Problem 1 (12 points): Consider the following mathematical expression in infix notation, assuming that each of the binary operators $+,-, *, /, \uparrow$ has two operands, where \uparrow is exponentiation with highest precedence, which is evaluated right-to-left: $a \uparrow b \uparrow c=a \uparrow(b \uparrow c)$:

(b, 4pts) Please give both the prefix and the postfix representations for the expression (1), both of which only have variables and operators.
 (N, T, P, s), which is the one in class extended by exponentiation: $N=\{\langle E\rangle,\langle T\rangle,\langle F\rangle,\langle B\rangle\}$; note that $\langle E\rangle$ is an expression, $\langle T\rangle$ is a term, $\langle F\rangle$ is a factor and $\langle B\rangle$ is the base for a power. $T=\{a, b, \ldots, z,(),,+,-, *, /, \uparrow\}$. The start symbol $s=\langle E\rangle$.
$P=\{\langle E\rangle \rightarrow\langle E\rangle+\langle T\rangle, \quad\langle T\rangle \rightarrow\langle T\rangle *\langle F\rangle, \quad\langle F\rangle \rightarrow\langle B\rangle \uparrow\langle F\rangle, \quad\langle B\rangle \rightarrow(\langle E\rangle)$,

$$
|\langle E\rangle-\langle T\rangle, \quad|\langle T\rangle /\langle F\rangle, \quad|\langle B\rangle, \quad| a|b| \ldots \mid z\}
$$

$\mid\langle T\rangle$,
$\mid\langle F\rangle$,

Problem 2 (4 points): Please consider the binary tree (with left and right children identified): Please give the parenthesis, string from class for the tree, labelling each pair of
 parentheses with the corresponding vertex

Problem 3 (6 points): Consider the following graph:

Figure 1.
(a, 4pts) Please draw the depth-first search tree for the above graph, processing the neighboring verties of each vertex in numerical order, starting at vertex 1.

(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3, ie., please orient the edges so that the resulting digraph is-strongly connected. Please draw your orientation of each edge in Figure 1 using a different arrow head for those arcs that correspond to edges in the DFS tree.

2013
Problem 4 (6 points): Consider the following variant of Fibonacci's rabbits problem: Each pair takes 1 or 2 months to mature, and then after every additional month gives birth to 2 pairs of rabbits. Of those, one pair takes 1 month to mature while the other pair takes 2 months to mature. Please (a) model the variant by a Lindenmayer system, annotating each variable by what type of pair it represents, and (b) give the first \& new generations of the system, starting at generation 0 with a single pair of newly born rabbits that takes 1 month to mature.

$$
\begin{aligned}
& \begin{array}{lllll}
\text { Vars } A \text { (nan, wm }) & B-2 & C(\text { now, } 2 m) & E & F \\
\text { rms. } B & B A C & E & F & F A C
\end{array} \\
& 3 A \rightarrow \underset{1}{B} \rightarrow \underset{2}{B A C} \rightarrow \underset{3}{B A C B E} \rightarrow \underset{4}{B A C} B E B A C F \\
& \rightarrow B A C, B E B A C F B A C B E F A C
\end{aligned}
$$

$$
\begin{aligned}
& 3 J_{-1}=\{b \in \mathbb{C} \mid \exists B \in \mathbb{R}>0: \forall i \geqslant 2 . z_{i}=z_{i}^{2}--1 \\
&\text { and } \left.z_{1}=b \Rightarrow\left|z_{i}\right| \leqslant B\right\} \\
& \mid b=-1: z_{2}=b^{2}-1=0, z_{3}=z_{2}^{2}-1=-1, z_{4}=0, z_{5}=-1, . .
\end{aligned}
$$

Choose $B=1$

$$
b=2: \quad z_{2}=b^{2}-1=3, z_{3}=3^{2}-1=8, \quad z_{4}=8^{2}-1=63,
$$

Problem 6 (4 points): The "butterfly effect" is used as a ficticious state in a system that is chaotic. $Z: \rightarrow \infty$
Please describe how the butterfly effect mon Please describe how the butterfly effect metaphor explains chaos.
2 Butterfly flops wing \Rightarrow hurricane:
unstable state
2 Butterfly in Amazon \Rightarrow hurricane in Atlantic unpredictable instability

2013

Problem 7 (10 points): Please consider the following (Steiner) tree fractal.

Here one starts at iteration 1 with three line segements of length 1 arranged at a root point with angle $2 \pi / 3$ (120 degrees). At each tip of the 3 segments, away from the root, one adds at iteration 2 two line segments of length $1 / 2$, again at an angle of $2 \pi / 3$ to the longer already drawn first segment. At iteration $i=3$, one adds at each of the 6 tips a total of 12 segments of lenght $1 / 4$, which is the iteration shown above.
(a, 5 pts) Please give the total length L_{i} of all line segments, drawn above as solid lines, in the tree after i iterations, where $L_{1}=3 . \quad+2$

$$
\begin{array}{ll}
3+3 \cdot 2 \frac{1}{2}+3 \cdot 2 \cdot 2 \frac{1}{4}+ & 3 \cdot 2^{i-1} \frac{1}{2^{i-1}}=3 \cdot i \\
L_{i} \rightarrow \infty+3 & \sum \text { no penally }
\end{array}
$$

(b, 5 pts) Please give the total area of all obtuse isosceles triangles with dashed base lines and obtuse angle $2 \pi / 3$ that are added at iteration i : note $A_{1}=0$ and $A_{2}=3 \times \sqrt{3} / 16$. Finally, please compute $\sum_{i=1}^{\infty} A_{i}$.

$$
\begin{array}{ll}
\sum_{i=1}^{\infty} \frac{1}{2^{i}} & A_{3}=2 \cdot 3 \cdot \frac{1}{4} \cdot \frac{\sqrt{3}}{16}, A_{4}=2 \cdot 2 \cdot 3 \cdot \frac{1}{42} \cdot \frac{\sqrt{3}}{16} \\
=1 & A_{i}=2^{i-2} \cdot 3 \cdot \frac{1}{4^{i-2}} \frac{\sqrt{3}}{16}=\frac{3 \cdot \sqrt{3}}{2 i+2}
\end{array}
$$

