2009
Problem 1 (12 points): Consider the following mathematical expression in prefix notation, assuming that each of the operators $+,-, *, /$ has two operands.

$$
\begin{equation*}
+-* / a+b c+d e f g \tag{1}
\end{equation*}
$$

(a, 4pts) Please draw an expression tree for (1).

(b, 4pts) Please give a minimally parenthesized infix expression for (1).

$$
a /(b+c) *(d+e)-f+g \quad-1
$$

(c, 4pts) Please draw the parse tree for your answer (b) using the context-free grammar given in class.

2009

Problem 2 (8 points): Consider binary trees in which each node has either 0 children, or one left or one right child, or both.
(a, 4pts) Such a tree with 8 nodes has been linearized by our method to $(())()())()(())$. Please draw the tree.
left subtree

worry - 2

$$
\quad x 52
$$

$$
0
$$

(b, 4pts) How many such trees with 8 nodes exist?

$$
\begin{aligned}
\frac{1}{9}\binom{16}{8} & =\frac{1 \% \cdot 16 \cdot y \cdot 13 \cdot 1 \cdot 11 \cdot \psi \cdot x}{1 \cdot x \cdot 23 \cdot 4 \cdot y \cdot x \cdot y \cdot x \cdot y} \\
& =10 \cdot 13 \cdot 11 \\
& =1300=1430
\end{aligned}
$$

Figure 1.

(a, 5pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex in numerical order, starting at vertex 1.

(b, 3pts) Using the DFS tree in part (a), find a one-way street assignment for the above graph, ie., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1 above.

2009

Problem 4 (4 points): Suppose $\omega(G)$ is the clique number, $\chi(G)$ the chromatic number and $\Delta(G)$ the maximum vertex degree of a graph G. Please draw a graph for which simultaneously the inequalities $\omega(G)<\chi(G)$ and $\chi(G)<\Delta(G)$ hold.
one inegu.
$+2$

$$
\begin{aligned}
& w=3 \\
& x=4 \\
& \Delta=5
\end{aligned}
$$

Problem 5 (8 points): Please consider the 4-dimensional "de Bruijn plus graph " with 16 vertices, which has the additional edge $\{6,9\}$.

(a, opts) Please draw a subgraph that is homeomorphic to K_{5} (the complete graph with 5 vertices). Hint: Choose 3, 6, 9 and two more vertices as the corner vertices of the K_{5}-like subgraph.

(b, 2pts) Please 3-color the de Bruin plus graph graph by marking the vertices in Figure 2 above with the colors R,G,B.
color hame omarghic image no credit

2009

Problem 6 (10 points): Please consider the square snowflake fractal:

Here one starts with a square, whose side length is 1 (left figure above). Each side is exuded in the first iteration by a square of side length $1 / 3$ in the middle of the side, creating $4 \cdot 5=20$ sides of length $1 / 3$ on the boundary (middle figure above). The process continues on each of those 20 sides with squares of side length $1 / 9$. Note that after that 2 nd iteration, there are 8 "holes" in the fractal as shown in the right figure above.
(a, 6 pts) At iteration i, please state how much area A_{i} is added. Note that $A_{1}=4 / 9$. Please also state the length of the boundary B_{i} at iteration i. Note that $B_{1}=20 / 3$.

$$
\begin{aligned}
& 3 \\
& 3 \\
& \begin{array}{l}
\text { your } \\
\text { Story }
\end{array} \\
& A_{i}=4 \cdot 5^{i-1} \frac{1}{\left(3^{i}\right)^{2}} \\
& B_{i}=4 \cdot\left(\frac{5}{3}\right)^{i} \\
& =4+4 \cdot 5^{\circ} \cdot \frac{2}{3}+4 \cdot 5^{\prime} \frac{2}{3^{2}}+\cdots 4 \cdot 5^{i-1} \frac{2}{3^{i}}\left(\frac{20}{3}\right)^{i} \\
& \begin{array}{r}
\text { (b, 4 pts) Please compute } \sum_{i=1}^{\infty} A_{i} \text {. Please show your work. }=4+\frac{8}{3} \sum_{j=0}^{i-1}\left(\frac{5}{3}\right)^{i-1}=\frac{4}{5}\left(\frac{5}{9}\right)^{i} \\
\left.\sum_{i=1}^{\infty} A_{i}=\frac{4}{9} \sum_{i=1}^{\infty}\left(\frac{5}{9}\right)^{i-1} \frac{8^{4}}{3} \frac{5}{3}\right)^{i-1} \\
=4 \cdot\left(\frac{5}{3}\right)^{i}
\end{array} \\
& \text { 2-3 pts } \\
& \text { if corned fora) } \\
& =\frac{a}{9} \frac{1}{1-5 / 9}=1
\end{aligned}
$$

