Problem 1 (14 points) Consider the following mathematical formula:

$$
\begin{equation*}
(a / b / c-d * e)+(f)-g \tag{1}
\end{equation*}
$$

($\mathrm{a}, 5 \mathrm{pts}$) Please draw an expression tree for (1) that complies with the usual operator precedence rules and left-to-right tie-breaking for operators of equal precedence.

(b, 5pts) Please draw the parse tree for (1) using the context-free grammar given in class.

(c, 4pts) Please give both a fully parenthesized infix string of variables, operators and parentheses and a prefix string of only variables and operators that represent the tree given under part (a).

06

Problem 2 (13 points): Consider the following graph:

($\mathrm{a}, 5 \mathrm{pts}$) Please draw the depth-first search tree for the above graph, processing the neighboring yerties of each vertex in numerical order, starting at vertex 1.

(b, 5pts) Using the tree in part (a), find a one-way street assignment for the above graph, ie., please orient the edges so that the resulting digraph is strongly connected.
ore 2

no
\qquad

(c, 3pts) What is the size of the maximum clique in the above graph? Please explain.

Problem 3 (10 points): Consider the 4-dimensional de Bruijn graph with 16 vertices:

(a, 5pts) Please draw a subgraph that is homeomorphic to K_{4} (the complete graph with four vertices).

(b, 5pts) What is the chromatic number of the above de Bruijn graph? Please justify your answer.

$$
\begin{aligned}
& x=3 \text { as shown. } \quad x \geqslant 3 \text { because the } \\
& x=32 \\
& \text { coloring } 2 \quad 1 \\
& 4 \text { coloring }+2 \\
& x=4 \text { bee. } k_{4} \text { no credit. }
\end{aligned}
$$

Problem 4 (8 points): Please consider the H -tree.

Here one starts with an H -figure, whose side lengths are 1. The figure thus has 5 lines of total length 5. Then one adds on the 4 vertical lines 4 H -figures of side length $c<1$ as shown. At this stage, a total of $12 c$ in line length is added. One continues to add 16 H -figures of side length c^{2}, 32 H -figures of side length c^{3}, etc.
If the process of adding smaller and smaller H -figures is continued to infinity, what is the total length of lines drawn in dependence on c ? Please show your computation.

Problem 5 (4 points): Consider the following Lindenmeyer system: $A \rightarrow B C, B \rightarrow A C, C \rightarrow D \alpha$, $D \rightarrow A B, \alpha \rightarrow \alpha$. Please write down the first 4 new generations of strings starting with A.

$$
\begin{aligned}
A & \rightarrow B C \rightarrow A C D \alpha \rightarrow B C D \propto A B \alpha \\
& \rightarrow A C D \propto A B \propto B C A C \alpha
\end{aligned}
$$

