k=0}^{n-1} u_k z^k$$

$$= u_{n-1} z^n + (u_{n-2} - \alpha) z^{n-1} + (u_{n-3} - \alpha u_{n-2}) z^{n-2} + \dots + (u_0 - \alpha u_1) z - \alpha u_0$$

In terms of linear algebra:

$$\|f - \tilde{f}\| = \min_{\mathbf{u} \in \mathbb{C}^n} \|\mathbf{P}\mathbf{u} - \mathbf{b}\|$$
(1)

$$\mathbf{b} = [a_0, \dots, a_{n-1}, a_n]^{tr} \in \mathbb{C}^{n+1}$$
$$\mathbf{u} = [u_0, \dots, u_{n-1}]^{tr} \in \mathbb{C}^n$$

$$\mathbf{P} = \begin{bmatrix} -\alpha & 0\\ 1 & -\alpha & \\ & \ddots & \ddots & \\ 0 & 1 & -\alpha \\ & & 1 \end{bmatrix} \in \mathbb{C}^{(n+1) \times n}$$
(2)

(1) is an over-determined linear system of equations.

LP problem, if
$$\|\cdot\|$$
 is the $\begin{cases} l^{\infty} & \text{norm, or} \\ l^{1} & \text{norm} \end{cases}$
LS problem, if $\|\cdot\|$ is the l^{2} norm.

Solutions for the l^2 -norm in closed form:

$$\mathcal{N}_{min}(\alpha) = \|f - \tilde{f}\|^2 = \frac{\overline{f(\alpha)}f(\alpha)}{\sum_{k=0}^{n}(\overline{\alpha}\alpha)^k}, \quad f_j - \tilde{f}_j = \frac{(\overline{\alpha})^j f(\alpha)}{\sum_{k=0}^{n}(\overline{\alpha}\alpha)^k}$$

(also derived in Corless et al. [ISSAC'95] via SVD)

Constraining a Root Locus to a Curve

Let Γ be a piecewise smooth curve with finitely many segments, each having a parametrization $\gamma_k(t)$ in a single real parameter *t*.

For a given polynomial $f \in \mathbb{C}[z]$, we want to find a minimally perturbed polynomial $\tilde{f} \in \mathbb{C}[z]$ that has (at least) one root on Γ .

Parametric Minimization

We substitute the parametrization $\gamma_k(t)$ for the indeterminate α in $\mathcal{N}_{min}(\alpha)$. The resulting expression is a function in $t \in \mathbb{R}$.

It attains its minima at its *stationary* points. We have to compute the *real* roots of the derivative.

The derivative of the norm-expression is determined *symbolically*, the roots can be computed numerically.

Algorithm C

Input: $f \in \mathbb{C}[z]$, and a curve Γ .

- Output: $\tilde{f} \in \mathbb{C}[z]$, and $\tau \in \mathbb{R}$, s.t. $\tilde{f}(\gamma_k(\tau)) = 0$ for some segment of Γ , and $||f \tilde{f}||_2 = \min$.
- (\mathbf{C}_1) For each segment of Γ :
 - (**C**_{1.1}) Substitute $\gamma_k(t)$ for α in the symbolic minimum $\mathcal{N}_{min}(\alpha) \mapsto N(t)$.
 - (C_{1.2}) Symbolically determine the derivative N'(t).
 - (C_{1.3}) Compute the *real* roots (of the numerator) of N'(t). Select the one that minimizes N(t).
- (**C**₂) From all $N(\tau_k)$ of step (**C**_{1.3}) determine the minimum $N(\tau)$.
- (C₃) Compute the perturbations δ_j . Return \tilde{f} , k, and τ .

Computing the Radius of Stability in the *l*²**-Norm**

Definition: Let $\mathcal{D} \subset \mathbb{C}$ be an open, and convex domain of the complex plane. The polynomial $f \in \mathbb{C}[z]$ is called \mathcal{D} -stable, if all its roots are located within \mathcal{D} .

Special cases: – the left half-plane: *Hurwitz* stability – the open unit-disc: *Schur* stability

Given a \mathcal{D} -stable polynomial f, how much can we perturb its coefficients such that the perturbed polynomial is still \mathcal{D} -stable? If we have a (piecewise) real parametrization of the boundary ∂D then we can apply our algorithm to find a *nearest unstable* polynomial.

Theorem: Let $f \in \mathbb{C}[z]$ be \mathcal{D} -stable, and

let $\hat{f} \in \mathbb{C}[z]$ be an unstable polynomial, such that $||f - \hat{f}|| = \varepsilon$, where $\varepsilon \in \mathbb{R}, \varepsilon > 0$.

Then, there exists $\tilde{f} \in \mathbb{C}[z]$ and $\zeta \in \partial \mathcal{D}$ such that

$$||f - \tilde{f}|| \le \varepsilon$$
 and $\tilde{f}(\zeta) = 0$.

