## NC STATE UNIVERSITY

| MA 351 Intro Discrete Math Models, second mid-semester examination, Thur, Nov 2, Prof. Erich Kaltofen <kaltofen@math.ncsu.edu> www.math.ncsu.edu/~kaltofen/courses/DiscreteModels/Fall17/index.html (UR</kaltofen@math.ncsu.edu>                                                                                                                                                                                                                                    | 919.515.3798 (fax)                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Your Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |
| For purpose of anonymous grading, please do <b>not</b> write your name on                                                                                                                                                                                                                                                                                                                                                                                           | the subsequent pages.                                                                                                         |
| This examination consists of 6 problems, which are subdivided integrated question counts for the explicitly given number of points, adding to a write your answers in the spaces indicated, or below the questions, us for completing the answers and <b>for all scratch work</b> , if necessary. <b>two</b> $8.5$ in $\times$ 11in sheets with notes, but <b>not</b> your book or your class reproblem, it may be advisable to go to another problem and come back | total of <b>49 points</b> . Please sing the <b>back of the sheets</b> You are allowed to consult notes. If you get stuck on a |
| You will have <b>75 minutes</b> to do this test.                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Good luck!                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |
| Problem 1                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |
| If you are taking the exam later, please sign the following statement:                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               |
| I,, affirm that I have no knowledge of the conte                                                                                                                                                                                                                                                                                                                                                                                                                    | ents of this exam.                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Signature                                                                                                                     |

## **Problem 1** (13 points):

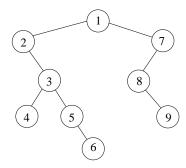
Consider the following mathematical expression in **post**fix notation. assuming that each of the operators  $+, -, *, /, \uparrow$  has two operands ( $\uparrow$  is exponentiation).

$$abcde * f / \uparrow + g - \uparrow$$
 (1)

(a, 4pts) Please draw the expression tree for (1).

(b, 4pts) Please give both the **minimally parenthesized in**fix and the **pre**fix representations for the expression (1), the latter of which only has variables and operators.

INFIX (with minum number of parentheses):


PREFIX:

(c, 5pts) Please draw the parse tree for the string  $a \uparrow b + c \uparrow (d*e/f - g)$  using the following context-free grammar G = (N, T, P, s) (from class with exponentiation)  $N = \{\langle E \rangle, \langle T \rangle, \langle F \rangle, \langle B \rangle\}$ ; note that  $\langle E \rangle$  is an expression,  $\langle T \rangle$  is a term,  $\langle F \rangle$  is a factor and  $\langle B \rangle$  is the base for a power.  $T = \{a, b, \ldots, z, (,), +, -, *, /, \uparrow\}$ . The start symbol  $s = \langle E \rangle$ .

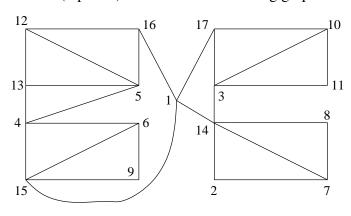
$$P = \{ \langle E \rangle \to \langle E \rangle + \langle T \rangle, \quad \langle T \rangle \to \langle T \rangle * \langle F \rangle, \quad \langle F \rangle \to \langle B \rangle \uparrow \langle F \rangle, \quad \langle B \rangle \to (\langle E \rangle), \\ |\langle E \rangle - \langle T \rangle, \quad |\langle T \rangle / \langle F \rangle, \quad |\langle B \rangle, \quad |a|b| \dots |z \}. \\ |\langle T \rangle, \quad |\langle F \rangle,$$

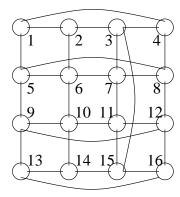
## **Problem 3** (7 points):

Please consider the binary tree (with left and right children identified): Please give the parentheses-only string from class for the tree, labelling each pair of parentheses with the corresponding vertex



**Problem 3** (6 points): Consider the following graph:



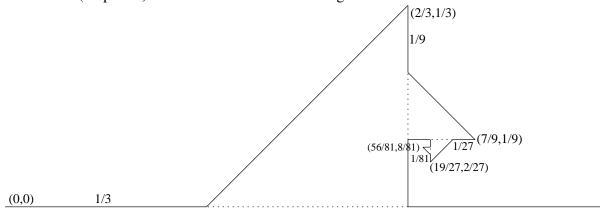


Figure 1.

(a, 4pts) Please draw the depth-first search tree for the above graph, processing the neighboring vertices of each vertex **in numerical order**, starting at vertex **1**.

(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3, i.e., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1, using a different arrow head for those arcs that correspond to edges in the DFS tree.

## **Problem 4** (8 points):

Consider the subgraph of the  $4 \times 4$  toric mesh (with the given vertex labeling); note that the edges  $\{1,13\}$ ,  $\{2,14\}$  and  $\{4,16\}$  are missing.




(a, 6pts) Please draw a subgraph that is homeomorphic to  $K_{3,3}$ . [Hint: choose for the top vertex set  $\{5,7,10\}$  and for the bottom vertex set  $\{11\}$  and two other vertices.]

(b, 2pts) Please 3-color the graph in Figure 1 on page 3.

**Problem 5** (4 points): Consider the following Lindenmayer system:  $T \to L(M)R$ ,  $L \to M$ ,  $M \to T$ ,  $R \to L$ ,  $(\to (, ) \to)$ . Here the parentheses ( and ) are constant symbols. Please write down the first 5 new generations of strings starting with T.

**Problem 6** (10 points): Please consider the following "hook" fractal.



Here one starts at iteration 1 with three line segments of length 1/3 arranged on a base line, and extrudes a right triangle upwards in the middle segment with its hypotenuse being the left extruded side. In the subsequent iterations, one repeats the process on the shorter "leg-"sides of lengths  $1/3, 1/9, 1/27, \ldots$ , placing the new hypotenuses nearer to the previous tip.

(a, 5 pts) Please give the area of the extruded right triangle at iteration i, with  $A_1 = 1/18$ . Finally, please compute  $\sum_{i=1}^{\infty} A_i$ .

(b, 5 pts) Please compute the x-y-coordinates of the tip of the extruded triangle at  $\infty$ . Hint: note that after 4 iterations the leg side of length 1/81 is again aligned like the intial base line, but its x-y-coordinates have moved from (0,0) to (56/81,8/81). At  $\infty$  the left point of the base line is the tip.