NC STATE UNIVERSITY

MA 351 Intro Discrete Math Models, second mid-semester examination, Nov 7, 2002 ${\tt kaltofen@math.ncsu.edu}$ (email)

919.515.8785 (phone) 919.515.3798 (fax)

www.math.ncsu.edu/~kaltofen/courses/DiscreteModels/Fall02/(URL)

Your Name: SOLUTION

For purpose of anonymous grading, please do **not** write your name on the subsequent pages.

This examination consists of 5 problems, which are subdivided into 10 questions, where each question counts for the explicitly given number of points, adding to a total of **47 points**. Please write your answers in the spaces indicated, or below the questions (using the back of the sheets if necessary). You are allowed to consult **two** 8.5in \times 11in sheets with notes, but **not** your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have **75 minutes** to do this test.

Good luck!

Problem 1	
2	
3	
4	
5	
Total	

Problem 1 (14 points) Consider the following mathematical formula:

$$a + b/c - d * e/(f * g) \tag{1}$$

(a, 5pts) Please draw an expression tree for (1) that complies with the usual operator precedence rules and left-to-right tie-breaking for operators of equal precedence.

(b, 5pts) Please draw the parse tree for (1) using the context-free grammar given in class.

(c, 4pts) Please give a **pre**fix string of operators and variables, but with no parentheses, that represents the tree given under part (a).

$$-+a/bc/*de*fg$$

Problem 2 (10 points): Consider the following graph:

(a, 5pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex **in numerical order**, starting at vertex 1.

(b, 5pts) Using the tree in part (a), find a one-way street assignment for the above graph, i.e., please orient the edges so that the resulting digraph is strongly connected.

Problem 3 (13 points): Consider the 4-dimensional hypercube (with the given vertex labeling):

(a, 6pts) Please draw a subgraph that is homeomorphic to $K_{3,3}$. [Hint: choose as the first subset $\{0,3,5\}$ and as the second another 3 vertices on the outer cube.]

(b, 5pts) What is the chromatic number of the above 4-D hypercube? Please justify your answer.

2; see coloring above (r = red, g = green). There is a 2-clique (an edge), so 2 colors are necessary.

(c, 2pts) Give an example of a graph such that the clique number is smaller than the chromatic number.

Problem 4 (6 points): Please consider the following fractal staircase.

Here you start with a square of sidelength = 1 unit. You add a square of half the sidelength on the right-top and left-bottom. For each square added, you continue this process, to infinity. Please determine the area and length of the boundary for the fractal.

Area:
$$1+2\cdot \left(\frac{1}{2}\right)^2 + 4\cdot \left(\frac{1}{4}\right)^2 + 8\cdot \left(\frac{1}{8}\right)^2 + \dots + 2^i \cdot \left(\frac{1}{2^i}\right)^2 + \dots$$

$$= \sum_{i=0}^{\infty} \frac{1}{2^i} = \frac{1}{1-1/2} = 2.$$
Boundary: $4+2\cdot 1 + 2\cdot \frac{1}{2} + 2\cdot \frac{1}{4} + \dots + 2\cdot \frac{1}{2^i} + \dots$

$$= 4\cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = 4\cdot 2 = 8.$$

Problem 5 (4 points): Consider the following Lindenmeyer system: $A \rightarrow AB$, $B \rightarrow AC$, $C \rightarrow BD$, $D \rightarrow B$. Please write down the first 4 new generations of strings starting with A.

 $A \rightarrow AB \rightarrow ABAC \rightarrow ABACABBD \rightarrow ABACABBDABACACB$.