NC STATE UNIVERSITY

MA 351 Intro Discrete Math Models, second mid-semester examination, Thu, Nov 3, 2011
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/DiscreteModels/Fall11/index.html (URL)
Your Name: \qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.
This examination consists of 7 problems, which are subdivided into 10 questions, where each question counts for the explicitly given number of points, adding to a total of $\mathbf{5 0}$ points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult two 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{7 5}$ minutes to do this test.

Total \qquad

Problem 1 (8 points): Consider the following mathematical expression in postfix notation. assuming that each of the operators $+,-, *, /, \uparrow$ has two operands (\uparrow is exponentiation).

$$
\begin{equation*}
a b c \uparrow \uparrow d e / * f g h-/+ \tag{1}
\end{equation*}
$$

(a, 4pts) Please draw the expression tree for (1).
(b, 4pts) Please give both the minimally parenthesized infix and the prefix representations for the expression (1), the latter of which only has variables and operators.

Problem 2 (7 points): Please parse the string

$$
(\perp)(\perp)((\perp) \perp) \perp
$$

with the context-free grammar of three meta-symbols $\langle T\rangle,\langle L\rangle,\langle R\rangle$, three terminal symbols $(),, \perp$, rules

$$
\langle T\rangle \rightarrow(\langle L\rangle)\langle R\rangle, \quad\langle L\rangle \rightarrow\langle T\rangle, \quad\langle L\rangle \rightarrow \perp, \quad\langle R\rangle \rightarrow\langle T\rangle, \quad\langle R\rangle \rightarrow \perp,
$$

and start symbol $\langle T\rangle$.

Problem 3 (7 points):

Please consider the 5×5 grid graph (with the given vertex labeling):
How many of the shortest paths from vertex 1 to vertex 25 do not cross the diagonal, that is, do not contain any of the vertices $2,3,4,5,8,9,10,14,15,20$? Please explain.

Problem 4 (6 points): Consider the following graph:

Figure 1.
(a, 4pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex in numerical order, starting at vertex 1.
(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3 , i.e., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1, using a different arrow head for those arcs that correspond to edges in the DFS tree.

Problem 5 (8 points): Please consider the 3-D cube graph with an additional interior diagonal edge $\{2,7\}$.

Please draw a subgraph that is homeomorphic to $K_{3,3}$, which denotes the complete bipartite graph from 3 to 3 vertices.

Problem 6 (4 points): Consider the following Lindenmayer system: $X \rightarrow Y a Z, a \rightarrow a, Y \rightarrow X b$, $b \rightarrow b, Z \rightarrow d X, d \rightarrow d$. Please write down the first 4 new generations of strings starting with X.

Problem 7 (10 points): Please consider the following cubic fractal:

Here one starts with a square, whose length is 1 (left figure above). The middle square of side length $1 / 3$ is exuded by a cube of side length $1 / 3$ (middle figure above).

In the second iteration, the middle squares (of side length $1 / 9$) of each of the 9 horizontal squares of side lengths $1 / 3$, that is, the 8 exposed bottom horizontal squares + the top square face of the cube, are exuded by cubes of side length $1 / 9$ (right figure, bird's eye view).

The process continues with 81 horizontal squares of side length $1 / 9$, who have their middle squares of side length $1 / 27$ exuded by cubes of side length $1 / 27$.
(a, 5 pts) Please give the total area A_{i} of all horizontal and vertical square faces after i iterations, where $A_{0}=1$ and $A_{1}=13 / 9$ (note that the bottom hashed face of the cube is not added).
(b, 5 pts) Please give the total volume of all the cubes $\lim _{i \rightarrow \infty} V_{i}$, where $V_{1}=1 / 27$ and $V_{2}=4 / 81$.

