NC STATE UNIVERSITY

MA 351 Intro Discrete Math Models, second mid-semester ex Prof. Erich Kaltofen <kaltofen@math.ncsu.edu> www.math.ncsu.edu/~kaltofen/courses/DiscreteModels/F</kaltofen@math.ncsu.edu>		919.515.8785 (phone) 919.515.3798 (fax)
Your Name: For purpose of anonymous grading, please do not write your name on the subsequent pages.		
This examination consists of 7 problems, which are subdivided into 10 questions, where each question counts for the explicitly given number of points, adding to a total of 50 points . Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work , if necessary. You are allowed to consult two 8.5 in \times 11in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.		
You will have 75 minutes to do this test.		Good luck!
Problem 1		
2		
3		
4		
5		
6		
7		

Total ____

Problem 1 (8 points): Consider the following mathematical expression in **post**fix notation. assuming that each of the operators $+,-,*,/,\uparrow$ has two operands (\uparrow is exponentiation).

$$abc \uparrow \uparrow de / *fgh - /+$$
 (1)

- (a, 4pts) Please draw the expression tree for (1).
- (b, 4pts) Please give both the **minimally parenthesized in**fix and the **pre**fix representations for the expression (1), the latter of which only has variables and operators.

Problem 2 (7 points): Please parse the string

$$(\bot)(\bot)((\bot)\bot)\bot$$

with the context-free grammar of three meta-symbols $\langle T \rangle, \langle L \rangle, \langle R \rangle$, three terminal symbols $(,), \bot$, rules

$$\langle T \rangle \to (\langle L \rangle) \langle R \rangle, \quad \langle L \rangle \to \langle T \rangle, \quad \langle L \rangle \to \bot, \quad \langle R \rangle \to \langle T \rangle, \quad \langle R \rangle \to \bot,$$

and start symbol $\langle T \rangle$.

Problem 3 (7 points):

Please consider the 5×5 grid graph (with the given vertex labeling): How many of the shortest paths from vertex 1 to vertex 25 do not cross the diagonal, that is, do not contain any of the vertices 2, 3, 4, 5, 8, 9, 10, 14, 15, 20? Please explain.

Problem 4 (6 points): Consider the following graph:

Figure 1.

(a, 4pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex **in numerical order**, starting at vertex **1**.

(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3, i.e., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1, using a different arrow head for those arcs that correspond to edges in the DFS tree.

Problem 5 (8 points): Please consider the 3-D cube graph with an additional interior diagonal edge $\{2,7\}$.

Please draw a subgraph that is homeomorphic to $K_{3,3}$, which denotes the complete bipartite graph from 3 to 3 vertices.

Problem 6 (4 points): Consider the following Lindenmayer system: $X \to YaZ$, $a \to a$, $Y \to Xb$, $b \to b$, $Z \to dX$, $d \to d$. Please write down the first 4 new generations of strings starting with X.

Problem 7 (10 points): Please consider the following cubic fractal:

Here one starts with a square, whose length is 1 (left figure above). The middle square of side length 1/3 is exuded by a cube of side length 1/3 (middle figure above).

In the second iteration, the middle squares (of side length 1/9) of each of the 9 horizontal squares of side lengths 1/3, that is, the 8 exposed bottom horizontal squares + the top square face of the cube, are exuded by cubes of side length 1/9 (right figure, bird's eye view).

The process continues with 81 horizontal squares of side length 1/9, who have their middle squares of side length 1/27 exuded by cubes of side length 1/27.

(a, 5 pts) Please give the total area A_i of all horizontal and vertical square faces after i iterations, where $A_0 = 1$ and $A_1 = 13/9$ (note that the bottom hashed face of the cube is not added).

(b, 5 pts) Please give the total volume of all the cubes $\lim_{i\to\infty} V_i$, where $V_1=1/27$ and $V_2=4/81$.