NC STATE UNIVERSITY

MA 351 Intro Discrete Math Models, second mid-semester examination, Nov 7, 2002
919.515 .8785 (phone)
kaltofen@math.ncsu.edu (email)
www.math.ncsu.edu/~kaltofen/courses/DiscreteModels/Fall02/ (URL)

Your Name: SOLUTION

For purpose of anonymous grading, please do not write your name on the subsequent pages.
This examination consists of 5 problems, which are subdivided into 10 questions, where each question counts for the explicitly given number of points, adding to a total of $\mathbf{4 7}$ points. Please write your answers in the spaces indicated, or below the questions (using the back of the sheets if necessary). You are allowed to consult two 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{7 5}$ minutes to do this test.

Total \qquad

Problem 1 (14 points) Consider the following mathematical formula:

$$
\begin{equation*}
a+b / c-d * e /(f * g) \tag{1}
\end{equation*}
$$

(a, 5pts) Please draw an expression tree for (1) that complies with the usual operator precedence rules and left-to-right tie-breaking for operators of equal precedence.

(b, 5pts) Please draw the parse tree for (1) using the context-free grammar given in class.

(c, 4pts) Please give a prefix string of operators and variables, but with no parentheses, that represents the tree given under part (a).
$-+a / b c / * d e * f g$

Problem 2 (10 points): Consider the following graph:

(a, 5pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex in numerical order, starting at vertex 1.

(b, 5pts) Using the tree in part (a), find a one-way street assignment for the above graph, i.e., please orient the edges so that the resulting digraph is strongly connected.

Problem 3 (13 points):
Consider the 4-dimensional hypercube (with the given vertex labeling):

(a, 6pts) Please draw a subgraph that is homeomorphic to $K_{3,3}$. [Hint: choose as the first subset $\{0,3,5\}$ and as the second another 3 vertices on the outer cube.]

(b, 5pts) What is the chromatic number of the above 4-D hypercube? Please justify your answer.

2; see coloring above ($r=$ red, $g=$ green). There is a 2 -clique (an edge), so 2 colors are necessary.
(c, 2pts) Give an example of a graph such that the clique number is smaller than the chromatic number.

Problem 4 (6 points): Please consider the following fractal staircase.

Here you start with a square of sidelength $=1$ unit. You add a square of half the sidelength on the right-top and left-bottom. For each square added, you continue this process, to infinity. Please determine the area and length of the boundary for the fractal.

Area: $1+2 \cdot\left(\frac{1}{2}\right)^{2}+4 \cdot\left(\frac{1}{4}\right)^{2}+8 \cdot\left(\frac{1}{8}\right)^{2}+\cdots+2^{i} \cdot\left(\frac{1}{2^{i}}\right)^{2}+\cdots$ $=\sum_{i=0}^{\infty} \frac{1}{2^{i}}=\frac{1}{1-1 / 2}=2$.
Boundary: $4+2 \cdot 1+2 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+\cdots+2 \cdot \frac{1}{2^{i}}+\cdots$

$$
=4 \cdot \sum_{i=0}^{\infty} \frac{1}{2^{i}}=4 \cdot 2=8
$$

Problem 5 (4 points): Consider the following Lindenmeyer system: $A \rightarrow A B, B \rightarrow A C, C \rightarrow B D$, $D \rightarrow B$. Please write down the first 4 new generations of strings starting with A.
$A \rightarrow A B \rightarrow A B A C \rightarrow A B A C A B B D \rightarrow A B A C A B B D A B A C A C B$.

