NC STATE UNIVERSITY

MA 351 Intro Discrete Math Models, second mid-semester examination, Thur, Nov 3, 2016
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/DiscreteModels/Fall16/index.html (URL)
Your Name: \qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.
This examination consists of 6 problems, which are subdivided into 11 questions, where each question counts for the explicitly given number of points, adding to a total of 49 points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult two 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{7 5}$ minutes to do this test.

Problem 1

2
3 \qquad

4 \qquad

5 \qquad

6 \qquad

Total \qquad

If you are taking the exam later, please sign the following statement:
I, \qquad affirm that I have no knowledge of the contents of this exam.

Problem 1 (13 points): Consider the following mathematical expression in infix notation, assuming that each of the binary operators $+,-, *, /, \uparrow$ has two operands, where \uparrow is exponentiation with highest precedence, which is evaluated right-to-left: $a \uparrow b \uparrow c=a \uparrow(b \uparrow c)$:

$$
\begin{equation*}
a-(b+c) \uparrow d * e / f \uparrow g \uparrow h . \tag{1}
\end{equation*}
$$

(a, 4pts) Please draw the expression tree for (1).
(b, 4pts) Please give both the prefix and the postfix representations for the expression (1), both of which only have variables and operators.

PREFIX:

POSTFIX:
(c, 5pts) Please draw the parse tree for (1) above using the following context-free grammar $G=$ (N, T, P, s), which is the one in class extended by exponentiation: $N=\{\langle E\rangle,\langle T\rangle,\langle F\rangle,\langle B\rangle\} ;$ note that $\langle E\rangle$ is an expression, $\langle T\rangle$ is a term, $\langle F\rangle$ is a factor and $\langle B\rangle$ is the base for a power. $T=\{a, b, \ldots, z,(),,+,-, *, /, \uparrow\}$. The start symbol $s=\langle E\rangle$. $P=\{\langle E\rangle \rightarrow\langle E\rangle+\langle T\rangle, \quad\langle T\rangle \rightarrow\langle T\rangle *\langle F\rangle, \quad\langle F\rangle \rightarrow\langle B\rangle \uparrow\langle F\rangle, \quad\langle B\rangle \rightarrow(\langle E\rangle)$,
$|\langle E\rangle-\langle T\rangle, \quad|\langle T\rangle /\langle F\rangle, \quad|\langle B\rangle, \quad| a|b| \ldots \mid z\}$. $|\langle T\rangle, \quad|\langle F\rangle$,

Problem 2 (5 points): Suppose you divide $n=9,10,11, \ldots$ representatives over 3 groups of 300, 300, 100 people by Hamilton's Method. At which n is an "Alabama Paradox" observed. Please show your work.

Problem 3 (6 points): Consider the following graph:

Figure 1.
(a, 4pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex in numerical order, starting at vertex 1.
(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3, i.e., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1, using a different arrow head for those arcs that correspond to edges in the DFS tree.

Problem 4 (10 points): Please consider the following 3×3 mesh-like graph with wrap-around edges $\{1,3\},\{4,6\},\{7,9\}$ and the diagonal edge $\{1,9\}$.

(a, 8pts) Please draw a subgraph that is homeomorphic to K_{5}, which denotes the complete graph with 5 vertices. [Hint: the vertices of the K_{5} must have degree 4.]
(b, 2pts) What is the chromatic number of the above graph? Please explain.

Problem 5 (5 points): Consider the following Lindenmayer system: $T \rightarrow L(M) R, L \rightarrow M, M \rightarrow T$, $R \rightarrow L,(\rightarrow(,) \rightarrow)$. Here the parentheses (and) are constant symbols. Please write down the first 5 new generations of strings starting with T.

Problem 6 (10 points): Please consider the following "saw tooth" fractal.

Here one starts at iteration 1 with three line segments of length 1 arranged on a base line, and extrudes a right triangle upwards in the middle segment with its hypotenuse being the right extruded side. In the subsequent iterations, one repeats the process on the hypotenuse of the last extruded right triangle.
(a, 5 pts) Please give the length L_{i}, namely the two extruded sides minus the dashed side, that gets added to the saw tooth at iteration i, where $L_{1}=\sqrt{2}$ and $L_{2}=2 / 3$. Then please compute $\sum_{i=1}^{\infty} L_{i}$.
(b, 5 pts) Please give the area of the right triangle that is added at iteration i : note $A_{1}=1 / 2$ and $A_{2}=1 / 9$. Finally, please compute $\sum_{i=1}^{\infty} A_{i}$.

