NC STATE UNIVERSITY

MA 351 Intro Discrete Math Models, second mid-semester examination, Nov 8, 2001
919.515 .8785 (phone)
kaltofen@math.ncsu.edu (email)
www.math.ncsu.edu/~kaltofen/courses/DiscreteModels/Fall01/ (URL)

Your Name:

\qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.
This examination consists of 4 problems, which are subdivided into 10 questions, where each question counts for the explicitly given number of points, adding to a total of 46 points. Please write your answers in the spaces indicated, or below the questions (using the back of the sheets if necessary). You are allowed to consult two $8.5 \mathrm{in} \times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{7 5}$ minutes to do this test.
Good luck!

Total \qquad

Problem 1 (14 points) Consider the following mathematical formula:

$$
\begin{equation*}
(a /(b-c * d+e) * f) \tag{1}
\end{equation*}
$$

(a, 5pts) Please draw an expression tree for (1) that complies with the usual operator precendence rules and left-to-right tie-breaking for operators of equal precendence.
(b, 5pts) Please draw the parse tree for (1) using the context-free grammar given in class.
(c, 4pts) Please give a postfix string of operators and variables, but with no parentheses, that represents the tree given under part (a).

Problem 2 (10 points): Consider the following graph:

(a, 5pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex in numerical order, starting at vertex 1.
(b, 5pts) Using the tree in part (a), find a one-way street assignment for the above graph, i.e., orient the edges so that the resulting digraph is strongly connected.

Problem 3 (12 points):
Consider the following graph (here the vertices are pairs of integers):

(a, 5pts) Is the above "butterfly" graph planar? Please explain.
(b, 2pts) What is the chromatic number of the above "butterfly" graph? Please justify your answer.
(c, 5 pts) True or false: if a graph has n vertices and chromatic number $\chi=n$ it must be the complete graph K_{n}. Please justify your answer.

Problem 4 (10 points):
Consider the following fractal polygonal line.

Here you start out at the origin of the plane and move in the x -axis direction by +1 unit. Then you move in the y-axis direction by $+3 / 4$ units, then in the x -axis direction by $-(3 / 4) \cdot(3 / 4)$ units, then in the y-axis direction by $-(3 / 4)^{3}$ units, then in the x-axis direction by $+(3 / 4)^{4}$ units, and so on.
(a, 5pts) Please determine the x - and y-coordinates of the point on the plane to which this polygonal line is converging.
(b, 5pts) Please give a Lindenmeyer system that would draw the above polygonal line. In addition to the productions, please also give the semantics, i.e., the interpretation, of each variable.

