Problem 1 (8 points): Consider the following mathematical expression in postfix notation. assuming that each of the operators $+,-, *, /, \uparrow$ has two operands (\uparrow is exponentiation).

$$
\begin{equation*}
a b c \uparrow \uparrow d e / * f g h-/+ \tag{1}
\end{equation*}
$$

(a, 4pts) Please draw the expression tree for (1).

(b, 4pts) Please give both the minimally parenthesized infix and the prefix representations for the Pts expression (1), the latter of which only has variables and operators. $2 p t s \quad a \uparrow b \uparrow c *(d / e)+f /(g-h)$ $2 p t s+* \uparrow a \uparrow b c / d e / f-g h$

Problem 2 (7 points): Please parse the string

$$
(\perp)(\perp)((\perp) \perp) \perp
$$

with the context-free grammar of three meta-symbols $\langle T\rangle,\langle L\rangle,\langle R\rangle$, three terminal symbols $(),, \perp$, rules

$$
\langle T\rangle \rightarrow(\langle L\rangle)\langle R\rangle, \quad\langle L\rangle \rightarrow\langle T\rangle, \quad\langle L\rangle \rightarrow \perp, \quad\langle R\rangle \rightarrow\langle T\rangle, \quad\langle R\rangle \rightarrow \perp,
$$

and start symbol $\langle T\rangle$.

2011

Problem 3 (7 points):
Please consider the 5×5 grid graph (with the given vertex labeling):
How many of the shortest paths from vertex 1 to vertex 25 do not cross the diagonal, that is, do not contain any of the vertices $2,3,4,5,8,9,10,14,15,20$? Please explain.

Problem 4 (6 points): Consider the following graph:

Figure 1.

no penalty if OK for (a)
($\mathrm{a}, 4 \mathrm{pts}$) Please draw the depth-first search tree for the above graph, processing the neighboring verties of each vertex in numerical order, starting at vertex 1.

2011

(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3, i.e., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1, using a different arrow head for those arcs that correspond to edges in the DFS tree.

Problem 5 (8 points): Please consider the 3-D cube graph with an additional interior diagonal edge \{2,7\}.

Please draw a subgraph that is homeomorphic to $K_{3,3}$, which denotes the complete bipartite graph from 3 to 3 vertices.

Problem 6 (4 points): Consider the following Lindenmayer system: $X \rightarrow Y a Z, a \rightarrow a, Y \rightarrow X b$, $b \rightarrow b, Z \rightarrow d X, d \rightarrow d$. Please write down the first 4 new generations of strings starting with X.

$$
\begin{gathered}
X \rightarrow Y a Z \rightarrow X b a d X \rightarrow Y a Z b a d Y a Z \rightarrow X b a d X b a d X b a d X \\
1 \text { pt }
\end{gathered}
$$

2011

Problem 7 (10 points): Please consider the following cubic fractal:

Here one starts with a square, whose length is 1 (left figure above). The middle square of side length $1 / 3$ is exuded by a cube of side length $1 / 3$ (middle figure above).

In the second iteration, the middle squares (of side length $1 / 9$) of each of the 9 horizontal squares of side lengths $1 / 3$, that is, the 8 exposed bottom horizontal squares + the top square face of the cube, are exuded by cubes of side length $1 / 9$ (right figure, bird's eye view).

The process continues with 81 horizontal squares of side length $1 / 9$, who have their middle squares of side length $1 / 27$ exuded by cubes of side length $1 / 27$.
(a, 5 pts) Please give the total area A_{i} of all horizontal and vertical square faces after i iterations, where $A_{0}=1$ and $A_{1}=13 / 9$ (note that the bottom hashed face of the cube is not added).

$$
\begin{aligned}
& \qquad \text { sum not simplified no penalty } \\
& \begin{array}{l}
A_{i}=1+4 \cdot(1 / 3)^{2}+4 \cdot 3^{2} \cdot\left(1 / 3^{2}\right)^{2}+4 \cdot\left(3^{2}\right)^{2} \cdot\left(1 / 3^{3}\right)^{2}+\cdots+4 \cdot\left(3^{i-1}\right)^{2} \cdot\left(1 / 3^{i}\right)^{2}=1+i \cdot 4 / 9 . \\
\frac{4}{9} \quad 4 \cdot \frac{9}{81} \text { Hot. } \\
\text { goes to } \infty \text { : no credit }
\end{array} \text { : }
\end{aligned}
$$

(b, 5 pts) Please give the total volume of all the cubes $\lim _{i \rightarrow \infty} V_{i}$, where $V_{1}=1 / 27$ and $V_{2}=4 / 81$.

$$
\begin{aligned}
& V_{i}=1 / 27+3^{2} \cdot\left(1 / 3^{2}\right)^{3}+\cdots+\left(3^{i-1}\right)^{2} \cdot\left(1 / 3^{i}\right)^{3}+\cdots=\sum_{i=1}^{\infty} 1 / 3^{i+2}=1 / 27 \cdot 1 /(1-1 / 3)= \\
& 1 / 18 \\
& \frac{1}{81}+\frac{1}{243} q^{i-1}\left(\frac{1}{3}\right)^{3}
\end{aligned}
$$

