NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, May 4, 2005
919.515 .8785 (phone)
kaltofen@math.ncsu.edu (email)
919.515 .3798 (fax)
www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring05/ (URL)
(C) Erich Kaltofen 2005

Your Name: SOLUTION
For purpose of anonymous grading, please do not write your name on the subsequent pages.
This examination consists of 5 problems, which are subdivided into 10 questions, where each question counts for the explicitly given number of points, adding to a total of $\mathbf{4 7}$ points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.

Problem 1
\qquad
3 \qquad

4 -

5 \qquad

Total \qquad

Problem 1 (16 points)

(a, 4pts) Let p be a positive prime integer. Please define under which conditions a residue $g \in \mathbb{Z}_{p}$ is a primitive root.

1. $g \neq 0$,
2. $\forall i, 1 \leq i \leq p-2: g^{i} \not \equiv 1(\bmod p)$.
($\mathrm{b}, 4 \mathrm{pts}$) True or false: If p is a positive prime integer and both a and b are quadratic non-residues modulo p, then $c=(a \cdot b) \bmod p$ must be a quadratic residue modulo p. Please explain.

True:
If $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)=-1$, then $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right) \cdot\left(\frac{b}{p}\right)=+1$, so ab is a Q.R.
(c, 4pts) The RSA public key cryptosystem is malleable. Please explain what that means.

Given a ciphertext $N=E_{K}(M)$, one can, without knowledge of M, produce the ciphertext for a modified M, say $N^{\prime}=E_{K}(2 \cdot M)$.
(d, 4pts) Please state Fermat's last theorem, which was proved by Andrew Wiles in 1994.
$\forall n, x, y, z \in \mathbb{Z}, n \geq 3, x, y, z>0: x^{n}+y^{n} \neq z^{n}$.

Problem 2 (5 points): Please compute the sum

$$
\sum_{d \mid 300, d>0}(\mu(d) \cdot d)
$$

where μ is the Möbius function. Please show your derivation. [Hint: note that $300=2^{2} \cdot 3 \cdot 5^{2}$ and that the function $\mu(m) \cdot m$ is multiplicative.]

```
\(\mu(d) \cdot d\) is multiplicative, so
\(F\left(2^{2} \cdot 3 \cdot 5^{2}\right)=\sum_{d \mid 300, d>0}(\mu(d) \cdot d)\)
\(=F\left(2^{2}\right) \cdot F(3) \cdot F(5)\)
\(=\left(\mu(1) \cdot 1+\mu(2) \cdot 2+\mu\left(2^{2}\right) \cdot 4\right) \cdot(\mu(1) \cdot 1+\mu(3) \cdot 3) \cdot\left(\mu(1) \cdot 1+\mu(5) \cdot 5+\mu\left(5^{2}\right) \cdot 25\right)\)
\(=(1-2) \cdot(1-3) \cdot(1-5)=-8\).
```

Problem 3 (5 points): Using the quadratic reciprocity law, please compute the value of the Legendre symbol $\left(\frac{11}{1019}\right)$ (Burton's book writes $(11 / 1019)$ instead). Note that $1019=92 \cdot 11+7$. Please show all your work.
$\left(\frac{11}{1019}\right) \cdot\left(\frac{1019}{11}\right)=(-1)^{\frac{11-1}{2} \cdot \frac{1019-1}{2}}=-1$
$\left(\frac{7}{11}\right) \cdot\left(\frac{11}{7}\right)=(-1)^{\frac{11-1}{2} \cdot \frac{7-1}{2}}=-1$
$\left(\frac{4}{7}\right)=\left(\frac{2}{7}\right)^{2}=+1$
$\Longrightarrow\left(\frac{11}{1019}\right)=+1$.

Problem 4 (16 points): Consider the following table of indices (discrete logarithms) for the prime number 17 with respect to the primitive root $g=3$:

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\operatorname{ind}_{3}(a)$	16	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

(a, 5pts) There are $\phi(16)$ residues in $\mathbb{Z}_{17} \backslash\{0\}$ that are primitive roots (including 3). By inspecting the above table, please list all those residues.
a is a prim. root $\Longleftrightarrow a=g^{i}$ with $\operatorname{gcd}(i, 16)=1$.
So $a=3^{1}=3,3^{3} \equiv 10,3^{5} \equiv 5,3^{7} \equiv 11,3^{9} \equiv 14,3^{11} \equiv 7,3^{13} \equiv 12,3^{15} \equiv 6$ are the prim. roots.
In numeric order: 3,5,6,7,10,11,12,14.
(b, 5pts) Using the above table, please solve in $x \in \mathbb{Z}_{17}$ and $y \in \mathbb{Z}_{17}$ the two congruences

$$
x^{2} \equiv 2 \quad(\bmod 17), \quad y^{3} \equiv 2 \quad(\bmod 17)
$$

Please give all solutions.
$2 \equiv 3^{14} \equiv 3^{14+16}(\bmod 17)$
$x_{1} \equiv 3^{7} \equiv 11, x_{2} \equiv 3^{15} \equiv 6(\bmod 17)$.
$2 \equiv 3^{14} \equiv 3^{3 k}(\bmod 17)$,
$3 k \equiv 14(\bmod 16), 3^{-1} \equiv 11(\bmod 16)($ by extended Euclidean algorithm not shown),
$k \equiv 11 \cdot 14 \equiv-22 \equiv 10(\bmod 16)$,
$y \equiv 3^{10} \equiv 8(\bmod 17)$.
Check: $8^{3} \equiv 2^{9} \equiv 2^{4} \cdot 2^{4} \equiv 2 \equiv(-1) \cdot(-1) \cdot 2 \equiv 2(\bmod 17)$.
(c, 6pts) Suppose a residue $M \in \mathbb{Z}_{17}$ has been encrypted by the el-Gamal public key system with public keys $p=17, g=3$ and $h \equiv 3^{s} \equiv 7 \bmod 17$. The ciphertext is

$$
N=\left(g^{r} \bmod 17, M \cdot h^{r} \bmod 17\right)=(14,14) .
$$

Please compute M, showing your derivation. [Hint: you can use the table on the previous page for deriving the private key s, and for powering, multiplication, and reciprocal modulo 17.]

$$
\begin{aligned}
& 3^{11} \equiv 7(\bmod 17), \text { so } s=11 . \\
& h^{r} \equiv\left(3^{s}\right)^{r} \equiv\left(3^{r}\right)^{s} \equiv 14^{11} \equiv 3^{9 \cdot 11} \equiv 3^{9 \cdot 11 \bmod 16} \equiv 3^{3}(\bmod 17) \\
& M \equiv 14 \cdot 3^{-3} \equiv 14 \cdot 3^{13} \equiv 14 \cdot 12 \equiv(-3) \cdot(-5) \equiv 15(\bmod 17)
\end{aligned}
$$

Problem 5 (5 points): Please compute all primitive Pythagorean triples (x, y, z) such that $x=12$, $y>0$ and $z>0$.
$x=2 s t=12, s>t, y=s^{2}-t^{2}, z=s^{2}+t^{2}$.
$6=s t=3 \cdot 2=6 \cdot 1$
$y_{1}=3^{2}-2^{2}=5, z_{1}=3^{2}+2^{2}=13$
$y_{2}=6^{2}-1^{2}=35, z_{1}=6^{2}+1^{2}=37$

