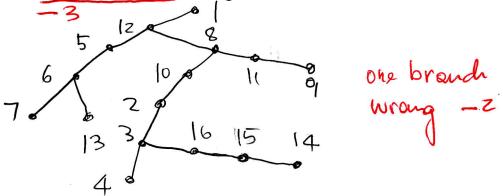

Problem 1 (12 points): Consider the following mathematical expression in **in**fix notation, assuming that each of the binary operators $+, -, *, /, \uparrow$ has two operands, where \uparrow is exponentiation with highest precedence, which is evaluated right-to-left: $a \uparrow b \uparrow c = a \uparrow (b \uparrow c)$:

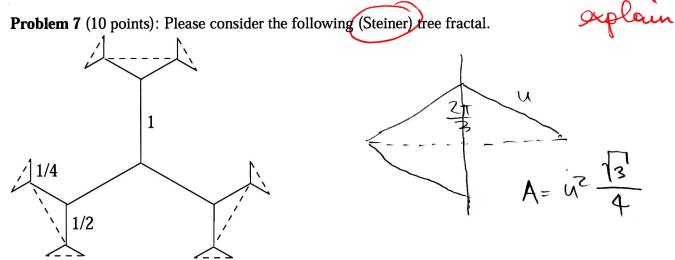

2013

Problem 3 (6 points): Consider the following graph:

(a, 4pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex **in numerical order**, starting at vertex **1**.

-]

(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3, i.e., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1 using a different arrow head for those arcs that correspond to edges in the DFS tree.



Problem 4 (6 points): Consider the following variant of Fibonacci's rabbits problem: *Each pair takes 1 or 2 months to mature, and then after every additional month gives birth to 2 pairs of rabbits. Of those, one pair takes 1 month to mature while the other pair takes 2 months to mature.* Please (a) model the variant by a Lindenmayer system, annotating each variable by what type of pair it represents, and (b) give the first 6 new generations of the system, starting at generation 0 with a single pair of newly born rabbits that takes 1 month to mature.

3 Vays
$$A(nun, 1n)$$
 B_{-2} $C(non, 2n)$ E F
 $h.s.$ B BAC E F FAC
 $A \rightarrow B \rightarrow BAC \rightarrow BAC BE \rightarrow BAC BE BACF$
 $= BAC, BE BAC F BAC BE FAC$
Problem 5 (5 points): Please define the Julia set J_c for $c = -1$, that is, J_{-1} . Please show that
 $-1 \in J_{-1}$ and $2 \notin J_{-1}$.
 $3 \quad J_{-1} = \{b \in C \mid \exists B \in R \rightarrow 0: \forall i = 2. \\ Z_{i} = Z_{i} \in I \}$
 $and Z_{1} = b \Rightarrow |Z_{i}| \leq B \}$
 $b = -1: Z_{2} = b^{2} - 1 = 0, Z_{3} = Z_{2}^{2} - 1 = -1, z_{4} = 0, z_{5} = -1$.
 $b = 2: Z_{2} = b^{2} - 1 = 3, Z_{3} = Z_{2}^{2} - 1 = 8, Z_{4} = S_{-1}^{2} = 63$.
Problem 6 (4 points): The "butterfly effect metaphor explains chaos.
 $2 \quad Butterfly flops Wing \Rightarrow hurricone:$
 $unstelle stote$
 $2 \quad Butterfly in Amazon = hurricone:$
 $unstelle stote$
 $unstelle instellity$

2013

Problem 7 (10 points): Please consider the following (Steiner) ree fractal.

Here one starts at iteration 1 with three line segements of length 1 arranged at a root point with angle $2\pi/3$ (120 degrees). At each tip of the 3 segments, away from the root, one adds at iteration 2 two line segments of length 1/2, again at an angle of $2\pi/3$ to the longer already drawn first segment. At iteration i = 3, one adds at each of the 6 tips a total of 12 segments of lenght 1/4, which is the iteration shown above.

(a, 5 pts) Please give the total length L_i of all line segments, drawn above as solid lines, in the tree after *i* iterations, where $L_1 = 3$. +2

(b, 5 pts) Please give the total area of all obtuse isosceles triangles with dashed base lines and obtuse angle $2\pi/3$ that are added at iteration *i*: note $A_1 = 0$ and $A_2 = 3 \times \sqrt{3}/16$. Finally, please compute $\sum_{i=1}^{\infty} A_i$. 5 L

$$\begin{array}{c} \sum_{i=1}^{\infty} A_{3} = 2 \cdot 3 \cdot \frac{1}{4} \cdot \frac{\sqrt{3}}{16}, A_{4} = 2 \cdot 2 \cdot 3 \cdot \frac{42}{16} \frac{15}{16} \\ A_{1} = 2^{i-2} \cdot 3 \cdot \frac{1}{4^{i-2}} \frac{13}{16} = \frac{3 \cdot \sqrt{3}}{2^{i+2}} \\ \hline 3/16 \\ -2 \\ \end{array}$$