Problem 1 (13 points): Consider the following mathematical expression in infix notation, assuming that each of the binary operators $+,-, *, /, \uparrow$ has two operands, where \uparrow is exponentiation with highest precedence, which is evaluated right-to-left.

$$
\begin{equation*}
(a * b) \uparrow(c+d / e) \uparrow(f-g-h) \tag{1}
\end{equation*}
$$

(a, 4pts) Please draw the expression tree for (1).

(b, 4pts) Please give both the prefix and the postfix representations for the expression (1), both of which only have variables and operators.
PREFIX: $\uparrow * a b \uparrow+c / d e--f g h$
poStfix: $a b * c d e /+f g-h-\uparrow \uparrow$
(c, 5pts) Please draw the parse tree for (1) above using the following context-free grammar $G=$ (N, T, P, s) (from class with exponentiation) $N=\{\langle E\rangle,\langle T\rangle,\langle F\rangle,\langle B\rangle\}$; note that $\langle E\rangle$ is an expression, $\langle T\rangle$ is a term, $\langle F\rangle$ is a factor and $\langle B\rangle$ is the base for a power.
The terminal symbols $T=\{a, b, \ldots, z,(),,+,-, *, /, \uparrow\}$. The start symbol $s=\langle E\rangle$.

$$
\begin{aligned}
& P=\{\langle E\rangle \rightarrow\langle E\rangle+\langle T\rangle, \quad\langle T\rangle \rightarrow\langle T\rangle *\langle F\rangle, \quad\langle F\rangle \rightarrow\langle B\rangle \uparrow\langle F\rangle, \quad\langle B\rangle \rightarrow(\langle E\rangle), \\
& |\langle E\rangle-\langle T\rangle, \quad|\langle T\rangle /\langle F\rangle, \quad|\langle B\rangle, \quad| a|b| \ldots \mid z\} . \\
& |\langle T\rangle, \quad|\langle F\rangle,
\end{aligned}
$$

$$
F_{2019}
$$

Problem 2 (8 points):
Please consider the binary tree (with left and right children identified):

(a, 4pts) Please give the parentheses-only string from class
for the tree, labelling each pair of parentheses with the corresponding vertex.
$C(1$
123

1
5
5
$)$
6
5
$(())(1)$
7899810
($\mathrm{b}, 4 \mathrm{pts}$) In the above binary tree of 11 vertices, every non-leaf vertex has 2 children. How may binary trees with 11 vertices have the property that all non-leaf vertices have 2 children? Please explain.
Removing 6 leones, one obtains on arbitrary binary tree with 5 inferior vertices, for each such tree. There fore, there

Problem 3 (6 points): Consider the following graph:

are

Figure 1.
(a, 4 pts) Please draw the depth-first search tree for the above graph, processing the neighboring verties of each vertex in numerical order, starting at vertex 1.

(b, 2pts) Using the DFS tree in part (a), find a one-way street assignment for the graph in Figure 1 on page 3, ie., please orient the edges so that the resulting digraph is strongly connected. Please draw your orientation of each edge in Figure 1, using a different arrow head for those arcs that correspond to edges in the DFS tree.

F2019
Problem 4 (5 points): Please define the Mandelbrot set M_{a} for $a=2$, that is, M_{2}. Please show that $-3 \in M_{2}$ and $3 \notin M_{2}$.

$$
\begin{aligned}
& M_{2}=\left\{c \in \mathbb{C} \left\lvert\,\left\{\begin{array}{l}
z_{1}=2, z_{2}=z_{1}^{2}+c \\
\hline
\end{array}\right.\right.\right. \\
& \left.z_{3}=z_{2}^{2}+c, \ldots\right\} \text { is }
\end{aligned}
$$

bounded in olesolute value $\}$

$$
\left(\exists B: \forall i:\left|z_{i}\right| \leq B\right)
$$

$$
-3 \in M_{2} z_{1}=2, z_{2}=z_{1}^{2}-3=-1, z_{3}=z_{2}^{2}-3=-2, z_{4}=z_{2}^{2}-3=-1,1
$$

periodic, hence bund.
$3 \notin M_{2}: z_{1}=2, z_{2}=z_{1}^{2}+3=7, z_{3}=z_{2}^{2}+3=52, \ldots, z_{i} \mid \geqslant 2^{i}$
Problem 5 (5 points): Consider the following Lindenmayer system:

$$
\begin{array}{lc|c|c|c|c|c|c|c|c}
\text { Variables: } & \mathrm{X} & \mathrm{P} & \mathrm{Y} & \mathrm{r} & \mathrm{~F} & \mathrm{Z} & \mathrm{o} & \mathrm{f} & \mathrm{~K} \\
\hline \text { Right-sides: } & \mathrm{PYZ} & \mathrm{P} & \mathrm{rFZ} & \mathrm{r} & \text { of Z } & \mathrm{KPrF} & \mathrm{o} & \mathrm{f} & \mathrm{~K}
\end{array}
$$

Please write down the first new generations of strings starting with X.

$$
\begin{aligned}
& X \rightarrow P Y Z \\
& \rightarrow \underbrace{\operatorname{PFF}}_{y} \underset{Z}{K \operatorname{Pr} F} \\
& \rightarrow \operatorname{Prof} \underset{F}{Z} \frac{K \operatorname{Pr} F}{z} K \operatorname{Pr} \underset{F}{\circ} \frac{\operatorname{Paf}_{F}}{F} \\
& \rightarrow \operatorname{Prof}{\underset{z}{K P_{r} F}}_{K \underbrace{\operatorname{Prof} Z}_{F} K \operatorname{Prof}}^{\underbrace{K \operatorname{PrF}}_{z}}
\end{aligned}
$$

Problem 6 (10 points): Please consider the following "inverted" Koch-like snowflake fractal:

1

Here one starts at the 1st-iteration with an equilateral triangle with side length 1 . At the 2 nditeration 2 equilateral triangles of side length $1 / 5$ are pushed into the triangle at equal spaced intervals on each of the 3 sides. The interior is now 4 polygons connected at 3 shared vertices. At the 3rd-iteration again 2 triangles of side length $1 / 25$ are pushed in on each of the 21 line segments of length $1 / 5$. They are shown above with dashed sides. And so on.
(a, 5 pts) Please give the sum L_{i} of the lengths of the boundaries of all polygons at iteration i.

$$
\begin{aligned}
& L_{i}=3+3 \cdot 2 \cdot \frac{1}{5}+3 \cdot 2 \cdot 7 \cdot \frac{1}{5^{2}}+\cdots+3 \cdot 2 \cdot 7^{i-2} \frac{1}{5^{i-1}}=3+3\left(\left(\frac{7}{5}\right)^{i-1}-1\right) \\
& \text { or } L_{i}=3 \cdot\left(\frac{7}{5}\right)^{i-1}
\end{aligned}
$$

