## NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, April 30, 2008
919.515 .8785 (phone)

Prof. Erich Kaltofen [kaltofen@math.ncsu.edu](mailto:kaltofen@math.ncsu.edu)
www.math.ncsu.edu/ ${ }^{\text {kaltofen/courses/NumberTheory/Spring08/ (URL) }}$
(C) Erich Kaltofen 2008

Your Name: $\qquad$
For purpose of anonymous grading, please do not write your name on the subsequent pages.
This examination consists of 6 problems, which are subdivided into 11 questions, where each question counts for the explicitly given number of points, adding to a total of $\mathbf{4 6}$ points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.
$\qquad$

2 $\qquad$

3 $\qquad$

4 $\qquad$

5 $\qquad$

6 $\qquad$

Total $\qquad$

## Problem 1 (16 points)

(a, 4pts) Fermat's last theorem is a famous impossibility theorem of mathematics. Please state another impossibility theorem of mathematics.
(b, 4pts) True of false: For all integers $x, y, z$ with $x y z \neq 0$ we have $x^{4}+y^{4} \neq z^{2}$. Please explain your answer.
(c, 4pts) True or false: If $p$ is a positive prime integer and $a, b, c$ are quadratic non-residue modulo $p$, then $(a b c \bmod p)$ must be a quadratic non-residue modulo $p$. Please explain.
(d, 4 pts ) Let $p>1$ be a prime integer. How many residues in $\mathbb{Z}_{p}$ are primitive roots?

Problem 2 (5 points): Using the quadratic reciprocity law, please compute the value of the Jacobi symbol $\left(\frac{58}{101}\right)$. Please show all your work.

Problem 3 (5 points): The El Gamal public key cryptosystem is a probabilistic cryptosystem because clear text is encrypted using a different random residue for each cyphertext. Show that if instead a single fixed residue is used for all encryptions, the resulting non-probabilistic system can be broken by the chosen ciphertext attack.

Problem 4 (10 points): Consider the following table of indices (discrete logarithms) for the prime number 19 with respect to the primitive root $g=2$ :

| $a$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\operatorname{ind}_{2}(a)$ | 18 | 1 | 13 | 2 | 16 | 14 | 6 | 3 | 8 | 17 | 12 | 15 | 5 | 7 | 11 | 4 | 10 | 9 |

(a, 5pts) There are $\phi(9)$ residues in $\mathbb{Z}_{19} \backslash\{0\}$ that have (multiplicative) order 9 modulo 19 (belong to the exponent 9 modulo 19). By inspecting the above table, please list all those residues.
(b, 5pts) Using the above table, please solve $x \in \mathbb{Z}_{19}$ and all $y \in \mathbb{Z}_{19}$ the two congruences

$$
x^{3} \equiv 7 \quad(\bmod 19), \quad 5 y^{5} \equiv 12 \quad(\bmod 19)
$$

Please give all solutions and show your work.

Problem 5 (6 points): Let $p>2$ be a prime integer with $p \equiv 5(\bmod 8)$, i.e., 8 divides $p+3$ and 4 divides $p-1$, and let $a \in \mathbb{Z}_{p}$ be a quadratic residue modulo $p$.
Since $a^{\frac{p-1}{2}}(\bmod p)=\left(\frac{a}{p}\right)=1$ we must have $a^{\frac{p-1}{4}} \equiv \pm 1(\bmod p)$.
(a, 3pts) Case $a^{\frac{p-1}{4}} \equiv 1(\bmod p)$ : Show that for $x=\left(a^{\frac{p+3}{8}} \bmod p\right)$ one has $x^{2} \equiv a(\bmod p)$.
(b, 3pts) Case $a^{\frac{p-1}{4}} \equiv-1(\bmod p)$ : Let $c$ be an arbitrary quadratic non-residue. Show that for $x=\left(a^{\frac{p+3}{8}} c^{\frac{p-1}{4}} \bmod p\right)$ one has $x^{2} \equiv a(\bmod p)$.

Problem 6 (4 points): Please find three integers $x, y, z \in \mathbb{Z}_{>0}$ such that $x^{2}+y^{2}=z^{4}$. Please show your work.

