## NC STATE UNIVERSITY

MA 351 Intro Discrete Math Models, second mid-semester examination, Nov 5, 2009
919.515 .8785 (phone)

Prof. Erich Kaltofen [kaltofen@math.ncsu.edu](mailto:kaltofen@math.ncsu.edu)
www.math.ncsu.edu/~kaltofen/courses/DiscreteModels/Fall09/index.html (URL)

## Your Name: SOLUTION

For purpose of anonymous grading, please do not write your name on the subsequent pages.
This examination consists of 6 problems, which are subdivided into 12 questions, where each question counts for the explicitly given number of points, adding to a total of $\mathbf{5 0}$ points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult two 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{7 5}$ minutes to do this test.


Total $\qquad$

Problem 1 (12 points): Consider the following mathematical expression in prefix notation, assuming that each of the operators $+,-, *, /$ has two operands.

$$
\begin{equation*}
+-* / a+b c+\operatorname{defg} \tag{1}
\end{equation*}
$$

(a, 4pts) Please draw an expression tree for (1).

(b, 4pts) Please give a minimally parenthesized infix expression for (1).
$a /(b+c) *(d+e)-f+g$
(c, 4pts) Please draw the parse tree for your answer (b) using the context-free grammar given in class.

Problem 2 (8 points): Consider binary trees in which each node has either 0 children, or one left or one right child, or both.
(a, 4pts) Such a tree with 8 nodes has been linearized by our method to (( ())()())()(()). Please draw the tree.

(b, 4pts) How many such trees with 8 nodes exist?

Problem 3 (8 points): Consider the following graph:


Figure 1.
(a, 5pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex in numerical order, starting at vertex 1.

(b, 3pts) Using the DFS tree in part (a), find a one-way street assignment for the above graph, i.e., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1 above.

Problem 4 (4 points): Suppose $\omega(G)$ is the clique number, $\chi(G)$ the chromatic number and $\Delta(G)$ the maximum vertex degree of a graph $G$. Please draw a graph for which simultaneously the inequalities $\omega(G)<\chi(G)$ and $\chi(G)<\Delta(G)$ hold.

Problem 5 (8 points): Please consider the 4-dimensional "de Bruijn plus graph" with 16 vertices, which has the additional edge $\{6,9\}$.


Figure 2.
(a, 6pts) Please draw a subgraph that is homeomorphic to $K_{5}$ (the complete graph with 5 vertices). Hint: Choose 3, 6, 9 and two more vertices as the corner vertices of the $K_{5}$-like subgraph.

(b, 2pts) Please 3-color the de Bruijn plus graph by marking the vertices in Figure 2 above with the colors R,G,B.

Problem 6 (10 points): Please consider the square snowflake fractal:


Here one starts with a square, whose side length is 1 (left figure above). Each side is exuded in the first iteration by a square of side length $1 / 3$ in the middle of the side, creating $4 \cdot 5=20$ sides of length $1 / 3$ on the boundary (middle figure above). The process continues on each of those 20 sides with squares of side length $1 / 9$. Note that after that 2 nd iteration, there are 8 "holes" in the fractal as shown in the right figure above.
(a, 6 pts) At iteration $i$, please state how much area $A_{i}$ is added. Note that $A_{1}=4 / 9$. Please also state the length of the boundary $B_{i}$ at iteration $i$. Note that $B_{1}=20 / 3$.
(b, 4 pts$)$ Please compute $\sum_{i=1}^{\infty} A_{i}$. Please show your work.

