Problem 1 (13 points): Consider the following mathematical expression in postfix notation. assumming that each of the operators $+,-, *, /, \uparrow$ has two operands (\uparrow is exponentiation).
(a, 4pts) Please draw the expression tree for (1).

$$
\begin{equation*}
a b c d e * f / \uparrow+g-\uparrow \tag{1}
\end{equation*}
$$

(b, 4pts) Please give both the minimally parenthesized infix and the prefix representations for the expression (1), the latter of which only has variables and operators.
INFIX (with minimum number of parentheses): PREFIX: $\uparrow a-b+\infty \in d e f g$
(c, 5pts) Please draw the parse tree for the string $a \uparrow b+c \uparrow(d * e / f-g)$ using the following contextfree grammar $G=(N, T, P, s)$ (from class with exponentiation) $N=\{\langle E\rangle,\langle T\rangle,\langle F\rangle,\langle B\rangle\} ;$ note that $\langle E\rangle$ is an expression, $\langle T\rangle$ is a term, $\langle F\rangle$ is a factor and $\langle B\rangle$ is the base for a power. $T=\{a, b, \ldots, z,(),,+,-, *, /, \uparrow\}$. The start symbol $s=\langle E\rangle$. $P=\{\langle E\rangle \rightarrow\langle E\rangle+\langle T\rangle, \quad\langle T\rangle \rightarrow\langle T\rangle *\langle F\rangle, \quad\langle F\rangle \rightarrow\langle B\rangle \uparrow\langle F\rangle, \quad\langle B\rangle \rightarrow(\langle E\rangle)$,
$|\langle E\rangle-\langle T\rangle, \quad|\langle T\rangle /\langle F\rangle, \quad|\langle B\rangle, \quad| a|b| \ldots \mid z\}$.
$\mid\langle T\rangle$,

Problem 2 (5 points):
Please consider the binary tree (with left and right children identified): please give the parentheses-only string from class for the tree, labelling each pair of parentheses with the corresponding vertex

Problem 3 (6 points): Consider the following graph:

(a, 4pts) Please draw the depth-first search tree for the above graph, processing the neighboring verties of each vertex in numerical order, starting at vertex 1.

(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3, i.e., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1, using a different arrow head for those arcs that correspond to edges in the DFS tree.

Problem 4 (8 points):
Consider the subgraph of the 4×4 tori mesh (with the given vertex labeling); note that the edges $\{1,13\},\{2,14\}$ and $\{4,16\}$ are missing.

(a, 6pts) Please draw a subgraph that is homeomorphic to $K_{3,3}$. [Hint: choose for the "top" vertex set $\{5,7,10\}$ and for the "bottom" vertex set $\{11\}$ and two other vertices.]

(b, 2pts) Please 3-color the graph in Figure 1 on page 3 by placing R, G or B next to each vertex.

Problem 5 (4 points): Consider the following Lindenmayer system: $B \rightarrow b L, L \rightarrow l a H, H \rightarrow h X B$, $X \rightarrow x L x, b \rightarrow b, l \rightarrow l, a \rightarrow a, h \rightarrow h, x \rightarrow x$. Please write down the first 5 new generations of strings starting with B.
$B \rightarrow b L$
\rightarrow blaH
\rightarrow blah \times B
$\rightarrow b l_{a} h \times L \times b L$
\rightarrow blah $\times \ell$ a $_{4} H \times b l_{a} H$

Problem 6 (10 points): Please consider the following "hook" fractal.

Here one starts at iteration 1 with three line segments of length $1 / 3$ arranged on a base line, and extrudes a right triangle upwards in the middle segment with its hypotenuse being the left extruded side. In the subsequent iterations, one repeats the process on the shorter "leg-"sides of lengths $1 / 3,1 / 9,1 / 27, \ldots$, placing the new hypotenuses nearer to the previous tip.
(a, 5 pts) Please give the area of the extruded right triangle at iteration i, with $A_{1}=1 / 18$. Finally, please compute $\sum_{i=1}^{\infty} A_{i}$.

$$
\begin{aligned}
A_{2}=\left(\frac{1}{3}\right)^{2} A_{1}, A_{i} & =\left(\frac{1}{9}\right)^{i-1} A_{1}=\frac{1}{2}\left(\frac{1}{9}\right)^{i} \\
\sum_{i=1}^{\infty} A_{i}=\frac{1}{18} \sum_{i=0}^{\infty}\left(\frac{1}{9}\right)^{i} & =\frac{1}{18} \frac{1}{1-\frac{1}{9}} \\
& =\frac{1}{18} \frac{9}{8}=\frac{1}{16}
\end{aligned}
$$

(b, 5 pts) Please compute the x -y-coordinates of the tip of the extruded triangle at ∞. Hint: note that after 4 iterations the leg side of length $1 / 81$ is again aligned like the intial base line, but its x - y-coordinates have moved from $(0,0)$ to $(56 / 81,8 / 81)$. At ∞ the left point of the base line is the tip.

$$
\begin{aligned}
& \text { After } 8 \text { iterations: } x=\frac{56}{81}+\frac{56}{81^{2}} \\
& y=\frac{8}{81}+\frac{8}{81^{2}} \\
& x_{\infty}=\frac{56}{81} \cdot \sum_{i=0}^{\infty}\left(\frac{1}{81}\right)^{i}=\frac{56}{81} \frac{56}{1-\frac{1}{81}}=\frac{50}{80} \\
& y_{\infty}=\frac{8}{81} \cdot \sum_{i=0}^{\infty}\left(\frac{15}{81}\right)^{i}=\frac{8}{81} \frac{1}{1-\frac{1}{81}}=\frac{1}{10}
\end{aligned}
$$

