Problem 1 (10 points): Consider the following mathematical expression in parenthesized infix notation.

$$
\begin{equation*}
a+b-c * d /(e / f+g)-(h) \tag{1}
\end{equation*}
$$

(a, 4pts) Using precedence rules and left-to-right tie breaking for operator priority, please draw the expression tree for (1).

(b, 2pts) Please give both the prefix and postfix representation, which only has variables and opera-

$$
\begin{aligned}
& \text { Tors, for the expression (1) } \\
& \begin{array}{l}
a b \\
a b+c d
\end{array}+c d+e f 1 g+1 / g+1 / h
\end{aligned}
$$

(c, 4pts) Please draw the parse tree for (1) above using the context-free grammar given in class.

2010

Problem 2 (6 points): Consider binary trees in which each node has either 0 children, or one left or one right child, or both.
(a, 4 pts) Such a tree with 9 nodes has been linearized by our method from Homework 3 to

2

$$
\begin{aligned}
& \text { (b, pts) How many strings with } 9 \text { balanced pairs of parentheses like the one above exist? } \\
& \binom{18}{9} \text { ppm } C_{q}=\frac{1}{10}\binom{18}{9}=\frac{18 \cdot 17 \cdot 16 \cdot 18 \cdot 4 \cdot 13 \cdot 12}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 8 \cdot 6 \cdot 7 \cdot 8 \cdot 9} \\
& =11.13 .17 .2^{2} \\
& =4862 \\
& \text { Figure } 1 .
\end{aligned}
$$

(a, 4pts) Please draw the depth-first search tree for the above graph, processing the neighboring verties of each vertex in numerical order, starting at vertex 1.

DFS tree
but random order +1
(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the above graph, ie., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1 above, using a different arrow head for those arcs that correspond to edges in the DFS tree.

$$
\geqslant 3 \text { arrow wo pr }
$$

2010

etc.

Problem 4 (6 points): What is the chromatic number of the n-dimensional hypercube? Please explain.
Stephen $X\left(H_{n}\right)=2$ Color each vertex with on Romney even male of I 's R, the others G. $\geqslant 2$ Since on edge connects 2 reerlices with Hamming distance ', the number of I's changes bey 1, so do the colors.
Problem 5 (8 points): Please consider the 3×3 tori mesh with 9 vertices.

Please draw a subgraph that is homeomorphic to K_{5} (the complete graph with 5 vertices).

2 3pts expeom. 3pts $x(G) \leq \omega(G)$ no credit

4

Problem 6 (8 points): Please consider the modified square snowflake fractal:
\qquad $\boxed{\square} \square$
Here one starts with a line segment, whose length is 1 (left figure above). Each line is exuded in the first iteration by a square of side length $1 / 3$ in the middle of the segment, creating 5 line segments of length $1 / 3$ (middle figure above). The process continues on each of the 3 horizontal of those 5 line segments, creating 9 horizontal lines segments of length $1 / 9$ for the next step. Please give (a) the total length L_{i} of all horizontal and vertical line line segments after i iterations, where $L_{0}=1,13$ and $L_{1}=5 / 3$, and (b) the area of the squares $\lim _{i \rightarrow \infty} A_{i}$, where $A_{1}=1 / 9$ and $A_{2}=4 / 27, A_{3}=81$

$$
\begin{aligned}
& L_{i}=1+\frac{2}{3}+\underbrace{3 \cdot \frac{2}{4}}_{0}+\cdots+\underbrace{3^{i-1} \frac{2}{3}}_{\frac{2}{3}}=1+\frac{2}{3} i \underbrace{3}_{\text {pts }}\left(\frac{5}{3}\right)^{i} \\
& \begin{array}{l}
A_{i}=0+\frac{1}{9}+3 \cdot \frac{1}{81}+\cdots+\underbrace{3^{i-1} \frac{1}{\left(3^{i}\right)^{2}}} \text { pts } \\
\lim _{i \rightarrow \infty} A_{i}=\frac{1}{9} \frac{1}{1-\frac{1}{3}}=\frac{1}{6} \frac{1}{3^{i+1}}=\frac{1}{9} \frac{1}{3^{i-1}}
\end{array} \\
& \begin{array}{l}
=x \cdot \frac{1}{1-x} \quad \lim _{i \rightarrow \infty} \quad A_{i}=\frac{1}{9} \frac{1}{1-\frac{1}{3}}=\frac{1}{6} \frac{1}{3^{i+1}}=\frac{1}{9} \frac{1}{3^{i}-} \\
\quad \text { Problem } 7 \text { (6 points): Consider the following variant of Fibonacci's rabbits problem: Each pair }
\end{array} \\
& \text { takes } 2 \text { months to mature, and then after every additional month gives birth to } 2 \text { pairs of rabbits. Of } \\
& \text { Perdu - those, only one pair is fertile and long-lived, while both rabbits of the other pair die after } 2 \text { months. } \\
& \text { Please (a) model the variant by a Lindenmeyer system, annotating each variable by what type of } \\
& \text { pair it represents, and (b) give the first } 5 \text { new generations of the system, starting at generation } 0 \\
& \text { with a single pair of newly born fertile and long-lived rabbits. }
\end{aligned}
$$

3 pts

plain Fibo: ho credit'

$$
4 \text { gen. }-1 \quad \rightarrow \underbrace{C A D}_{C} \underset{A D B}{C E} \underset{E}{C}
$$

