NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, May 2, 2007
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring07/ (URL)
(C) Erich Kaltofen 2007

Your Name: \qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 6 problems, which are subdivided into 10 questions, where each question counts for the explicitly given number of points, adding to a total of 46 points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.
\qquad

2 \qquad

3 \qquad

4 \qquad

5 \qquad

6 \qquad

Total \qquad
(a, 4pts) Please state Fermat's little theorem and Euler's generalization to composite moduli.
(b, 4pts) Let p be a positive prime integer and let ϕ be Euler's ϕ function. True or false: there are $\phi(\phi(p))$ primitve roots modulo p. Please explain your answer.
(c, 4pts) True or false: If p is a positive prime integer and a is a quadratic non-residue modulo p, then $\left(a^{3} \bmod p\right)$ must be a quadratic non-residue modulo p. Please explain.
(d, 4pts) Please explain the Diffie-Hellman private key exchange protocol.

Problem 2 (4 points): Please give the value of the sum $\sum_{d \mid 300, d>0} \phi(d)$.

Problem 3 (5 points): Using the quadratic reciprocity law, please compute the value of the Jacobi symbol $\left(\frac{232}{123}\right)$. Please show all your work.

Problem 4 (11 points): Consider the following table of indices (discrete logarithms) for the prime number 17 with respect to the primitive root $g=3$:

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\operatorname{ind}_{3}(a)$	16	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

(a, 5pts) Using the above table, please solve in $x \in \mathbb{Z}_{17}$ and $y \in \mathbb{Z}_{17}$ the two congruences

$$
x^{3} \equiv 2 \quad(\bmod 17), \quad y^{5} \equiv 2 \quad(\bmod 17)
$$

Please give all solutions.
(b, 6pts) Suppose a residue $M \in \mathbb{Z}_{17}$ has been encrypted by the el-Gamal public key system with public keys $p=17, g=3$ and $h \equiv 3^{s} \equiv 7 \bmod 17$. The ciphertext is

$$
N=\left(g^{r} \bmod 17, M \cdot h^{r} \bmod 17\right)=(14,14)
$$

Please compute from N the encryption N^{\prime} of $M^{\prime}=M / 3$, with $r^{\prime}=(r+1 \bmod 16)$, that without computing r or s. Please show your derivation.

Problem 5 (5 points): Let $p>2$ be a prime integer with $p \equiv 3(\bmod 4)$ and let $a \in \mathbb{Z}_{p}$ be a quadratic non-residue modulo p. Show that for $x=\left(a^{\frac{p+1}{4}} \bmod p\right)$ one has $x^{2} \equiv-a(\bmod p)$.

Problem 6 (5 points): Please find integers $x, y, z \in \mathbb{Z}_{>0}$ such that $x^{4}+y^{2}=z^{2}$. Please show your work.