Example (of a monic polynomial)

$$f(z) = z^{3} + (2.41 - 3.50\mathbf{i})z^{2} + (2.76 - 5.84\mathbf{i})z$$

-1.02 - 9.25 \mathbf{i}

is Hurwitz.

Root locations: -1.04 + 3.10**i**, -.99 - 1.30**i**, -.37 + 1.70**i**

Nearest unstable polynomial:

$$\tilde{f}(z) = z^3 + (2.7037 - 3.1492\mathbf{i})z^2 + (2.5740 - 5.6842\mathbf{i})z - 1.1026 - 9.3486\mathbf{i}.$$

Radius of stability in the l^2 -norm: 0.533567.

Tchebycheff's nearest consistency: $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$:

$$\min_{\hat{\mathbf{x}}} \|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\|_{\infty} = \min_{\hat{\mathbf{x}}} \left(\max_{1 \le i \le m} \left| b_i - \sum_{j=1}^n a_{i,j}\hat{x}_j \right| \right)$$

Solution by linear programming:

minimize: δ

linear constraints:
$$\delta \ge b_i - \sum_{j=1}^n a_{i,j} \hat{x}_j \ (1 \le i \le m)$$

 $\delta \ge -b_i + \sum_{j=1}^n a_{i,j} \hat{x}_j \ (1 \le i \le m)$

Special case: Stiefel's 1959 theorem Let **A** be a matrix

$$\mathbf{A} = \begin{bmatrix} a_{0,0} \cdots a_{0,n-1} \\ \vdots & \vdots \\ a_{n,0} \cdots a_{n,n-1} \end{bmatrix} \in \mathbb{R}^{(n+1) \times n}$$

of rank *n* such that no row of **A** is the zero vector, and let $\mathbf{b} = [b_0, \dots, b_n] \in \mathbb{R}^{n+1}$ such that $\mathbf{A}\mathbf{x} \neq \mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^n$. Then

$$\delta = \min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} = \left| \frac{\sum_{i=0}^n \lambda_i b_i}{\sum_{i=0}^n |\lambda_i|} \right|,$$

where $\Lambda = [\lambda_0, ..., \lambda_n]^{tr} \neq 0$ is a linear dependency among the rows of **A**, i.e., $\Lambda^{tr} \mathbf{A} = 0$.

Special case: nearest polynomial with root α :

$$\delta(\boldsymbol{\alpha}) = \min_{\mathbf{u} \in \mathbb{R}^n} \|\mathbf{P}\mathbf{u} - \mathbf{b}\|_{\infty} = \left| \frac{\sum_{i=0}^n \lambda_i a_i}{\sum_{i=0}^n |\lambda_i|} \right| = \left| \frac{f(\boldsymbol{\alpha})}{\sum_{i=0}^n |\boldsymbol{\alpha}^i|} \right|.$$
(3)

Stiefel's theorem also gives algorithm for finding **u**.

Parametric α : must minimize rational function (3).

$$f(x) = x^2 + 1, \ \tilde{f}(x) = \frac{1}{3}x^2 - \frac{2}{3}x + \frac{1}{3}, \ \delta = \frac{2}{3}.$$

 $f(x) = x^2 + x + 2, \ \tilde{f}(x) = x + 2 = \dots, \ \delta = 1.$

 $f(x) = \prod_{k=1}^{10} (x - k - \mathbf{i}) (x - k + \mathbf{i}), \, \delta \le 5.8210^{-10}.$

Nearest matrix with a given eigenvalue (Eckart and Young 1936): Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mu \in \mathbb{C}$:

$$\delta_{\mathbf{A}}(\mu) = \min_{\tilde{\mathbf{A}}: \ \mu \text{ is an eigenvalue of } \tilde{\mathbf{A}}} \|\mathbf{A} - \tilde{\mathbf{A}}\| = \frac{1}{\|(\mu \mathbf{I} - \mathbf{A})^{-1}\|}$$

where $\|\cdot\| = \|\cdot\|_{p,p}$ is an **induced matrix norm**.

For

$$\|\mathbf{B}\|_{\infty,\infty} = \max_{i} \sum_{j} |b_{i,j}|, \quad \|\mathbf{B}\|_{1,1} = \max_{j} \sum_{i} |b_{i,j}|,$$

we can solve optimization problem for **real** entries and parameter μ in **polynomial-time**.

Homework: Given $f = \sum f_{i,j} x^i y^j \in \mathbb{C}[x, y]$ absolute irreducible, find $\tilde{f} = (c_0 + c_1 x + c_2 y) u(x, y) \in \mathbb{C}[x, y]$, $\deg(\tilde{f}) \leq \deg(f)$, such that

 $||f - \tilde{f}||_2$ is minimal

("nearest polynomial with a linear factor").

Hint: minimize parametric least square solution in the real and imaginary parts of the c_i .